Seismic Vulnerability Assessment and Strengthening Interventions of Structural Units of a Typical Clustered Masonry Building in the Campania Region of Italy
Abstract
:1. Introduction
2. Case Study
- -
- average compressive strength: fm = 2.00 MPa;
- -
- average shear strength: fv0 = 0.10 MPa;
- -
- Young modulus: E = 1410 MPa;
- -
- tangential elasticity modulus: G = 450 MPa;
- -
- specific weight. W = 16 kN /m3
3. Numerical Analysis
3.1. Modal Analysis
3.2. Pushover Analysis
4. Parametric Analysis for Seismic Retrofitting Interventions
4.1. Rigid Floors
4.2. Masonry Properties
- -
- average compressive strength, fm = 5.8 MPa;
- -
- average shear strength, fv0 = 0.18 MPa
- -
- Young modulus, E = 2850 MPa
- -
- shear elastic modulus, G = 950 MPa
- -
- density, W = 22 kN/m3.
- -
- average compressive strength, fm = 1 MPa
- -
- Young modulus, E = 870 MPa
- -
- Shear modulus, G = 290 MPa
- -
- density, W = 19 kN/m3.
4.3. Fragility Analysis of the Typological Building Classes
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Barbat, A.H.; Carreño, M.L.; Pujades, L.G.; Lantada, N.; Cardona, O.D.; Marulanda, M.C. Seismic vulnerability and risk evaluation methods for urban areas. A review with application to a pilot area. Struct. Infrastruct. Eng. 2010, 6, 17–38. [Google Scholar] [CrossRef]
- Marghella, G.; Marzo, A.; Carpani, B.; Indirli, M.; Formisano, A. Comparison between In Situ Experimental Data and Italian Code Standard Values. In Proceedings of the 16th International Brick and Block Masonry Conference (IBMAC) 2016 “Brick and Block Masonry: Trends, Innovations and Challenges”, Padua, Italy, 26–30 June 2016; pp. 1707–1714. [Google Scholar]
- Formisano, A. Theoretical and Numerical Seismic Analysis of Masonry Building Aggregates: Case Studies in San Pio Delle Camere (L’Aquila. Italy). J. Earthq. Eng. 2017, 21, 227–245. [Google Scholar] [CrossRef] [Green Version]
- Chieffo, N.; Formisano, A. Geo-hazard-based approach for the estimation of seismic vulnerability and damage scenarios of the old city of senerchia (Avellino. Italy). Geosciences 2019, 9. [Google Scholar] [CrossRef] [Green Version]
- Chieffo, N.; Onescu, I.; Formisano, A.; Mosoarca, M.; Palade, M. Integrated empirical-mechanical seismic vulnerability analysis method for masonry buildings in timișoara: Validation based on the 2009 italian earthquake. Open Civ. Eng. J. 2020, 14, 314–333. [Google Scholar] [CrossRef]
- Formisano, A.; Vaiano, G.; Fabbrocino, F.; Milani, G. Seismic vulnerability of Italian masonry churches: The case of the Nativity of Blessed Virgin Mary in Stellata of Bondeno. J. Build. Eng. 2018, 20, 179–200. [Google Scholar] [CrossRef]
- Formisano, A.; Chieffo, N.; Milo, B.; Fabbrocino, F. The influence of local mechanisms on large scale seismic vulnerability estimation of masonry building aggregates. In Proceedings of the AIP Conference, Naples, Italy, 10–11 November 2005; Volume 1979, p. 130010. [Google Scholar] [CrossRef]
- Lourenço, P.B.; Roque, J.A. Simplified indexes for the seismic vulnerability of ancient masonry buildings. Constr. Build. Mater. 2006, 20, 200–208. [Google Scholar] [CrossRef] [Green Version]
- Lourenço, P.B.; Oliveira, D.V.; Leite, J.C.; Ingham, J.M.; Modena, C.; Da Porto, F. Simplified indexes for the seismic assessment of masonry buildings: International database and validation. Eng. Fail. Anal. 2013, 34, 585–605. (In Italian) [Google Scholar] [CrossRef]
- Mezzapelle, P.A.; Clementi, F.; Lenci, S. The seismic vulnerability of historic masonry buildings: From knowledge to structural consolidation. In Cultural Capital: STUDIES on the Value of Cultural Heritage; Edizioni Università di Macerata EUM: Macerata, Italy, 2017. (In Italian) [Google Scholar]
- Rapone, D.; Brando, G.; Spacone, E.; De Matteis, G. Seismic vulnerability assessment of historic centers: Description of a predictive method and application to the case study of scanno (Abruzzi. Italy). Int. J. Archit. Herit. 2018, 12, 1171–1195. [Google Scholar] [CrossRef]
- Clementi, F.; Gazzani, V.; Poiani, M.; Lenci, S. Assessment of seismic behaviour of heritage masonry buildings using numerical modelling. J. Build. Eng. 2016, 8, 29–47. [Google Scholar] [CrossRef]
- Formisano, A.; Marzo, A. Simplified and refined methods for seismic vulnerability assessment and retrofitting of an Italian cultural heritage masonry building. Comput. Struct. 2017, 180, 13–26. [Google Scholar] [CrossRef] [Green Version]
- Mosoarca, M.; Onescu., I.; Onescu., E.; Anastiasadis, A. Seismic vulnerability assessment methodology for historic masonry buildings in the near-field areas. Eng. Fail. Anal. 2020, 115. [Google Scholar] [CrossRef]
- Mosoarca, M.; Onescu, I.; Onescu, E.; Azap, B.; Chieffo, N.; Szitar-Sirbu, M. Seismic vulnerability assessment for the historical areas of the Timisoara city. Romania. Eng. Fail. Anal. 2019, 101, 86–112. [Google Scholar] [CrossRef]
- D’Ayala, D.; Ansal, A. Non linear push over assessment of heritage buildings in Istanbul to define seismic risk. Bull. Earthq. Eng. 2012, 10, 285–306. [Google Scholar] [CrossRef]
- Greco, A.; Lombardo, G.; Pantò, B.; Famà, A. Seismic Vulnerability of Historical Masonry Aggregate Buildings in Oriental Sicily. Int. J. Archit. Herit. 2018, 14, 1–24. [Google Scholar] [CrossRef]
- Ministry of Infrastructure and Transport. Technical Standards for Construction; Official Gazette: Rome, Italy, 2018. (In Italian) [Google Scholar]
- Bernardini, C.; Maio, R.; Boschi, S.; Ferreira, T.M.; Vicente, R.; Vignoli, A. The seismic vulnerability assessment of a stone masonry building enclosed in aggregate. In Proceedings of the 16th European Conference on Earthquake Engineering, Thessaloniki, Greek, 18–21 June 2018. [Google Scholar]
- Chieffo, N.; Formisano, A. Comparative Seismic Assessment Methods for Masonry Building Aggregates: A Case Study. Front. Built Environ. 2019, 5, 123. [Google Scholar] [CrossRef]
- Ministry of Infrastructure and Transport. Instructions for the Application of the New Technical Code for Constructions; Official Gazette: Rome, Italy, 2019. (In Italian) [Google Scholar]
- Ministry of Infrastructure and Transport. Updating Technical Standards for Construction; Official Gazette: Rome, Italy, 2008. (In Italian) [Google Scholar]
- S.T.A. DATA. 3Muri-Seismic Calculation of Masonry Structures; S.T.A. DATA srl: Turin, Italy, user manual; Available online: https://www.3muri.com/documenti/brochure/en/3Muri10.9.0_ENG.pdf (accessed on 1 June 2021).
- EN 1998-3. Eurocode 8: Design of Structures for Earthquake Resistance—Part 3: Assessment and Retrofitting of Buildings; CEN: Brulles, Belgium, 2004; pp. 1–97. [Google Scholar]
- Augenti, N.; Parisi, F. Mechanical characterization of tuff masonry. Proc. Prot. Hist. Build. (PROHITECH) 2009, 9, 1579–1584. [Google Scholar]
- Cattari, S.; Curti, E.; Giovinazzi, S.; Lagomarsino, S.; Parodi, S.; Penna, A. Un modello meccanico per l’analisi del costruito in muratura a scala urbana. In Proceedings of the XI Congresso Nazionale “L’ingegneria Sismica in Italia”, Genova, Italy, 25–29 January 2004. [Google Scholar]
- Chieffo, N.; Clementi, F.; Formisano, A.; Lenci, S. Comparative Fragility Methods for Seismic Assessment of Masonry Buildings Located in Muccia (Italy). J. Build. Eng. 2019, 25, 100813. [Google Scholar] [CrossRef]
- Lamego, P.; Lourenço, P.B.; Sousa, M.L.; Marques, R. Seismic vulnerability and risk analysis of the old building stock at urban scale: Application to a neighbourhood in Lisbon. Bull. Earthq. Eng. 2017, 15, 2901–2937. [Google Scholar] [CrossRef]
Model | T1 (s) | T2 (s) | T3 (s) |
---|---|---|---|
Aggregate | 0.31 | 0.28 | 0.27 |
Intermediate structural unit (aggregate conf.) | 0.32 | 0.31 | 0.27 |
Head structural unit (aggregate conf.) | 0.32 | 0.27 | 0.21 |
Intermediate structural unit (isolated conf.) | 0.36 | 0.28 | 0.23 |
Head structural unit (isolated conf.) | 0.31 | 0.30 | 0.24 |
Model | ζ Values | |
---|---|---|
X-Direction | Y-Direction | |
Aggregate | 0.75 | 0.62 |
Intermediate structural unit (aggregate conf.) | 0.74 | 0.65 |
Head structural unit (aggregate conf.) | 0.56 | 1.14 |
Intermediate structural unit (isolated conf.) | 0.71 | 0.62 |
Head structural unit (isolated conf.) | 0.43 | 1.01 |
Median PGADS (g) | ||
---|---|---|
D1 | 0.7·PGAy | Slight |
D2 | PGAy | Moderate |
D3 | PGAy + 0.5·(PGAu-PGAy) | Near-collapse |
D4-D5 | PGAu | Collapse |
Dispersion, βi (-) | ||
---|---|---|
β1 | 0.25 + 0.07·ln(µ) | Slight |
β2 | 0.20 + 0.18·ln(µ) | Moderate |
β3 | 0.10 + 0.40·ln(µ) | Near-collapse |
β4-β5 | 0.15 + 0.50·ln(µ) | Collapse |
Struct. Configuration | Aggregate | Intermediate | Head | |
---|---|---|---|---|
D1 | Median (g) | 0.10 | 0.06 | 0.06 |
Dispersion (-) | 0.31 | 0.35 | 0.32 | |
D2 | Median (g) | 0.14 | 0.08 | 0.08 |
Dispersion (-) | 0.36 | 0.46 | 0.37 | |
D3 | Median (g) | 0.24 | 0.22 | 0.14 |
Dispersion (-) | 0.46 | 0.70 | 0.48 | |
D4-D5 | Median (g) | 0.34 | 0.35 | 0.21 |
Dispersion (-) | 0.59 | 0.88 | 0.62 |
Struct. Configuration | Aggregate | Intermediate | Head | |
---|---|---|---|---|
D1 | Median (g) | 0.17 | 0.16 | 0.15 |
Dispersion (-) | 0.29 | 0.31 | 0.30 | |
D2 | Median (g) | 0.24 | 0.23 | 0.21 |
Dispersion (-) | 0.30 | 0.35 | 0.32 | |
D3 | Median (g) | 0.32 | 0.39 | 0.31 |
Dispersion (-) | 0.32 | 0.45 | 0.38 | |
D4-D5 | Median (g) | 0.41 | 0.54 | 0.42 |
Dispersion (-) | 0.42 | 0.57 | 0.50 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Formisano, A.; Chieffo, N.; Vaiano, G. Seismic Vulnerability Assessment and Strengthening Interventions of Structural Units of a Typical Clustered Masonry Building in the Campania Region of Italy. GeoHazards 2021, 2, 101-119. https://doi.org/10.3390/geohazards2020006
Formisano A, Chieffo N, Vaiano G. Seismic Vulnerability Assessment and Strengthening Interventions of Structural Units of a Typical Clustered Masonry Building in the Campania Region of Italy. GeoHazards. 2021; 2(2):101-119. https://doi.org/10.3390/geohazards2020006
Chicago/Turabian StyleFormisano, Antonio, Nicola Chieffo, and Generoso Vaiano. 2021. "Seismic Vulnerability Assessment and Strengthening Interventions of Structural Units of a Typical Clustered Masonry Building in the Campania Region of Italy" GeoHazards 2, no. 2: 101-119. https://doi.org/10.3390/geohazards2020006
APA StyleFormisano, A., Chieffo, N., & Vaiano, G. (2021). Seismic Vulnerability Assessment and Strengthening Interventions of Structural Units of a Typical Clustered Masonry Building in the Campania Region of Italy. GeoHazards, 2(2), 101-119. https://doi.org/10.3390/geohazards2020006