Prospective Fault Displacement Hazard Assessment for Leech River Valley Fault Using Stochastic Source Modeling and Okada Fault Displacement Equations
Abstract
:1. Introduction
2. Probabilistic Fault Displacement Hazard Analysis Using Stochastic Source Models and Okada Equations
2.1. Methodology
2.2. Target Fault Source: Leech River Valley Fault
2.2.1. Geological Setting
2.2.2. Fault Plane Model
2.3. Earthquake Magnitude Model
2.4. Stochastic Source Model
2.5. Fault Displacement Calculation
3. Probabilistic Fault Displacement Hazard Analysis of the Leech River Valley Fault
3.1. Simulation Setup and Site Selection
3.2. Fault Displacement Hazard Curves
3.3. Fault Displacement Hazard Maps for Critical Scenarios
4. Conclusions
4.1. Summary and Key Findings
- The results for the LRVF region indicate that a surface vertical displacement of 0.5 m is possible at a low annual frequency of exceedance (annual frequency of 10−4). The low chance of a major fault displacement hazard is attributed to the low seismic activity of the LRVF (i.e., mean recurrence periods of moderate-size earthquakes are around 1000 years). Although the probability is low, the consideration of the surface fault displacement of the LRVF is important as it may affect local critical infrastructures widely and simultaneously.
- The differential fault displacement hazards for two sites that are located across the fault strike (i.e., one site is on the footwall side of the fault, while the other site is on the hanging wall side of the fault) are significantly greater than other paired sites that are located on the same side of the fault. For critical linear infrastructure crossing the fault trace, assessing the structural integrity against possible differential fault displacement hazards is important.
4.2. Perspectives
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Yang, S.; Mavroeidis, G.P. Bridges crossing fault rupture zones: A review. Soil Dyn. Earthq. Eng. 2018, 113, 545–571. [Google Scholar] [CrossRef]
- Katona, T.J.; Tóth, L.; Győri, E. Fault displacement hazard analysis based on probabilistic seismic hazard analysis for specific nuclear sites. Appl. Sci. 2021, 11, 7162. [Google Scholar] [CrossRef]
- Valentini, A.; Fukushima, Y.; Contri, P.; Ono, M.; Sakai, T.; Thompson, S.C.; Viallet, E.; Annaka, T.; Chen, R.; Moss, R.E.S. Probabilistic fault displacement hazard assessment (PFDHA) for nuclear installations according to IAEA safety standards. Bull. Seismol. Soc. Am. 2021, 115, 2661–2672. [Google Scholar] [CrossRef]
- Ni, P.; Mangalathu, S.; Yi, Y. Fragility analysis of continuous pipelines subjected to transverse permanent ground deformation. Soils Found. 2018, 58, 1400–1413. [Google Scholar] [CrossRef]
- Garcia, F.E.; Bray, J.D. Discrete element analysis of earthquake surface fault rupture through layered media. Soil Dyn. Earthq. Eng. 2022, 152, 107021. [Google Scholar] [CrossRef]
- Youngs, R.R.; Arabasz, W.J.; Anderson, R.E.; Ramelli, A.R.; Ake, J.P.; Slemmons, D.B.; McCalpin, J.P.; Doser, D.I.; Fridrich, C.J.; Swan III, F.H.; et al. A methodology for probabilistic fault displacement hazard analysis (PFDHA). Earthq. Spectra 2003, 19, 191–219. [Google Scholar] [CrossRef]
- Stepp, J.C. Probabilistic seismic hazard analyses for fault displacement and ground motions at Yucca Mountain, Nevada. Earthq. Spectra 2001, 17, 113–151. [Google Scholar] [CrossRef]
- Cornell, C.A. Engineering seismic risk analysis. Bull. Seismol. Soc. Am. 1968, 58, 1583–1606. [Google Scholar] [CrossRef]
- Baker, J.W.; Bradley, B.A.; Stafford, P.J. Seismic Hazard and Risk Analysis; Cambridge University Press: Cambridge, UK, 2021; p. 600. [Google Scholar]
- Takao, M.; Tsuchiyama, J.; Annaka, T.; Kurita, T. Application of probabilistic fault displacement hazard analysis in Japan. J. Jpn. Assoc. Earthq. Eng. 2013, 13, 17–36. [Google Scholar] [CrossRef]
- Wesnousky, S.G. Displacement and geometrical characteristics of earthquake surface ruptures: Issues and implications for seismic hazard analysis and the earthquake rupture process. Bull. Seismol. Soc. Am. 2008, 98, 1609–1632. [Google Scholar] [CrossRef]
- Petersen, M.D.; Dawson, T.E.; Chen, R.; Cao, T.; Wills, C.J.; Schwartz, D.P.; Frankel, A.D. Fault displacement hazard for strike-slip faults. Bull. Seismol. Soc. Am. 2011, 101, 805–825. [Google Scholar] [CrossRef] [Green Version]
- Nurminen, F.; Boncio, P.; Visini, F.; Pace, B.; Valentini, A.; Baize, S.; Scotti, O. Probability of Occurrence and displacement regression of distributed surface rupturing for reverse earthquakes. Front. Earth Sci. 2020, 8, 581605. [Google Scholar] [CrossRef]
- Moss, R.E.; Ross, Z.E. Probabilistic fault displacement hazard analysis for reverse faults. Bull. Seismol. Soc. Am. 2011, 101, 1542–1553. [Google Scholar] [CrossRef]
- Lavrentiadis, G.; Abrahamson, N. Generation of surface-slip profiles in the wavenumber domain. Bull. Seismol. Soc. Am. 2019, 109, 888–907. [Google Scholar] [CrossRef]
- Baize, S.; Nurminen, F.; Sarmiento, A.; Dawson, T.; Takao, M.; Scotti, O.; Azuma, T.; Boncio, P.; Champenois, J.; Cinti, F.R.; et al. A worldwide and unified database of surface ruptures (SURE) for fault displacement hazard analyses. Seismol. Res. Lett. 2020, 91, 499–520. [Google Scholar] [CrossRef] [Green Version]
- Sarmiento, A.; Madugo, D.; Bozorgnia, Y.; Shen, A.; Mazzoni, S.; Lavrentiadis, G.; Dawson, T.; Madugo, C.; Kottke, A.; Thompson, S.; et al. Fault Displacement Hazard Initiative Database; UCLA Natural Hazards Risk and Resiliency Research Center: Los Angeles, CA, USA, 2021. [Google Scholar] [CrossRef]
- Goda, K.; Yasuda, T.; Mori, N.; Maruyama, T. New scaling relationships of earthquake source parameters for stochastic tsunami simulation. Coast. Eng. J. 2016, 58, 1650010. [Google Scholar] [CrossRef] [Green Version]
- Mai, P.M.; Beroza, G.C. A spatial random field model to characterize complexity in earthquake slip. J. Geophys. Res. Solid Earth 2002, 107, ESE-10. [Google Scholar] [CrossRef]
- Goda, K.; Mai, P.M.; Yasuda, T.; Mori, N. Sensitivity of tsunami wave profiles and inundation simulations to earthquake slip and fault geometry for the 2011 Tohoku earthquake. Earth Planets Space 2014, 66, 105. [Google Scholar] [CrossRef] [Green Version]
- Okada, Y. Surface deformation due to shear and tensile faults in a half-space. Bull. Seismol. Soc. Am. 1985, 75, 1135–1154. [Google Scholar] [CrossRef]
- Goda, K. Potential fault displacement hazard assessment using stochastic source models: A retrospective evaluation for the 1999 Hector Mine earthquake. GeoHazards 2021, 2, 22. [Google Scholar] [CrossRef]
- Goda, K. Probabilistic characterization of seismic ground deformation due to tectonic fault movements. Soil Dyn. Earthq. Eng. 2017, 100, 316–329. [Google Scholar] [CrossRef] [Green Version]
- Li, G.; Liu, Y.; Regalla, C.; Morell, K.D. Seismicity relocation and fault structure near the Leech River fault zone, southern Vancouver Island. J. Geophys. Res. Solid Earth 2018, 123, 2841–2855. [Google Scholar] [CrossRef] [Green Version]
- Morell, K.D.; Regalla, C.; Amos, C.; Bennett, S.; Leonard, L.J.; Graham, A.; Reedy, T.; Levson, V.; Telka, A. Holocene surface rupture history of an active forearc fault redefines seismic hazard in southwestern British Columbia, Canada. Geophys. Res. Lett. 2018, 45, 11605–11611. [Google Scholar] [CrossRef]
- Halchuk, S.; Allen, T.I.; Adams, J.; Onur, T. Contribution of the Leech River Valley-Devil’s Mountain Fault system to seismic hazard in Victoria, British Columbia. In Proceedings of the 12th Canadian Conference on Earthquake Engineering 2019, Quebec City, QC, Canada, 17–20 June 2019. [Google Scholar]
- Goda, K.; Sharipov, A. Fault-source-based probabilistic seismic hazard and risk analysis for Victoria, British Columbia, Canada: A case of the Leech River Valley Fault and Devil’s Mountain Fault system. Sustainability 2021, 13, 1440. [Google Scholar] [CrossRef]
- Wells, D.L.; Coppersmithn, K.J. New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement. Bull. Seismol. Soc. Am. 1994, 84, 974–1002. [Google Scholar] [CrossRef]
- Youngs, R.R.; Coppersmith, K.J. Implications of fault slip rates and earthquake recurrence models to probabilistic seismic hazard estimates. Bull. Seismol. Soc. Am. 1985, 75, 939–964. [Google Scholar] [CrossRef]
- Page, M.; Felzer, K. Southern San Andreas Fault seismicity is consistent with the Gutenberg–Richter magnitude–frequency distribution. Bull. Seismol. Soc. Am. 2015, 105, 2070–2080. [Google Scholar] [CrossRef]
- Stirling, M.; Gerstenberger, M. Applicability of the Gutenberg–Richter relation for major active faults in New Zealand. Bull. Seismol. Soc. Am. 2018, 108, 718–728. [Google Scholar] [CrossRef]
- Convertito, V.; Emolo, A.; Zollo, A. Seismic-hazard assessment for a characteristic earthquake scenario: An integrated probabilistic–deterministic method. Bull. Seismol. Soc. Am. 2006, 96, 377–391. [Google Scholar] [CrossRef] [Green Version]
- Thingbaijam, K.K.S.; Mai, P.M.; Goda, K. New empirical earthquake source scaling laws. Bull. Seismol. Soc. Am. 2017, 107, 2225–2246. [Google Scholar] [CrossRef] [Green Version]
Parameter | Values | Weights |
---|---|---|
Slip rate (mm/year) | 0.25, 0.15, 0.35 | 0.68, 0.16, 0.16 |
b-value | 0.796, 0.730, 0.862 | 0.68, 0.16, 0.16 |
Mmax | 7.37 1, 7.22, 7.52 | 0.6, 0.3, 0.1 |
Stochastic Source Parameters | Functions |
---|---|
Fault length (L) | Define a fault geometry that can be smaller than the fault plane and can be floated within the source zone. |
Fault width (W) | |
Mean slip (Da) | Define a marginal distribution of earthquake slip on the fault plane |
Maximum slip (Dm) | |
Box–Cox parameter (λBC) | |
Correlation length along strike (CL) | Define a heterogeneous slip distribution based on the von Kármán wavenumber spectrum [19] within the source zone. |
Correlation length along dip (CW) | |
Hurst number (H) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Goda, K.; Shoaeifar, P. Prospective Fault Displacement Hazard Assessment for Leech River Valley Fault Using Stochastic Source Modeling and Okada Fault Displacement Equations. GeoHazards 2022, 3, 277-293. https://doi.org/10.3390/geohazards3020015
Goda K, Shoaeifar P. Prospective Fault Displacement Hazard Assessment for Leech River Valley Fault Using Stochastic Source Modeling and Okada Fault Displacement Equations. GeoHazards. 2022; 3(2):277-293. https://doi.org/10.3390/geohazards3020015
Chicago/Turabian StyleGoda, Katsuichiro, and Parva Shoaeifar. 2022. "Prospective Fault Displacement Hazard Assessment for Leech River Valley Fault Using Stochastic Source Modeling and Okada Fault Displacement Equations" GeoHazards 3, no. 2: 277-293. https://doi.org/10.3390/geohazards3020015
APA StyleGoda, K., & Shoaeifar, P. (2022). Prospective Fault Displacement Hazard Assessment for Leech River Valley Fault Using Stochastic Source Modeling and Okada Fault Displacement Equations. GeoHazards, 3(2), 277-293. https://doi.org/10.3390/geohazards3020015