Sewage Sludge Biochar Improves Water Use Efficiency and Bean Yield in a Small-Scale Field Experiment with Different Doses on Sandy Soil Under Semiarid Conditions
Abstract
1. Introduction
2. Materials and Methods
2.1. Soil Sampling
2.2. Study Area and Environmental Conditions
2.3. Experimental Design and Treatments
2.4. Determination of the Physical, Chemical, and Biological Properties of the Soil
2.5. Determination of Bean Productivity and Analysis of Potentially Toxic Elements (PTE)
2.6. Determination of Evapotranspiration and Water Use Efficiency
2.7. Statistical Analysis
3. Results
3.1. Physical, Chemical, and Biological Properties of the Soil
3.2. Bean Productivity and Potentially Toxic Elements (PTE)
3.3. Evapotranspiration, Water Use Efficiency, and Soil Water Storage
4. Discussion
4.1. Physical, Chemical, and Biological Properties of the Soil
4.2. Bean Productivity and PTE
4.3. Evapotranspiration, Water Use Efficiency, and Soil Water Storage
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- UN. World Population Prospects 2019: Highlights. 2019. Available online: https://population.un.org/wpp (accessed on 22 December 2024).
- Gao, Y.; Shao, G.; Lu, J.; Zhang, K.; Wu, S.; Wang, Z. Effects of biochar application on crop water use efficiency depend on experimental conditions: A meta-analysis. Field Crops Res. 2020, 249, 107763. [Google Scholar] [CrossRef]
- Molotoks, A.; Smith, P.; Dawson, T.P. Impacts of land use, population, and climate change on global food security. Food Energy Secur. 2021, 10, e261. [Google Scholar] [CrossRef]
- Du, Y.; Niu, W.; Gu, X.; Zhang, Q.; Cui, B.; Zhao, Y. Crop yield and water use efficiency under aerated irrigation: A meta-analysis. Agric. Water Manag. 2018, 210, 158–164. [Google Scholar] [CrossRef]
- Langeroodi, A.R.S.; Campiglia, E.; Mancinelli, R.; Radicetti, E. Can biochar improve pumpkin productivity and its physiological characteristics under reduced irrigation regimes? Sci. Hortic. 2019, 247, 195–204. [Google Scholar] [CrossRef]
- Kopittke, P.M.; Menzies, N.W.; Wang, P.; McKenna, B.A.; Lombi, E. Soil and the intensification of agriculture for global food security. Environ. Int. 2019, 132, 105078. [Google Scholar] [CrossRef]
- Swoboda, P.; Döring, T.F.; Hamer, M. Remineralizing soils? The agricultural usage of silicate rock powders: A review. Sci. Total Environ. 2022, 807, 150976. [Google Scholar] [CrossRef]
- Joseph, S.; Cowie, A.L.; Van Zwieten, L.; Bolan, N.; Budai, A.; Buss, W.; Cayuela, M.L.; Graber, E.R.; Ippolito, J.A.; Kuzyakov, Y.; et al. How biochar works, and when it does not: A review of mechanisms controlling soil and plant responses to biochar. GCB Bioenergy 2021, 13, 1731–1764. [Google Scholar] [CrossRef]
- Lima, J.R.S.; Araújo, M.B.; Oliveira, C.L.; Barros, C.T.; Amorim, A.S.; Bezerra, A.L.; Leite, M.C.B.S. Biochar de Lodo de Esgoto Aumenta a Produção e Eficiência no Uso de Água da Alface. Rev. Bras. Geogr. Física 2020, 13, 1720–1729. [Google Scholar] [CrossRef]
- Singh, S.; Kumar, V.; Dhanjal, D.S.; Datta, S.; Bhatia, D.; Dhiman, J.; Samuel, J.; Prasad, R.; Singh, J. A sustainable paradigm of sewage sludge biochar: Valorization, opportunities, challenges and future prospects. J. Clean. Prod. 2020, 269, 122259. [Google Scholar] [CrossRef]
- Kundu, S.; Patel, S.; Halder, P.; Patel, T.; Marybali, M.H.; Pramanik, B.K.; Praz-Ferreiro, J.; Figueiredo, C.C.; Bergmann, D.; Surapaneni, A.; et al. Removal of PFASs from biosolids using a semi-pilot scale pyrolysis reactor and application of biosolids-derived biochar for PFASs removal from contaminated water. Environ. Sci. Water Res. Technol. 2021, 7, 638–649. [Google Scholar] [CrossRef]
- Paz-Ferreiro, J.; Nieto, A.; Méndez, A.; Askeland, M.P.J.; Gascó, G. Biosolids pyrolysis biochar: A review. Int. J. Environ. Res. Public Health 2018, 15, 956. [Google Scholar] [CrossRef]
- Marengo, J.A.; Torres, R.R.; Alves, L.M. Drought in Northeast Brazil—Past, present, and future. Theor. Appl. Climatol. 2017, 129, 1189–1200. [Google Scholar] [CrossRef]
- Jeffery, S.; Memelink, I.; Hodgson, E.; Jones, S.; van de Voorde, T.F.J.; Bezemer, T.M.; Mommer, L.; van Groenigen, J.W. Initial biochar effects on plant productivity derive from N fertilization. Plant Soil 2017, 415, 435–448. [Google Scholar] [CrossRef]
- Cooper, J.; Greenberg, I.; Ludwig, B.; Hippich, L.; Fischer, D.; Glaser, B.; Kaiser, M. Effect of biochar and compost on soil properties and organic matter in aggregate size fractions under field conditions. Agric. Ecosyst. Environ. 2020, 295, 106882. [Google Scholar] [CrossRef]
- Zhang, X.; Zhao, B.; Liu, H.; Zhao, Y.; Li, L. Effects of pyrolysis temperature on biochar’s characteristics and speciation and environmental risks of heavy metals in sewage sludge biochars. Environ. Technol. Innov. 2022, 26, 102288. [Google Scholar] [CrossRef]
- Figueiredo, C.C.; Chagas, J.K.M.; Silva, J.; Paz-Ferreiro, J. Short-term effects of a sewage sludge biochar amendment on total and available heavy metal content of a tropical soil. Geoderma 2019, 344, 31–39. [Google Scholar] [CrossRef]
- Thomas, P.; Lai, C.W.; Bin Johan, M.R. Recent developments in biomass-derived carbon as a potential sustainable material for super-capacitor-based energy storage and environmental applications. J. Anal. Appl. Pyrolysis 2019, 140, 54–85. [Google Scholar] [CrossRef]
- Qi, L.; Pokharel, P.; Sheng, C.; Gong, X.; Zhou, P.; Niu, H.; Wang, Z.; Gao, M. Biochar changes thermal activation of greenhouse gas emissions in a rice–lettuce rotation microcosm experiment. J. Clean. Prod. 2020, 247, 119148. [Google Scholar] [CrossRef]
- Liu, M.; Ke, X.; Liu, X.; Fan, X.; Xu, Y.; Li, L.; Solaiman, Z.M.; Pan, G. The effects of biochar soil amendment on rice growth may vary greatly with rice genotypes. Sci. Total Environ. 2022, 810, 152223. [Google Scholar] [CrossRef]
- Liu, R.; Hu, Y.; Zhan, X.; Zhong, J.; Zhao, P.; Feng, H.; Dong, Q.; Siddique, K.H.M. The response of crop yield, carbon sequestration, and global warming potential to straw and biochar applications: A meta-analysis. Sci. Total Environ. 2024, 907, 167884. [Google Scholar] [CrossRef]
- Mansoor, S.; Kour, N.; Manhas, S.; Zahid, S.; Wani, O.A.; Sharma, V.; Wijaya, L.; Alyemeni, M.N.; Alshahli, A.A.; El-Serehy, H.A.; et al. Biochar as a tool for effective management of drought and heavy metal toxicity. Chemosphere 2021, 271, 129458. [Google Scholar] [CrossRef]
- Akhil, D.; Lakshmi, D.; Kartik, A.; Vo, D.-V.N.; Arun, J.; Gopinath, K.P. Production, characterization, activation and environmental applications of engineered biochar: A review. Environ. Chem. Lett. 2021, 19, 2261–2297. [Google Scholar] [CrossRef]
- He, K.; He, G.; Wang, C.; Zhang, H.; Xu, Y.; Wang, S.; Kong, Y.; Zhou, G.; Hu, R. Biochar amendment ameliorates soil properties and promotes Miscanthus growth in a coastal saline–alkali soil. Appl. Soil. Ecol. 2020, 155, 103674. [Google Scholar] [CrossRef]
- Lima, J.R.S.; Goes, M.C.C.; Hammecker, C.; Antonino, A.C.D.; Medeiros, É.V.; Sampaio, E.V.S.B.; Silva, M.C.B.; Silva, V.P.; Souza, E.S.; Souza, R. Effects of poultry manure and biochar on Acrisol soil properties and yield of common bean. A Short-Term. Field experiment. Agriculture 2021, 11, 290. [Google Scholar] [CrossRef]
- Figueiredo, C.C.; Pinheiro, T.D.; Oliveira, L.E.Z.; Araújo, A.S.; Coser, T.R.; Paz-Ferreiro, J. Direct and residual effect of biochar derived from biosolids on soil phosphorus pools: A four-year field assessment. Sci. Total Environ. 2020, 739, 140013. [Google Scholar] [CrossRef]
- Obia, A.; Cornelissen, G.; Martinsen, V.; Smebye, A.B.; Mulder, J. Conservation tillage and biochar improve soil water content and moderate soil temperature in a tropical Acrisol. Soil Tillage Res. 2020, 197, 104521. [Google Scholar] [CrossRef]
- Lima, J.R.S.; Oliveira, J.E.S.; Moura, A.S.; Silva, C.F.; Medeiros, É.V.; Hammecker, C. Produção e eficiência no uso de água do feijão comum adubado com biochar. Divers. J. 2019, 4, 1146–1155. [Google Scholar] [CrossRef]
- Meng, Q.; Zhao, S.; Geng, R.; Zhao, Y.; Wang, Y.; Yu, F. Does biochar application enhance soil salinization risk in black soil of northeast China (a laboratory incubation experiment)? Arch. Agron. Soil Sci. 2021, 67, 1566–1577. [Google Scholar] [CrossRef]
- Dong, M.; Jiang, M.; He, L.; Zhang, Z.; Gustave, W.; Vithanage, M.; Niazi, N.K.; Chen, B.; Zhang, X.; Wang, H.; et al. Challenges in safe environmental applications of biochar: Identifying risks and unintended consequence. Biochar 2025, 7, 12. [Google Scholar] [CrossRef]
- Chi, N.T.L.; Anto, S.; Ahamed, T.S.; Kumar, S.S.; Shanmugam, S.; Samuel, M.S.; Mathimani, T.; Brindhadevi, K.; Pugazhendhi, A. A review on biochar production techniques and biochar based catalyst for biofuel production from algae. Fuel 2021, 287, 119411. [Google Scholar] [CrossRef]
- Safarian, S.; Rydén, M.; Janssen, M. Development and comparison of thermodynamic equilibrium and kinetic approaches for biomass pyrolysis modeling. Energies 2022, 15, 3999. [Google Scholar] [CrossRef]
- EMBRAPA. Manual de Métodos de Análise de Solo, 3rd ed.; Teixeira, P.C., Ed.; Embrapa: Brasília, DF, Brazil, 2017; 574p. [Google Scholar]
- Irving, G.C.J.; Mclaughlin, M.J. A rapid and simple field test for phosphorus in Olsen and Bray No. 1 extracts of soil. Commun. Soil Sci. Plant Anal. 1990, 21, 2245–2255. [Google Scholar] [CrossRef]
- Fageria, N.K.; Stone, L.F.; Santos, A.B. Maximização da Produção das Culturas; Embrapa SCT/Embrapa CNPAF: Santo Antônio de Goiás, Brazil, 1999. [Google Scholar]
- Williams, C.H.; Steinbergs, A. Soil sulphur fractions as chemical indices of available sulphur in some Australian soils. Aust. J. Agric. Res. 1959, 10, 340–352. [Google Scholar] [CrossRef]
- IAC. Métodos de Análise Química, Mineralógica e Física de Solos do Instituto Agronômico de Campinas; De Camargo, O.A., Moniz, A.C., Jorge, J.A., Valadares, J.M.A.S., Eds.; Boletim Técnico 106; Instituto Agronômico de Campinas (IAC): Campinas, Brazil, 2009; 77p. [Google Scholar]
- Almeida, A.V.L.; Corrêa, M.M.; Lima, J.R.S.; Souza, E.S.; Santoro, K.R.; Antonino, A.C.D. Atributos físicos, macro e micromorfológicos de Neossolos Regolíticos no Agreste Meridional de Pernambuco. Rev. Bras. Ciênc. Solo 2015, 39, 1235–1246. [Google Scholar] [CrossRef]
- Köppen, W. Climatologia: Con Un Estudio de Los Climas de la Tierra; Fondo de Cultura Económica: Mexico City, Mexico, 1948. [Google Scholar]
- Marengo, J.A.; Alcantara, E.; Cunha, A.P.; Seluchi, M.; Nobre, C.A.; Dolif, G.; Gonçalves, D.; Dias, M.A.; Cuartas, L.A.; Bender, F.; et al. Flash floods and landslides in the city of Recife, Northeast Brazil after heavy rain on May 25–28, 2022: Causes, impacts, and disaster preparedness. Weather Clim. Extrem. 2023, 39, 100545. [Google Scholar] [CrossRef]
- Silva, R.A.B.; Lima, J.R.S.; Antonino, A.C.D.; Gondim, P.S.S.; Souza, E.S.; Barros Júnior, G. Balanço hídrico em Neossolo regolítico cultivado com braquiária (Brachiaria decumbens Stapf). Rev. Bras. Ciênc. Solo 2014, 38, 147–157. [Google Scholar] [CrossRef]
- Prakongkep, N.; Gilkes, R.J.; Wiriyakitnateekul, W. Forms and solubility of plant nutrient elements in tropical plant waste biochars. J. Plant Nutr. Soil Sci. 2015, 178, 732–740. [Google Scholar] [CrossRef]
- Lima, J.R.S.; Silva, W.M.; Medeiros, É.V.; Duda, G.P.; Corrêa, M.M.; Martins Filho, A.P.; Clermont-Dauphin, C.; Antonino, A.C.D.; Hammecker, C. Effect of biochar on physicochemical properties of a sandy soil and maize growth in a greenhouse experiment. Geoderma 2018, 319, 14–23. [Google Scholar] [CrossRef]
- dos Santos Pereira, I.; Bamberg, A.L.; Oliveira de Sousa, R.; Monteiro, A.B.; Martinazzo, R.; Posser Silveira, C.A.; Silveira, A.O. Agricultural use and pH correction of anaerobic sewage sludge with acid pH. J. Environ. Manag. 2020, 275, 111203. [Google Scholar] [CrossRef]
- Mendonça, E.S.; Matos, E.S. Matéria Orgânica do Solo: Métodos de Análises; Universidade Federal de Viçosa (UFV): Viçosa, Brazil, 2005. [Google Scholar]
- Vance, E.D.; Brooks, P.C.; Jenkinson, D.S. An extraction method for measuring soil microbial biomass C. Soil Biol. Biochem. 1987, 19, 703–707. [Google Scholar] [CrossRef]
- Tate, K.R.; Ross, D.J.; Feltham, C.W. A direct extraction method to estimate soil microbial C: Effects of experimental variables and some different calibration procedures. Soil Biol. Biochem. 1988, 20, 329–335. [Google Scholar] [CrossRef]
- Bartlett, R.J.; Ross, D.S. Colorimetric determination of oxidizable carbon in acid soil solutions. Soil Sci. Soc. Am. J. 1988, 52, 1191–1192. [Google Scholar] [CrossRef]
- Brasil. Regras Para Análise de Sementes (RAS); Ministério da Agricultura, Pecuária e Abastecimento, Secretaria de Defesa Agropecuária: Brasília, Brazil, 2009. [Google Scholar]
- United States Environmental Protection Agency (USEPA). Acid Digestion of Sediments, Sludges and Soils, Method 3050b; EPA: Washington, DC, USA, 1996; 12p.
- Andrade, M.G.; Melo, V.F.; Souza, L.C.P.; Gabardo, J.; Reissmann, C.B. Metais pesados em solos de área de mineração e metalurgia de chumbo. II—Formas e disponibilidade para plantas. Rev. Bras. Ciênc. Solo 2009, 33, 1889–1898. [Google Scholar] [CrossRef]
- Souza, R.M.S.; Souza, E.S.; Antonino, A.C.D.; Lima, J.R.S. Balanço hídrico em área de pastagem no semiárido pernambucano. Rev. Bras. Eng. Agríc. Ambient. 2015, 19, 449–455. [Google Scholar] [CrossRef]
- R Core Team. A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2023. [Google Scholar]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences, 2nd ed.; Lawrence Erlbaum Associates: New York, NY, USA, 1988. [Google Scholar]
- Zhang, Y.; Wang, J.; Feng, Y. The effects of biochar addition on soil physicochemical properties: A review. Catena 2021, 202, 105284. [Google Scholar] [CrossRef]
- Wang, L.; Gao, C.; Yang, K.; Sheng, Y.; Xu, J.; Zhao, Y.; Lou, J.; Sun, R.; Zhu, L. Effects of biochar aging in the soil on its mechanical property and performance for soil CO2 and N2O emissions. Sci. Total Environ. 2021, 782, 146824. [Google Scholar] [CrossRef]
- Woiciechowski, T.; Lombardi, K.C.; Garcia, F.A.O.; Gomes, G.S. Nutrientes e umidade do solo após a incorporação de biocarvão em um plantio de Eucalyptus benthamii. Ciênc. Florest. 2018, 28, 1455–1464. [Google Scholar] [CrossRef]
- Palanasooriya, K.N.; Ok, Y.S.; Awad, Y.M.; Lee, S.S.; Sung, J.K.; Koutsospyros, A.; Moon, D.H. Impacts of biochar application on upland agriculture: A review. J. Environ. Manag. 2019, 234, 52–64. [Google Scholar] [CrossRef]
- Yao, J.; Wang, X.; Hong, M.; Gao, H.; Zhao, S. Response of soil pH to biochar application in farmland across China: A meta-analysis. PeerJ 2025, 13, e19400. [Google Scholar] [CrossRef]
- Colombani, N.; Gervasio, M.P.; Castaldelli, G.; Mastrocicco, M. Soil conditioners effects on hydraulic properties, leaching processes and denitrification on a silty-clay soil. Sci. Total Environ. 2020, 733, 139342. [Google Scholar] [CrossRef]
- Haj-Amor, Z.; Araya, T.; Kim, D.-G.; Bouri, S.; Lee, J.; Ghiloufi, W.; Yang, Y.; Kang, H.; Jhariya, M.K.; Banerjee, A.; et al. Soil salinity and its associated effects on soil microorganisms, greenhouse gas emissions, crop yield, biodiversity and desertification: A review. Sci. Total Environ. 2022, 843, 156946. [Google Scholar] [CrossRef]
- Lima, J.R.S.; Goes, M.C.C.; Antonino, A.C.D.; Medeiros, É.V.; Duda, G.P.; Leite, M.C.B.S. Biochar enhances Acrisol attributes and yield of bean in Brazilian tropical dry region. Acta Agric. Scand. Sect. B Soil Plant Sci. 2021, 71, 674–682. [Google Scholar] [CrossRef]
- Fristák, V.; Pipíska, M.; Soja, G. Pyrolysis treatment of sewage sludge: A promising way to produce phosphorus fertilizer. J. Clean. Prod. 2018, 172, 1772–1778. [Google Scholar] [CrossRef]
- Guimarães, R.S.; Padilha, F.J.; Cedano, J.C.; Damaceno, J.B.D.; Gama, R.T.; de Oliveira, D.M.; Teixeira, W.G.; Falcão, N.P.S. Efeito residual de biocarvão e pó de serra nos teores de carbono e nitrogênio total em Latossolo Amarelo na Amazônia. Rev. Virtual Quím. 2017, 9, 1944–1956. [Google Scholar] [CrossRef]
- Petter, F.A.; Ferreira, T.S.; Sinhorin, A.P.; Lima, L.B.; de Morais, L.A.; Pacheco, L.P. Sorption and desorption of diuron in Oxisol under biochar application. Bragantia 2016, 75, 487–495. [Google Scholar] [CrossRef]
- El-Naggar, A.; Lee, S.S.; Awad, Y.M.; Yang, X.; Ryu, C.; Rizwan, M.; Rinklebe, J.; Tsang, D.C.W.; Ok, Y.S. Influence of soil properties and feedstocks on biochar potential for carbon mineralization and improvement of infertile soils. Geoderma 2018, 332, 100–108. [Google Scholar] [CrossRef]
- Li, J.; Philip, J.; Li, J.; Wei, Y.; Xu, H.; Yang, K.; Ryder, M.; Toh, R.; Zhou, Y.; Denton, M.D.; et al. Trichoderma harzianum Inoculation Reduces the Incidence of Clubroot Disease in Chinese Cabbage by Regulating the Rhizosphere Microbial Community. Microorganisms 2020, 8, 1325. [Google Scholar] [CrossRef]
- Medeiros, E.V.; Moraes, M.C.H.S.; Costa, D.P.; Duda, G.P.; Oliveira, J.B.; Silva, J.S.A.; Lima, J.R.S.; Hammecker, C. Effect of biochar and inoculation with Trichoderma aureoviride on melon growth and sandy Entisol quality. Aust. J. Crop Sci. 2020, 14, 971–977. [Google Scholar] [CrossRef]
- He, L.; Zhang, H.; Guangxia, L.; Dai, Z.; Brookes, P.C.; Xu, J. Remediation of Heavy Metal Contaminated Soils by Biochar: Mechanisms, Potential Risks and Applications in China. Environ. Pollut. 2019, 252, 846–855. [Google Scholar] [CrossRef]
- Zhang, Y.; Ding, J.; Wang, H.; Su, L.; Zhao, C. Biochar addition alleviate the negative effects of drought and salinity stress on soybean productivity and water use efficiency. BMC Plant Biol. 2020, 20, 288. [Google Scholar] [CrossRef]
- Liu, X.; Wei, Z.; Ma, Y.; Liu, J.; Liu, F. Effects of biochar amendment and reduced irrigation on growth, physiology, water-use efficiency and nutrients uptake of tobacco (Nicotiana tabacum L.) on two different soil types. Sci. Total Environ. 2021, 770, 144769. [Google Scholar] [CrossRef]
- Meena, A.; Hanief, M.; Dinakaran, J.; Rao, K.S. Soil Moisture Controls the Spatio-Temporal Pattern of Soil Respiration under Different Land Use Systems in a Semi-Arid Ecosystem of Delhi, India. Ecol. Process. 2020, 9, 15. [Google Scholar] [CrossRef]
- Wang, T.; Stewart, C.E.; Sun, C.; Wang, Y.; Zheng, J. Effects of Biochar Addition on Evaporation in the Five Typical Loess Plateau Soils. Catena 2018, 162, 29–39. [Google Scholar] [CrossRef]
Chemical Features | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Layer | P | Na | K | Mg | S | pH | N | OM | TOC | ||||||
mg kg−1 | adm. | mg kg−1 | % | ||||||||||||
(0–10 cm) | 14.39 | 46.0 | 43.0 | 25.6 | 35.000 | 6.23 | 480 | 1.28 | 0.74 | ||||||
(10–20 cm) | 10.22 | 55.2 | 50.8 | 25.6 | 40.000 | 6.49 | 590 | 0.71 | 0.41 | ||||||
Particle size | |||||||||||||||
Layer | SD | TP | Sand | Silt | Clay | Textural class | |||||||||
g cm−3 | cm3 cm−3 | g kg−1 | - | ||||||||||||
(0–10 cm) | 1.73 | 0.395 | 924.16 | 35.84 | 40 | Sand | |||||||||
(10–20 cm) | 1.73 | 0.397 | 905.38 | 74.62 | 20 | Sand |
Materials | N | OC | P | K | Ca | Mg | Na | S | EC | pH |
---|---|---|---|---|---|---|---|---|---|---|
g kg−1 | g kg−1 | dS m−1 | ||||||||
SS | 10.6 | 124.2 | 11.5 | 3.1 | 20.1 | 2.9 | 1.0 | 20.5 | 3.38 | 3.59 |
SSB | 9.7 | 121.1 | 7.2 | 1.2 | 10.2 | 1.6 | 1.8 | 88.6 | 2.20 | 7.92 |
CM | 24.0 | 230.7 | 20.9 | 35.7 | 15.0 | 10.0 | - | - | - | 8.90 |
Treatment Code | Material Applied | Application Rate (t ha−1) |
---|---|---|
NPK | Mineral fertilizer (NPK) | standard recommended dose |
SS | Treated sewage sludge | 5 |
CM | Chicken manure | 5 |
B5 | Sewage sludge biochar | 5 |
B10 | Sewage sludge biochar | 10 |
B20 | Sewage sludge biochar | 20 |
B40 | Sewage sludge biochar | 40 |
Treatment | Cycle | Layer | Na+ (cmolc kg−1) | K+ (cmolc kg−1) | SO42− (hg g−1) |
---|---|---|---|---|---|
NPK | Cycle I | 0–10 cm | 0.20 a | 0.12 a | 0.41 a |
B5 | 0.21 a | 0.14 a | 0.42 a | ||
B10 | 0.23 a | 0.15 a | 0.46 a | ||
B20 | 0.29 a | 0.19 a | 0.47 a | ||
B40 | 0.30 a | 0.21 a | 0.50 a | ||
CM | 0.22 a | 0.25 a | 0.50 a | ||
SS | 0.28 a | 0.14 a | 0.41 a | ||
NPK | Cycle I | 10–20 cm | 0.16 a | 0.13 a | 0.47 a |
B5 | 0.22 a | 0.15 a | 0.48 a | ||
B10 | 0.25 a | 0.17 a | 0.50 a | ||
B20 | 0.31 a | 0.20 a | 0.53 a | ||
B40 | 0.35 a | 0.22 a | 0.54 a | ||
CM | 0.25 a | 0.26 a | 0.53 a | ||
SS | 0.26 a | 0.13 a | 0.52 a | ||
NPK | Cycle II | 0–10 cm | 0.10 a | 0.11 a | 0.24 a |
B5 | 0.11 a | 0.16 a | 0.28 a | ||
B10 | 0.17 a | 0.19 a | 0.31 a | ||
B20 | 0.25 a | 0.40 a | 0.35 a | ||
B40 | 0.28 a | 0.37 a | 0.36 a | ||
CM | 0.16 a | 0.38 a | 0.37 a | ||
SS | 0.22 a | 0.15 a | 0.24 a | ||
NPK | Cycle II | 10–20 cm | 0.09 a | 0.13 a | 0.31 a |
B5 | 0.12 a | 0.16 a | 0.32 a | ||
B10 | 0.18 a | 0.20 a | 0.34 a | ||
B20 | 0.25 a | 0.45 a | 0.45 a | ||
B40 | 0.29 a | 0.42 a | 0.46 a | ||
CM | 0.15 a | 0.43 a | 0.42 a | ||
SS | 0.23 a | 0.12 a | 0.27 a |
Materials | Cd | Mn | Cr | Cu | Ni |
---|---|---|---|---|---|
mg kg−1 | |||||
Common Bean Grains (40 t ha−1) | 2 | 45 | 11 | 8 | 9 |
Common Bean Grains (20 t ha−1) | 0.8 | 26 | 6 | 5 | 6 |
Maximum Permissible Limits (MPLs) | 1 | 15–80 | - | 30 | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Melo, R.E.d.; Silva, V.P.d.; Costa, D.P.d.; Alves, M.F.d.A.T.; Lopes, M.H.L.; Barbosa, E.D.; Júnior, J.H.d.S.; Filho, A.P.M.; Duda, G.P.; Antonino, A.C.D.; et al. Sewage Sludge Biochar Improves Water Use Efficiency and Bean Yield in a Small-Scale Field Experiment with Different Doses on Sandy Soil Under Semiarid Conditions. AgriEngineering 2025, 7, 227. https://doi.org/10.3390/agriengineering7070227
Melo REd, Silva VPd, Costa DPd, Alves MFdAT, Lopes MHL, Barbosa ED, Júnior JHdS, Filho APM, Duda GP, Antonino ACD, et al. Sewage Sludge Biochar Improves Water Use Efficiency and Bean Yield in a Small-Scale Field Experiment with Different Doses on Sandy Soil Under Semiarid Conditions. AgriEngineering. 2025; 7(7):227. https://doi.org/10.3390/agriengineering7070227
Chicago/Turabian StyleMelo, Raví Emanoel de, Vanilson Pedro da Silva, Diogo Paes da Costa, Maria Fernanda de A. Tenório Alves, Márcio Henrique Leal Lopes, Eline Dias Barbosa, José Henrique de Souza Júnior, Argemiro Pereira Martins Filho, Gustavo Pereira Duda, Antonio Celso Dantas Antonino, and et al. 2025. "Sewage Sludge Biochar Improves Water Use Efficiency and Bean Yield in a Small-Scale Field Experiment with Different Doses on Sandy Soil Under Semiarid Conditions" AgriEngineering 7, no. 7: 227. https://doi.org/10.3390/agriengineering7070227
APA StyleMelo, R. E. d., Silva, V. P. d., Costa, D. P. d., Alves, M. F. d. A. T., Lopes, M. H. L., Barbosa, E. D., Júnior, J. H. d. S., Filho, A. P. M., Duda, G. P., Antonino, A. C. D., Silva, M. C. d. B., Hammecker, C., Lima, J. R. d. S., & Medeiros, É. V. d. (2025). Sewage Sludge Biochar Improves Water Use Efficiency and Bean Yield in a Small-Scale Field Experiment with Different Doses on Sandy Soil Under Semiarid Conditions. AgriEngineering, 7(7), 227. https://doi.org/10.3390/agriengineering7070227