Sustainable Soil Amendment with Basalt Powder: Unveiling Integrated Soil–Plant Responses in Ilex paraguariensis Cultivation
Abstract
1. Introduction
2. Materials and Methods
2.1. Experiment Location and Soil and Basalt Powder Characterization
2.2. Area Preparation and Treatment Implementation
2.3. Experimental Design and Treatments
2.4. Soil and Plant Sampling and Analyses
2.5. Statistical Analyses
3. Results
3.1. Effects on Soil Chemical Properties
3.2. Biometric Response of Yerba Mate
3.3. Plant-Soil Relationships
4. Discussion
4.1. Gradual Nutrient Release and Impacts on Soil Chemistry
4.2. Biometric Response and Resource Allocation in Yerba Mate
4.3. Multivariate Synthesis and Implications for Sustainable Management
4.4. Synthesis and Future Perspectives
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
BP | Basalt powder |
Ca | Calcium |
K | Potassium |
Mg | Magnesium |
P | Phosphorus |
PCA | Principal Component Analysis |
References
- Manning, D.A.C.; Theodoro, S.H. Enabling Food Security through Use of Local Rocks and Minerals. Extr. Ind. Soc. 2020, 7, 480–487. [Google Scholar] [CrossRef]
- Manning, D.A.C. Innovation in Resourcing Geological Materials as Crop Nutrients. Nat. Resour. Res. 2018, 27, 217–227. [Google Scholar] [CrossRef]
- Theodoro, S.H.; Manning, D.A.C.; de Carvalho, A.M.X.; Ferraão, F.R.; de Almeida, G.R. Soil Remineralizer A New Route to Sustainability for Brazil, a Giant Exporting Agro-Mineral Commodities. In Routledge Handbook of the Extractive Industries and Sustainable Development; Yakovleva, N., Nickless, E., Eds.; Routledge: London, UK, 2022; ISBN 9781003001317. [Google Scholar]
- Rodrigues, M.; Silveira, C.A.P.; Cezar, E.; de Oliveira, R.B.; Reis, A.S.; dos Santos, G.L.A.A.; de Melo Teixeira, L.; Nanni, M.R. Enhancing Soybean Cultivation Sustainability: Impact of Limestone Mining Co-Products on Soil and Plant Chemical Attributes. Discov. Agric. 2024, 2, 50. [Google Scholar] [CrossRef]
- da Silva, D.W.; Canepelle, E.; Lanzanova, M.E.; Guerra, D.; Redin, M. Pó de Basalto Como Fertilizante Alternativo Na Cultura Do Feijão Preto Em Latossolo Vermelho. Rev. Verde De Agroecol. E Desenvolv. Sustentável 2020, 15, 373–378. [Google Scholar] [CrossRef]
- Selvan, T.; Panmei, L.; Murasing, K.K.; Guleria, V.; Ramesh, K.R.; Bhardwaj, D.R.; Thakur, C.L.; Kumar, D.; Sharma, P.; Digvijaysinh Umedsinh, R.; et al. Circular Economy in Agriculture: Unleashing the Potential of Integrated Organic Farming for Food Security and Sustainable Development. Front. Sustain. Food Syst. 2023, 7, 1170380. [Google Scholar] [CrossRef]
- Rodrigues, M.; Bortolini, P.C.; Neto, C.K.; de Andrade, E.A.; dos Passos, A.I.; Pacheco, F.P.; Nanni, M.R.; de Melo Teixeira, L. Unlocking Higher Yields in Urochloa Brizantha: The Role of Basalt Powder in Enhancing Soil Nutrient Availability. Discov. Soil 2024, 1, 4. [Google Scholar] [CrossRef]
- Goulart, I.C.G.d.R.; Santin, D.; Brasileiro, B.P. Fatores Que Afetam a Produtividade Na Cultura Da Erva-Mate. Cienc. Florest. 2022, 32, 1345–1367. [Google Scholar] [CrossRef]
- Nunes, M.T.; Coradi, P.C.; de Oliveira, D.P.; Bilhalva, N.d.S.; Lemos, A.B.; Flores, E.M.d.M.; Sena, D.C. de Influence of Native and Cultivated Yerba Mate on the Mineral Composition after Processing. Eng. Agrícola 2025, 45, e20240210. [Google Scholar] [CrossRef]
- Gerber, T.; Nunes, A.; Moreira, B.R.; Maraschin, M. Yerba Mate (Ilex paraguariensis, A. St.-Hil.) for New Therapeutic and Nutraceutical Interventions: A Review of Patents Issued in the Last 20 Years (2000–2020). Phytother. Res. 2023, 37, 527–548. [Google Scholar] [CrossRef] [PubMed]
- Theodoro, S.H.; Medeiros, F.d.P.; Ianniruberto, M.; Jacobson, T.K.B. Soil Remineralization and Recovery of Degraded Areas: An Experience in the Tropical Region. J. S. Am. Earth Sci. 2021, 107, 103014. [Google Scholar] [CrossRef]
- Dalmora, A.C.; Ramos, C.G.; Oliveira, M.L.S.; Teixeira, E.C.; Kautzmann, R.M.; Taffarel, S.R.; de Brum, I.A.S.; Silva, L.F.O. Chemical Characterization, Nano-Particle Mineralogy and Particle Size Distribution of Basalt Dust Wastes. Sci. Total. Environ. 2016, 539, 560–565. [Google Scholar] [CrossRef]
- Dalmora, A.C.; Ramos, C.G.; Querol, X.; Kautzmann, R.M.; Oliveira, M.L.S.; Taffarel, S.R.; Moreno, T.; Silva, L.F.O. Nanoparticulate Mineral Matter from Basalt Dust Wastes. Chemosphere 2016, 144, 2013–2017. [Google Scholar] [CrossRef]
- Rodrigues, M.; Junges, L.F.d.S.; Mozorovicz, C.; Ziemmer, G.S.; Neto, C.K.; de Andrade, E.A.; dos Passos, A.I.; Pacheco, F.P.; Cezar, E.; Teixeira, L.d.M. Paraná Basin Basalt Powder: A Multinutrient Soil Amendment for Enhancing Soil Chemistry and Microbiology. J. S. Am. Earth Sci. 2024, 141, 104957. [Google Scholar] [CrossRef]
- Anda, M.; Shamshuddin, J.; Fauziah, C. Improving Chemical Properties of a Highly Weathered Soil Using Finely Ground Basalt Rocks. Catena 2015, 124, 147–161. [Google Scholar] [CrossRef]
- Burbano, D.F.M.; Theodoro, S.H.; de Carvalho, A.M.X.; Ramos, C.G. Crushed Volcanic Rock as Soil Remineralizer: A Strategy to Overcome the Global Fertilizer Crisis. Nat. Resour. Res. 2022, 31, 2197–2210. [Google Scholar] [CrossRef]
- Luchese, A.V.; de Castro Leite, I.J.G.; Alves, M.L.; dos Santos Vieceli, J.P.; Pivetta, L.A.; Missio, R.F. Can Basalt Rock Powder Be Used as an Alternative Nutrient Source for Soybeans and Corn. J. Soil Sci. Plant. Nutr. 2023, 23, 4044–4054. [Google Scholar] [CrossRef]
- Ramos, C.G.; Querol, X.; Dalmora, A.C.; Pires, K.C.d.J.; Schneider, I.A.H.; Oliveira, L.F.S.; Kautzmann, R.M. Evaluation of the Potential of Volcanic Rock Waste from Southern Brazil as a Natural Soil Fertilizer. J. Clean. Prod. 2017, 142, 2700–2706. [Google Scholar] [CrossRef]
- Skov, K.; Wardman, J.; Healey, M.; McBride, A.; Bierowiec, T.; Cooper, J.; Edeh, I.; George, D.; Kelland, M.E.; Mann, J.; et al. Initial Agronomic Benefits of Enhanced Weathering Using Basalt: A Study of Spring Oat in a Temperate Climate. PLoS ONE 2024, 19, e0295031. [Google Scholar] [CrossRef]
- Kelland, M.E.; Wade, P.W.; Lewis, A.L.; Taylor, L.L.; Sarkar, B.; Andrews, M.G.; Lomas, M.R.; Cotton, T.E.A.; Kemp, S.J.; James, R.H.; et al. Increased Yield and CO 2 Sequestration Potential with the C4 Cereal Sorghum Bicolor Cultivated in Basaltic Rock Dust-amended Agricultural Soil. Glob. Chang. Biol. 2020, 26, 3658–3676. [Google Scholar] [CrossRef] [PubMed]
- Richardson, J.B. Basalt Rock Dust Amendment on Soil Health Properties and Inorganic Nutrients—Laboratory and Field Study at Two Organic Farm Soils in New England, USA. Agriculture 2024, 15, 52. [Google Scholar] [CrossRef]
- de Carvalho Ribeiro, M.; Redondo Martins, A.; Silva Alves, R.; Frediani Lessa, L.G.; Seron Pereira, H.; Shintate Galindo, F.; Carvalho Minhoto Teixeira Filho, M.; Abreu–Junior, C.H.; Jani, A.D.; Capra, G.F.; et al. Basalt Rock Dust as a Soil Remineralizer in Upland Rice Grown in Tropical Soils: Residual Effects on Soil Fertility, Si Availability, and Leaf Anatomy. J. Clean. Prod. 2025, 520, 146063. [Google Scholar] [CrossRef]
- Santana, A.d.J.P.; Klein, J.; Filho, O.C.S.; Menezes, M.L.F. Remineralização de Solo Agrícola: Estudo Das Alterações Químicas Decorrentes de Intemperismo Acelerado. ARACÊ 2025, 7, 12227–12240. [Google Scholar] [CrossRef]
- WRB. International Soil Classification System for Naming Soils and Creating Legends for Soil Maps; Fao Rome: Rome, Italy, 2015. [Google Scholar]
- Teixeira, P.C.; Donagemma, G.K.; Fontana, A.; Teixeira, W.G. Manual de Métodos de Análise de Solo, 3rd ed.; Embrapa Solos: Rio de Janeiro, Brazil, 2017; 253p. [Google Scholar]
- Raij, B.V. Análise Química Para Avaliação Da Fertilidade de Solos Tropicais; IAC: Campinas, Brazil, 2001; ISBN 8585564059. [Google Scholar]
- dos Reis, J.V.; Alvarez, V.V.H.; Durigan, R.D.; Paulucio, R.B.; Cantarutti, R.B. Interpretation of Soil Phosphorus Availability by Mehlich-3 in Soils with Contrasting Phosphorus Buffering Capacity. Rev. Bras. Cienc. Solo 2020, 44, e0190113. [Google Scholar] [CrossRef]
- de Matos, C.H.L.; Melo, V.F.; Uchôa, S.C.P.; Pereira, R.d.A.; Nascimento, P.P.R.R. Phosphorus Extractants for Soils in the Humid Tropical Region of Brazil. Rev. Cienc. Agron. 2023, 54, e20228372. [Google Scholar] [CrossRef]
- Korndörfer, G.H. Análise de Silício: Solo, Planta e Fertilizante; Instituto de Ciências Agrárias, Universidade Federal de Uberlândia, Instituto de Ciências Agrárias: Uberlândia, Brazil, 2004. [Google Scholar]
- Brasil Instrução Normativa No 5, de 10 de Março de 2016. Regulamentação das Regras Para uso dos Remineralizadores na Agricultura; DOU: Brasília, Brazil, 2016. [Google Scholar]
- Luchese, A.V.; Marcelo, A.B.; Fabio, S.; Ana, P.d.S.G.; Janete, C.D.C. Agronomic Feasibility of Using Basalt Powder as Soil Nutrient Remineralizer. Afr. J. Agric. Res. 2021, 17, 487–497. [Google Scholar] [CrossRef]
- Rodrigues, M.; Nanni, M.R.; Posser Silveira, C.A.; Gualberto, A.A.d.S. Mining Coproducts as Alternative Sources of Nutrients for the Cultivation of Sugarcane (Saccharum officinarum). J. Clean. Prod. 2021, 291, 125925. [Google Scholar] [CrossRef]
- Wang, H.; Li, X.; Chen, Y.; Li, Z.; Hedding, D.W.; Nel, W.; Ji, J.; Chen, J. Geochemical Behavior and Potential Health Risk of Heavy Metals in Basalt-Derived Agricultural Soil and Crops: A Case Study from Xuyi County, Eastern China. Sci. Total. Environ. 2020, 729, 139058. [Google Scholar] [CrossRef] [PubMed]
- Conceição, L.T.; Silva, G.N.; Holsback, H.M.S.; Oliveira, C.d.F.; Marcante, N.C.; Martins, É.d.S.; Santos, F.L.d.S.; Santos, E.F. Potential of Basalt Dust to Improve Soil Fertility and Crop Nutrition. J. Agric. Food Res. 2022, 10, 100443. [Google Scholar] [CrossRef]
- Toscani, R.G.S.; Campos, J.E.G. Use of Basalt and Phosphate Rock Powder as Fertilizers in Weathered Soils. Geoscience 2017, 36, 259–274. [Google Scholar]
- Ferreira, J.G.R.; Souza Junior, H.; Scherer, A.; Diniz, E.R. Effect of Fertilization with Basalt Powder and Inoculation of Bradyrhizobium Spp in Common Bean. Agron. Sci. Biotechnol. 2023, 9, 1–9. [Google Scholar] [CrossRef]
- Findeisen, S.; Weijters, M.; Bobbink, R.; Emsens, W.; Siepel, H.; Vogels, J.J.; Verbruggen, E. Silicate Rock Powder Application: Perspectives for the Use as Buffer Restoration Measure in Acidified Heathlands. Restor. Ecol. 2025, 33, e70013. [Google Scholar] [CrossRef]
- Dong, Y.; Yang, J.-L.; Zhao, X.-R.; Yang, S.-H.; Zhang, G.-L. Contribution of Different Proton Sources to the Acidification of Red Soil with Maize Cropping in Subtropical China. Geoderma 2021, 392, 114995. [Google Scholar] [CrossRef]
- Rosolem, C.A.; Almeida, D.S.; Rocha, K.F.; Bacco, G.H.M. Potassium Fertilisation with Humic Acid Coated KCl in a Sandy Clay Loam Tropical Soil. Soil Res. 2018, 56, 244. [Google Scholar] [CrossRef]
- Khan, A.L. Silicon: A Valuable Soil Element for Improving Plant Growth and CO2 Sequestration. J. Adv. Res. 2025, 71, 43–54. [Google Scholar] [CrossRef]
- Hettiarachchi, G.M.; Pierzynski, G.M. Soil Lead Bioavailability and in Situ Remediation of Lead-contaminated Soils: A Review. Environ. Prog. 2004, 23, 78–93. [Google Scholar] [CrossRef]
- Mousavi, S.M.; Brodie, G.; Payghamzadeh, K.; Raiesi, T.; Strivastava, A.K. Lead Bioavailability in the Environment: Its Exposure and and Effects. J. Adv. Environ. Health Res. 2022, 10, 1–14. [Google Scholar] [CrossRef]
- Ryan, P.C.; Santis, A.; Vanderkloot, E.; Bhatti, M.; Caddle, S.; Ellis, M.; Grimes, A.; Silverman, S.; Soderstrom, E.; Stone, C.; et al. The potential for carbon dioxide removal by enhanced rock weathering in the tropics: An evaluation of Costa Rica. Sci. Total Environ. 2024, 927, 172053. [Google Scholar] [CrossRef]
- Reed, N.; Yun, K.; Dias de Oliveira, E.A.; Zare, A.; Matamala, R.; Kim, S.-H.; Gonzalez-Meler, M. Perennial Grass Root System Specializes for Multiple Resource Acquisitions with Differential Elongation and Branching Patterns. Front. Plant Sci. 2023, 14, 1146681. [Google Scholar] [CrossRef]
- Pohland, A.-C.; Bernát, G.; Geimer, S.; Schneider, D. Mg2+ Limitation Leads to a Decrease in Chlorophyll, Resulting in an Unbalanced Photosynthetic Apparatus in the Cyanobacterium Synechocytis sp. PCC6803. Photosynth. Res. 2024, 162, 13–27. [Google Scholar] [CrossRef] [PubMed]
- Pereira, S.; Monteiro, A.; Moutinho-Pereira, J.; Dinis, L. Silicon, An Emergent Strategy to Lighten the Effects of (A)Biotic Stresses on Crops: A Review. J. Agron. Crop. Sci. 2024, 210, e12762. [Google Scholar] [CrossRef]
- Luchese, A.V.; Gutz de Castro Leite, I.J.; da Silva Giaretta, A.P.; Alves, M.L.; Pivetta, L.A.; Missio, R.F. Use of Quarry Waste Basalt Rock Powder as a Soil Remineralizer to Grow Soybean and Maize. Heliyon 2023, 9, e14050. [Google Scholar] [CrossRef] [PubMed]
- Vandeginste, V.; Lim, C.; Ji, Y. Exploratory Review on Environmental Aspects of Enhanced Weathering as a Carbon Dioxide Removal Method. Minerals 2024, 14, 75. [Google Scholar] [CrossRef]
- Swoboda, P.; Döring, T.F.; Hamer, M. Remineralizing Soils? The Agricultural Usage of Silicate Rock Powders: A Review. Sci. Total Environ. 2022, 807, 150976. [Google Scholar] [CrossRef]
- Beerling, D.J.; Kantzas, E.P.; Lomas, M.R.; Wade, P.; Eufrasio, R.M.; Renforth, P.; Sarkar, B.; Andrews, M.G.; James, R.H.; Pearce, C.R.; et al. Potential for Large-Scale CO2 Removal via Enhanced Rock Weathering with Croplands. Nature 2020, 583, 242–248. [Google Scholar] [CrossRef]
- Manning, D.A.C.; Baptista, J.; Limon, M.S.; Brandt, K. Testing the Ability of Plants to Access Potassium from Framework Silicate Minerals. Sci. Total Environ. 2017, 574, 476–481. [Google Scholar] [CrossRef]
- Chen, Z.-W.; Xu, J.; Hou, Z.-L.; Peng, M.; Yang, F.; Chen, J.; Xu, Y.-Q.; Yang, S.-Y.; Li, J.-Y.; Yu, L.-S. Accumulation Characteristics and Health Risk Assessment of Heavy Metals in Soil-Crop System Based on Soil Parent Material Zoning. Huan Jing Ke Xue 2023, 44, 405–414. [Google Scholar] [PubMed]
SOM 1 | pH | P | S | K+ | Ca2+ | Mg2+ | Al3+ | H + Al | CEC 2 | BS 3 |
---|---|---|---|---|---|---|---|---|---|---|
g dm−3 | (CaCl2) | - mg dm−3 - | -------------------- cmolc dm−3 -------------------- | % | ||||||
52.1 | 4.10 | 4.00 | 13.00 | 0.09 | 0.70 | 0.41 | 2.0 | 10.8 | 12.0 | 10 |
SiO2 | Al2O3 | CaO | Fe2O3 | K2O | MgO | MnO | P2O5 | Na2O | TiO2 | LOI 1 |
---|---|---|---|---|---|---|---|---|---|---|
------------------------------------------------------ % ------------------------------------------------------ | ||||||||||
51.83 | 12.86 | 10.26 | 14.31 | 0.79 | 6.29 | 0.21 | 0.17 | 2.22 | 1.32 | 0.38 |
Labradorite | Diopside | Opaque Minerals | Secondary Iron Oxides | Sericite | Volcanic Glass |
---|---|---|---|---|---|
-------------------------------------------------------- % -------------------------------------------------------- | |||||
45.0 | 40.0 | 10.26 | traces | traces | 10 |
Treatment | Dose x Ca2+ | Dose of CaO (kg ha−1) | Doses of Basalt Powder (Mg ha−1) |
---|---|---|---|
1 | 0 | 0 | 0 |
2 | 0.5 | 390 | 3.8 |
3 | 1 | 780 | 7.6 |
4 | 2 | 1560 | 15.2 |
5 | 4 | 3120 | 30.4 |
Soil Attributes | Shapiro-Wilk (p-Value) | Levene (p-Value) | SV | DF | F-Value |
---|---|---|---|---|---|
pH | 0.42 | 0.86 | Dose | 4 | 1.45 ns |
Block | 3 | 1.61 ns | |||
K+ | 0.10 | 0.82 | Dose | 4 | 1.18 ns |
Block | 3 | 0.96 ns | |||
Ca2+ | 0.62 | 0.81 | Dose | 4 | 12.67 ** |
Block | 3 | 4.39 * | |||
Mg2+ | 0.69 | 0.56 | Dose | 4 | 6.86 * |
Block | 3 | 0.65 ns | |||
Si | 0.43 | 0.57 | Dose | 4 | 4.86 * |
Block | 3 | 2.16 ns |
Plant Attributes | Shapiro-Wilk (p-Value) | Levene (p-Value) | SV | DF | F-Value |
---|---|---|---|---|---|
Height | 0.68 | 0.60 | Dose | 4 | 2.09 ns |
Block | 3 | 0.81 ns | |||
Diameter | 0.67 | 0.86 | Dose | 4 | 1.71 ns |
Block | 3 | 2.29 ns | |||
Number of leaves | 0.45 | 0.91 | Dose | 4 | 5.85 ** |
Block | 3 | 0.44 ns |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rodrigues, M.; Neto, C.K.; Passos, A.I.d.; Cezar, E.; Nanni, M.R. Sustainable Soil Amendment with Basalt Powder: Unveiling Integrated Soil–Plant Responses in Ilex paraguariensis Cultivation. AgriEngineering 2025, 7, 290. https://doi.org/10.3390/agriengineering7090290
Rodrigues M, Neto CK, Passos AId, Cezar E, Nanni MR. Sustainable Soil Amendment with Basalt Powder: Unveiling Integrated Soil–Plant Responses in Ilex paraguariensis Cultivation. AgriEngineering. 2025; 7(9):290. https://doi.org/10.3390/agriengineering7090290
Chicago/Turabian StyleRodrigues, Marlon, Carlos Kosera Neto, Amanda Izabel dos Passos, Everson Cezar, and Marcos Rafael Nanni. 2025. "Sustainable Soil Amendment with Basalt Powder: Unveiling Integrated Soil–Plant Responses in Ilex paraguariensis Cultivation" AgriEngineering 7, no. 9: 290. https://doi.org/10.3390/agriengineering7090290
APA StyleRodrigues, M., Neto, C. K., Passos, A. I. d., Cezar, E., & Nanni, M. R. (2025). Sustainable Soil Amendment with Basalt Powder: Unveiling Integrated Soil–Plant Responses in Ilex paraguariensis Cultivation. AgriEngineering, 7(9), 290. https://doi.org/10.3390/agriengineering7090290