Quantitatively Mapping Discolored Seawater around Submarine Volcanoes Using Satellite GCOM-C SGLI Data: A Case Study of the Krakatau Eruption in Indonesia in December 2018
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Dominant Wavelength Quantification Method
2.3. Satellite Data Used
3. Results
3.1. Color Characteristics of Discolored Water
3.2. Distribution Characteristics of Discolored Water
3.3. Quantification of the Discolored Water Area
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Wavelength (nm) | x | y | θ (°) | Wavelength (nm) | X | y | θ (°) |
---|---|---|---|---|---|---|---|
380 | 0.1741 | 0.0050 | 26 | 580 | 0.5125 | 0.4866 | 230 |
390 | 0.1738 | 0.0049 | 26 | 590 | 0.5752 | 0.4242 | 250 |
400 | 0.1733 | 0.0048 | 26 | 600 | 0.6270 | 0.3725 | 263 |
410 | 0.1726 | 0.0048 | 26 | 610 | 0.6658 | 0.3340 | 270 |
420 | 0.1714 | 0.0051 | 26 | 620 | 0.6915 | 0.3083 | 274 |
430 | 0.1689 | 0.0069 | 27 | 630 | 0.7079 | 0.2920 | 276 |
440 | 0.1644 | 0.0109 | 28 | 640 | 0.7190 | 0.2809 | 278 |
450 | 0.1566 | 0.0177 | 29 | 650 | 0.7260 | 0.2740 | 279 |
460 | 0.1440 | 0.0297 | 32 | 660 | 0.7300 | 0.2700 | 279 |
470 | 0.1241 | 0.0578 | 37 | 670 | 0.7320 | 0.2680 | 279 |
480 | 0.0913 | 0.1327 | 50 | 680 | 0.7334 | 0.2666 | 280 |
490 | 0.0454 | 0.2950 | 83 | 690 | 0.7344 | 0.2656 | 280 |
500 | 0.0082 | 0.5384 | 122 | 700 | 0.7347 | 0.2653 | 280 |
510 | 0.0139 | 0.7502 | 143 | 710 | 0.7347 | 0.2653 | 280 |
520 | 0.0743 | 0.8338 | 153 | 720 | 0.7347 | 0.2653 | 280 |
530 | 0.1547 | 0.8059 | 159 | 730 | 0.7347 | 0.2653 | 280 |
540 | 0.2296 | 0.7543 | 166 | 740 | 0.7347 | 0.2653 | 280 |
550 | 0.3016 | 0.6923 | 175 | 750 | 0.7347 | 0.2653 | 280 |
560 | 0.3731 | 0.6245 | 188 | 760 | 0.7347 | 0.2653 | 280 |
570 | 0.4441 | 0.5547 | 207 | 770 | 0.7347 | 0.2653 | 280 |
780 | 0.7347 | 0.2653 | 280 |
References
- Walter, T.R.; Haghighi, M.H.; Schneider, F.M.; Coppola, D.; Motagh, M.; Saul, J.; Babeyko, A.; Dahm, T.; Troll, V.R.; Tilmann, F.; et al. Complex hazard cascade culminating in the Anak Krakatau sector collapse. Nat. Commun. 2019, 10, 4339–4350. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yates, A.S.; Savage, M.K.; Jolly, A.D.; Caudron, C.; Hamling, I.J. Volcanic, coseismic, and seasonal changes detected at White Island (Whakaari) volcano, New Zealand, using seismic ambient noise. Geophys. Res. Lett. 2019, 46, 99–108. [Google Scholar] [CrossRef] [Green Version]
- Tamura, Y.; Ishizuka, O.; Sato, T.; Nichols, A.R. Nishinoshima volcano in the Ogasawara Arc: New continent from the ocean? Isl. Arc 2019, 28, e12285. [Google Scholar] [CrossRef]
- Yoshida, K.; Tamura, Y.; Sato, T.; Hanyu, T.; Usui, Y.; Chang, Q.; Ono, S. Variety of the drift pumice clasts from the 2021 Fukutoku-Oka-no-Ba eruption, Japan. Isl. Arc. 2022, 31, e12441. [Google Scholar] [CrossRef]
- Hunt, J.E.; Tappin, D.R.; Watt, S.F.L.; Susilohadi, S.; Novellino, A.; Ebmeier, S.K.; Cassidy, M.; Engwell, S.L.; Grilli, S.T.; Hanif, M.; et al. Submarine landslide megablocks show half of Anak Krakatau island failed on December 22nd, 2018. Nat. Commun. 2021, 12, 2827. [Google Scholar] [CrossRef]
- Schmincke, H.-U. Vulkanismus, Wissenschaftliche Buchgesellschaft Darnstadt; Sumita, M., Nishimua, Y., Eds.; Kokon-shoin: Tokyo, Japan, 2016. (In Japanese) [Google Scholar]
- Nogami, K.; Yoshida, M.; Ossaka, J. Chemical composition of discolored seawater around Satsuma-Iwojima, Kagoshima, Japan. Bull. Volcanol. Soc. Jpn. 1993, 38, 71–77. [Google Scholar]
- Ossaka, J.; Adachi, N.; Tsuchide, N.; Nogami, K. Chemical compositions of discolored sea water around Izu-Oshimaat the 1986 Eruption. Bull. Volcanol. Soc. Jpn. 2000, 38, 71–77. [Google Scholar]
- Urai, M.; Machida, S. Discolored seawater detection using ASTER reflectance products: A case study of Satsuma-Iwojima, Japan. Remote Sens. Environ. 2005, 99, 95–104. [Google Scholar] [CrossRef]
- Urai, M. Time series analysis of discolored seawater reflectance observed by Advanced Visible and Near infrared Radiometer type 2 (AVNIR-2) at Fukutoku-Okonaba submarine volcano, Japan. J. Volcanol. Geotherm. Res. 2014, 269, 23–27. [Google Scholar] [CrossRef]
- Prata, A.T.; Folch, A.; Prata, A.J.; Biondi, R.; Brenot, H.; Cimarelli, C.; Corradini, S.; Lapierre, J.; Costa, A. Anak Krakatau triggers volcanic freezer in the upper troposphere. Sci. Rep. 2020, 10, 3584–3597. [Google Scholar] [CrossRef] [Green Version]
- Ohsawa, S.; Kawamura, T.; Takamatsu, N.; Yusa, Y. Rayleigh scattering by aqueous colloidal silica as a cause for the blue color of hydrothermal water. J. Volcanol. Geotherm. Res. 2002, 113, 49–60. [Google Scholar] [CrossRef]
- Onda, Y.; Ohsawa, S.; Takamatsu, N. A colorimetric and geochemical study of the coloration factor of hyper-acid active crater lakes. Jpn. J. Limnol. 2003, 64, 1–10. [Google Scholar] [CrossRef]
- Larrain, R.E.; Schaefer, D.M.; Reed, J.D. Use of digital images to estimate CIE color coordinates of beef. Food Res. Int. 2008, 41, 380–385. [Google Scholar] [CrossRef]
- Hori, M.; Murakami, H.; Miyazaki, R.; Honda, Y.; Nasahara, K.; Kajiwara, K.; Nakajima, T.Y.; Irie, H.; Toratani, M.; Hirawake, T.; et al. GCOM-C data validation plan for land, atmosphere, ocean, and cryosphere. Aerospace Technology Japan. Trans. Jpn. Soc. Aeronaut. Space Sci. Aerosp. Technol. Jpn. 2018, 16, 218–223. [Google Scholar]
- Sakuno, Y. Trial of chemical composition estimation related to submarine volcano activity using discolored seawater color data obtained from GCOM-C SGLI. A case study of Nishinoshima Island, Japan, in 2020. Water 2021, 13, 1100. [Google Scholar] [CrossRef]
- Fiantis, D.; Ginting, F.I.; Nelson, M.; Van Ranst, E.; Minasny, B.; Minasny, B. Geochemical characterization and evolution of soils from Krakatau islands. Eurasian Soil Sci. 2021, 54, 1629–1643. [Google Scholar] [CrossRef]
- Ren, Z.; Wang, Y.; Wang, P.; Hou, J.; Gao, Y.; Zhao, L. Numerical study of the triggering mechanism of the 2018 Anak Krakatau tsunami: Eruption or collapsed landslide? Nat. Hazards 2020, 102, 1–13. [Google Scholar] [CrossRef]
- Muhari, A.; Heidarzadeh, M.; Susmoro, H.; Nugroho, H.D.; Kriswati, E.; Wijanarto, A.B.; Wijanarto, A.B.; Imamura, F.; Arikawa, T. The December 2018 Anak Krakatau Volcano tsunami as inferred from post-tsunami field surveys and spectral analysis. Pure Appl. Geophys. 2019, 176, 5219–5233. [Google Scholar] [CrossRef] [Green Version]
- Novellino, A.; Engwell, S.L.; Grebby, S.; Day, S.; Cassidy, M.; Madden-Nadeau, A.; Watt, S.; Pyle, D.; Abdurrachman, M.; Edo Marshal Nurshal, M.; et al. Mapping recent shoreline changes spanning the lateral collapse of Anak Krakatau Volcano, Indonesia. Appl. Sci. 2020, 10, 536. [Google Scholar] [CrossRef] [Green Version]
- Grilli, S.T.; Tappin, D.R.; Carey, S.; Watt, S.F.; Ward, S.N.; Grilli, A.R.; Engwell, S.L.; Zhang, C.; Kirby, J.T.; Muin, M. Modelling of the tsunami from the December 22, 2018 lateral collapse of Anak Krakatau volcano in the Sunda Straits, Indonesia. Sci. Rep. 2019, 9, 11946. [Google Scholar] [CrossRef] [Green Version]
- Japanese Standard Association. JIS Handbook; Japanese Standards Association: Tokyo, Japan, 2010; Volume 61. (In Japanese) [Google Scholar]
- Kuge, Y. Conversion between Chromaticity Coordinates and Dominant Wavelength, Purity of XYZ Colorimetric System. J. Jpn. Soc. Colour Mater. 1985, 58, 591–593. [Google Scholar] [CrossRef] [Green Version]
- National Astronomical Observatory of Japan. Chronological Scientific Tables; Maruzen: Tokyo, Japan, 2020. [Google Scholar]
- Eugenio, F.; Martin, J.; Marcello, J.; Fraile-Nuez, E. Environmental monitoring of El Hierro Island submarine volcano, by combining low and high resolution satellite imagery. Int. J. Appl. Earth Obs. Geoinf. 2014, 29, 53–66. [Google Scholar] [CrossRef]
- Caballero, I.; Román, A.; Tovar-Sánchez, A.; Navarro, G. Water quality monitoring with Sentinel-2 and Landsat-8 satellites during the 2021 volcanic eruption in La Palma (Canary Islands). Sci. Total Environ. 2022, 822, 153433. [Google Scholar] [CrossRef] [PubMed]
- Mantas, V.M.; Pereira, A.J.S.C.; Morais, P.V. Plumes of discolored water of volcanic origin and possible implications for algal communities. The case of the Home Reef eruption of 2006 (Tonga, Southwest Pacific Ocean). Remote Sens. Environ. 2011, 115, 1341–1352. [Google Scholar] [CrossRef]
- Whiteside, A.S.; Dupouy, C.; Singh, A.; Bani, P.; Frouin, R. Impact of ashes from the 2022 Tonga volcanic eruption on satellite ocean color signatures. Front. Mar. Sci. 2023, 10, 2566–2581. [Google Scholar] [CrossRef]
- Williams, R.; Rowley, P.; Garthwaite, M.C. Reconstructing the Anak Krakatau flank collapse that caused the December 2018 Indonesian tsunami. Geology 2019, 47, 973–976. [Google Scholar] [CrossRef] [Green Version]
- Gouhier, M.; Paris, R. SO2 and tephra emissions during the December 22, 2018 Anak Krakatau eruption. Volcanica 2019, 2, 91–103. [Google Scholar]
- Deplus, C.; Bonvalot, S.; Dahrin, D.; Diament, M.; Harjono, H.; Dubois, J. Inner structure of the Krakatau volcanic complex (Indonesia) from gravity and bathymetry data. J. Volcanol. Geotherm. Res. 1995, 64, 23–52. [Google Scholar] [CrossRef]
- Paris, A.; Heinrich, P.; Paris, R.; Abadie, S. The December 22, 2018 Anak Krakatau, Indonesia, landslide and tsunami: Preliminary modeling results. Pure Appl. Geophys. 2020, 177, 571–590. [Google Scholar] [CrossRef] [Green Version]
No. | Date | Data Name |
---|---|---|
1 | 1 October 2018 | GC1SG1_20181001D01D_T0928_L2SG_RSRFQ_3001.h5 |
2 | 5 October 2018 | GC1SG1_20181005D01D_T0928_L2SG_RSRFQ_3001.h5 |
3 | 17 October 2018 | GC1SG1_20181017D01D_T0928_L2SG_RSRFQ_3001.h5 |
4 | 1 November 2018 | GC1SG1_20181101D01D_T0928_L2SG_RSRFQ_3001.h5 |
5 | 16 November 2018 | GC1SG1_20181116D01D_T0928_L2SG_RSRFQ_3001.h5 |
6 | 20 November 2018 | GC1SG1_20181120D01D_T0928_L2SG_RSRFQ_3001.h5 |
7 | 20 December 2018 | GC1SG1_20181220D01D_T0928_L2SG_RSRFQ_3001.h5 |
8 | 8 January 2019 | GC1SG1_20190108D01D_T0928_L2SG_RSRFQ_3001.h5 |
9 | 11 January 2019 | GC1SG1_20190111D01D_T0928_L2SG_RSRFQ_3001.h5 |
10 | 12 January 2019 | GC1SG1_20190112D01D_T0928_L2SG_RSRFQ_3001.h5 |
11 | 3 February 2019 | GC1SG1_20190203D01D_T0928_L2SG_RSRFQ_3001.h5 |
12 | 11 February 2019 | GC1SG1_20190211D01D_T0928_L2SG_RSRFQ_3001.h5 |
13 | 18 February 2019 | GC1SG1_20190218D01D_T0928_L2SG_RSRFQ_3001.h5 |
14 | 22 February 2019 | GC1SG1_20190222D01D_T0928_L2SG_RSRFQ_3001.h5 |
15 | 24 March 2019 | GC1SG1_20190324D01D_T0928_L2SG_RSRFQ_3001.h5 |
16 | 27 March 2019 | GC1SG1_20190327D01D_T0928_L2SG_RSRFQ_3001.h5 |
17 | 31 March 2019 | GC1SG1_20190331D01D_T0928_L2SG_RSRFQ_3001.h5 |
Stn. * | Stat. ** | October–December 2018 | January–March 2019 | ||||||
---|---|---|---|---|---|---|---|---|---|
x | y | DWL (nm) | N | x | y | DWL (nm) | N | ||
W | AVE | 0.24 | 0.27 | 497 | 4 | 0.32 | 0.36 | 539 | 9 |
SD | 0.02 | 0.02 | 3 | 0.06 | 0.05 | 42 | |||
N | AVE | 0.25 | 0.29 | 497 | 5 | 0.26 | 0.31 | 496 | 9 |
SD | 0.01 | 0.02 | 2 | 0.02 | 0.03 | 4 | |||
E | AVE | 0.24 | 0.29 | 497 | 5 | 0.26 | 0.30 | 496 | 10 |
SD | 0.01 | 0.03 | 2 | 0.02 | 0.02 | 4 | |||
S | AVE | 0.24 | 0.28 | 497 | 5 | 0.29 | 0.33 | 505 | 10 |
SD | 0.01 | 0.02 | 3 | 0.06 | 0.06 | 26 | |||
SW | AVE | 0.24 | 0.28 | 497 | 4 | 0.38 | 0.38 | 541 | 10 |
SD | 0.02 | 0.03 | 3 | 0.08 | 0.06 | 43 | |||
All | AVE | 0.24 | 0.28 | 497 | 23 | 0.30 | 0.34 | 515 | 48 |
SD | 0.02 | 0.02 | 2 | 0.07 | 0.06 | 35 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sakuno, Y.; Hirao, S.; Taniguchi, N. Quantitatively Mapping Discolored Seawater around Submarine Volcanoes Using Satellite GCOM-C SGLI Data: A Case Study of the Krakatau Eruption in Indonesia in December 2018. GeoHazards 2023, 4, 107-120. https://doi.org/10.3390/geohazards4020007
Sakuno Y, Hirao S, Taniguchi N. Quantitatively Mapping Discolored Seawater around Submarine Volcanoes Using Satellite GCOM-C SGLI Data: A Case Study of the Krakatau Eruption in Indonesia in December 2018. GeoHazards. 2023; 4(2):107-120. https://doi.org/10.3390/geohazards4020007
Chicago/Turabian StyleSakuno, Yuji, Sakito Hirao, and Naokazu Taniguchi. 2023. "Quantitatively Mapping Discolored Seawater around Submarine Volcanoes Using Satellite GCOM-C SGLI Data: A Case Study of the Krakatau Eruption in Indonesia in December 2018" GeoHazards 4, no. 2: 107-120. https://doi.org/10.3390/geohazards4020007
APA StyleSakuno, Y., Hirao, S., & Taniguchi, N. (2023). Quantitatively Mapping Discolored Seawater around Submarine Volcanoes Using Satellite GCOM-C SGLI Data: A Case Study of the Krakatau Eruption in Indonesia in December 2018. GeoHazards, 4(2), 107-120. https://doi.org/10.3390/geohazards4020007