Ethics, Animal Welfare, and Artificial Intelligence in Livestock: A Bibliometric Review
Abstract
1. Introduction
2. Artificial Intelligence and the Livestock Industry
3. Ethical Implications
4. Bibliometric Analysis of Articles on Ethics and Artificial Intelligence in Livestock Farming over the Last Decade (2015–2025)
4.1. Performance Analysis
4.2. Scientific Mapping
5. Conclusions
6. Future Perspectives
- Expansion of interdisciplinary approaches: integrating agricultural sciences, social sciences, applied ethics, computer science, and public policy is essential to comprehensively understand the impacts of AI in livestock systems and its social, environmental, and economic implications.
- In addition to bibliometric mapping, future studies should incorporate qualitative methods that explore ethical dilemmas and sociocultural perceptions in depth. Empirical case studies that combine agricultural sciences, moral philosophy, and rural sociology can help identify value conflicts and practical challenges faced by producers, technicians, and policymakers in the adoption of AI technologies. These interdisciplinary approaches are essential for developing ethically grounded, context-sensitive guidelines that reflect real-world experiences and support responsible innovation in digital livestock farming.
- Development of ethical and regulatory guidelines: there is an urgent need for research focused on building codes of conduct, responsible use protocols, and governance models that guide the ethical application of AI in agriculture, particularly in contexts with weaker regulatory frameworks.
- Empirical studies on social and cultural impacts: the literature lacks field studies that evaluate how AI-based technologies affect relationships among farmers, animals, and machines in different socioeconomic and cultural settings, especially in the Global South.
- Exploration of trust as a central element: future investigations should deepen the analysis of trust in the adoption of intelligent systems, taking into account factors such as algorithmic transparency, technological accessibility, and user participation in decision-making processes.
- Digital inclusion and technological equity: research on strategies to mitigate the digital divide among farmers is critical to ensuring that advancements in digital livestock farming do not reinforce existing structural inequalities in rural areas.
- Ongoing ethical monitoring of innovations: it is recommended to develop continuous ethical assessment mechanisms that monitor the life cycle of AI technologies—from design to deployment—focusing on animal welfare, data privacy, and fairness.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ouchchy, L.; Coin, A.; Dubljević, V. AI in the Headlines: The Portrayal of the Ethical Issues of Artificial Intelligence in the Media. AI Soc. 2020, 35, 927–936. [Google Scholar] [CrossRef]
- Wang, X.; Wu, Q.; Zeng, H.; Yang, X.; Yang, X.; Yi, X.; Khalil, I.; Que, Y. Digital Evolution and Twin Miracle of Sugarcane Breeding. Field Crops Res 2024, 318, 109588. [Google Scholar] [CrossRef]
- Wang, X.; Wu, Q.; Zeng, H.; Yang, X.; Cui, H.; Yi, X.; Piran, M.J.; Luo, M.; Que, Y. Blockchain-Empowered H-CPS Architecture for Smart Agriculture. Adv. Sci. 2025, 12, e2503102. [Google Scholar] [CrossRef]
- Galaz, V.; Centeno, M.A.; Callahan, P.W.; Causevic, A.; Patterson, T.; Brass, I.; Baum, S.; Farber, D.; Fischer, J.; Garcia, D.; et al. Artificial Intelligence, Systemic Risks, and Sustainability. Technol Soc 2021, 67, 101741. [Google Scholar] [CrossRef]
- Balasubramaniam, N.; Kauppinen, M.; Rannisto, A.; Hiekkanen, K.; Kujala, S. Transparency and Explainability of AI Systems: From Ethical Guidelines to Requirements. Inf. Softw. Technol. 2023, 159, 107197. [Google Scholar] [CrossRef]
- Lepri, B.; Oliver, N.; Letouzé, E.; Pentland, A.; Vinck, P. Fair, Transparent, and Accountable Algorithmic Decision-Making Processes. Philos. Technol. 2018, 31, 611–627. [Google Scholar] [CrossRef]
- Niloofar, P.; Francis, D.P.; Lazarova-Molnar, S.; Vulpe, A.; Vochin, M.C.; Suciu, G.; Balanescu, M.; Anestis, V.; Bartzanas, T. Data-Driven Decision Support in Livestock Farming for Improved Animal Health, Welfare and Greenhouse Gas Emissions: Overview and Challenges. Comput. Electron. Agric. 2021, 190, 106406. [Google Scholar] [CrossRef]
- Neethirajan, S. The Significance and Ethics of Digital Livestock Farming. AgriEngineering 2023, 5, 488–505. [Google Scholar] [CrossRef]
- Morota, G.; Ventura, R.V.; Silva, F.F.; Koyama, M.; Fernando, S.C. Big Data Analytics and Precision Animal Agriculture Symposium: Machine Learning and Data Mining Advance Predictive Big Data Analysis in Precision Animal Agriculture. J. Anim. Sci. 2018, 96, 1540–1550. [Google Scholar] [CrossRef]
- Van Hilten, M.; Wolfert, S. 5G in Agri-Food—A Review on Current Status, Opportunities and Challenges. Comput. Electron. Agric. 2022, 201, 107291. [Google Scholar] [CrossRef]
- Sparrow, R.; Howard, M.; Degeling, C. Managing the Risks of Artificial Intelligence in Agriculture. NJAS Impact Agric. Life Sci. 2022, 93, 172–196. [Google Scholar] [CrossRef]
- Neethirajan, S. The Role of Sensors, Big Data and Machine Learning in Modern Animal Farming. Sens. Biosensing. Res. 2020, 29, 100367. [Google Scholar] [CrossRef]
- Javaid, M.; Haleem, A.; Singh, R.P.; Suman, R. Enhancing Smart Farming through the Applications of Agriculture 4.0 Technologies. Int. J. Intell. Netw. 2022, 3, 150–164. [Google Scholar] [CrossRef]
- Cook, P.; O’Neill, F. Artificial Intelligence in Agribusiness Is Growing in Emerging Markets; EMCompass: Washington, DC, USA, 2020. [Google Scholar]
- Ryan, M.; Isakhanyan, G.; Tekinerdogan, B. An Interdisciplinary Approach to Artificial Intelligence in Agriculture. Impact. Agric. Life Sci. 2023, 95, 1. [Google Scholar] [CrossRef]
- Lezoche, M.; Panetto, H.; Kacprzyk, J.; Hernandez, J.E.; Alemany Díaz, M.M.E. Agri-Food 4.0: A Survey of the Supply Chains and Technologies for the Future Agriculture. Comput. Ind. 2020, 117, 103187. [Google Scholar] [CrossRef]
- Buller, H.; Blokhuis, H.; Lokhorst, K.; Silberberg, M.; Veissier, I. Animal Welfare Management in a Digital World. Animals 2020, 10, 1779. [Google Scholar] [CrossRef]
- Karthick, G.S.; Sridhar, M.; Pankajavalli, P.B. Internet of Things in Animal Healthcare (IoTAH): Review of Recent Advancements in Architecture, Sensing Technologies and Real-Time Monitoring. SN Comput. Sci. 2020, 1, 301. [Google Scholar] [CrossRef]
- Neethirajan, S.; Kemp, B. Digital Livestock Farming. Sens. Biosensing. Res. 2021, 32, 100408. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhang, H.; Liu, T. Study on Body Temperature Detection of Pig Based on Infrared Technology: A Review. Artif. Intell. Agric. 2019, 1, 14–26. [Google Scholar] [CrossRef]
- Pegorini, V.; Karam, L.Z.; Pitta, C.S.R.; Cardoso, R.; da Silva, J.C.C.; Kalinowski, H.J.; Ribeiro, R.; Bertotti, F.L.; Assmann, T.S. In Vivo Pattern Classification of Ingestive Behavior in Ruminants Using FBG Sensors and Machine Learning. Sensors 2015, 15, 28456–28471. [Google Scholar] [CrossRef]
- Ji, B.; Banhazi, T.; Perano, K.; Ghahramani, A.; Bowtell, L.; Wang, C.; Li, B. A Review of Measuring, Assessing and Mitigating Heat Stress in Dairy Cattle. Biosyst Eng 2020, 199, 4–26. [Google Scholar] [CrossRef]
- Kakani, V.; Nguyen, V.H.; Kumar, B.P.; Kim, H.; Pasupuleti, V.R. A Critical Review on Computer Vision and Artificial Intelligence in Food Industry. J. Agric. Food Res. 2020, 2, 100033. [Google Scholar] [CrossRef]
- Fuentes, S.; Gonzalez Viejo, C.; Tongson, E.; Dunshea, F.R. The Livestock Farming Digital Transformation: Implementation of New and Emerging Technologies Using Artificial Intelligence. Anim. Health Res. Rev. 2022, 23, 59–71. [Google Scholar] [CrossRef] [PubMed]
- Javaid, M.; Haleem, A.; Khan, I.H.; Suman, R. Understanding the Potential Applications of Artificial Intelligence in Agriculture Sector. Adv. Agrochem. 2023, 2, 15–30. [Google Scholar] [CrossRef]
- Schillings, J.; Bennett, R.; Rose, D.C. Exploring the Potential of Precision Livestock Farming Technologies to Help Address Farm Animal Welfare. Front. Anim. Sci. 2021, 2, 639678. [Google Scholar] [CrossRef]
- Sakapaji, S.; Puthenkalam, J. Harnessing AI for Climate-Resilient Agriculture: Opportunities and Challenges. Eur. J. Theor. Appl. Sci. 2023, 1, 1144–1158. [Google Scholar] [CrossRef]
- Jessy, M.; Martha, K.; Mirembe, D. Harnessing AI for Socio-Economic Equity in Uganda: Bridging the Digital Divide through Agricultural Innovation. Int. J. Multidiscip. Res. 2024, 6. [Google Scholar] [CrossRef]
- Bampasidou, M.; Goldgaber, D.; Gentimis, T.; Mandalika, A. Overcoming ‘Digital Divides’: Leveraging Higher Education to Develop Next Generation Digital Agriculture Professionals. Comput. Electron. Agric. 2024, 224, 109181. [Google Scholar] [CrossRef]
- Salemink, K.; Strijker, D.; Bosworth, G. Rural Development in the Digital Age: A Systematic Literature Review on Unequal ICT Availability, Adoption, and Use in Rural Areas. J. Rural Stud. 2017, 54, 360–371. [Google Scholar] [CrossRef]
- Spanaki, K.; Sivarajah, U.; Fakhimi, M.; Despoudi, S.; Irani, Z. Disruptive Technologies in Agricultural Operations: A Systematic Review of AI-Driven AgriTech Research. Ann. Oper. Res. 2022, 308, 491–524. [Google Scholar] [CrossRef]
- Sparrow, R.; Howard, M. Robots in Agriculture: Prospects, Impacts, Ethics, and Policy. Precis. Agric. 2021, 22, 818–833. [Google Scholar] [CrossRef]
- Nižetić, S.; Djilali, N.; Papadopoulos, A.; Rodrigues, J.J.P.C. Smart Technologies for Promotion of Energy Efficiency, Utilization of Sustainable Resources and Waste Management. J. Clean. Prod. 2019, 231, 565–591. [Google Scholar] [CrossRef]
- Vasconez, J.P.; Kantor, G.A.; Auat Cheein, F.A. Human–Robot Interaction in Agriculture: A Survey and Current Challenges. Biosyst. Eng. 2019, 179, 35–48. [Google Scholar] [CrossRef]
- Gardezi, M.; Stock, R. Growing Algorithmic Governmentality: Interrogating the Social Construction of Trust in Precision Agriculture. J. Rural Stud. 2021, 84, 1–11. [Google Scholar] [CrossRef]
- Ryan, M. The Social and Ethical Impacts of Artificial Intelligence in Agriculture: Mapping the Agricultural AI Literature. AI Soc. 2023, 38, 2473–2485. [Google Scholar] [CrossRef]
- Werkheiser, I. Technology and Responsibility: A Discussion of Underexamined Risks and Concerns in Precision Livestock Farming. Anim. Front. 2020, 10, 51–57. [Google Scholar] [CrossRef]
- Monsó, S.; Wrage, B. Tactful Animals: How the Study of Touch Can Inform the Animal Morality Debate. Philos. Psychol. 2021, 34, 391–409. [Google Scholar] [CrossRef]
- Clapp, J. The Problem with Growing Corporate Concentration and Power in the Global Food System. Nat. Food 2021, 2, 404–408. [Google Scholar] [CrossRef]
- Doidge, C.; Frössling, J.; Dórea, F.; Ordell, A.; Vidal, G.; Kaler, J. Social and Ethical Implications of Data and Technology Use on Farms: A Qualitative Study of Swedish Dairy and Pig Farmers. Front. Vet. Sci. 2023, 10, 1171107. [Google Scholar] [CrossRef]
- Bos, J.M.; Bovenkerk, B.; Feindt, P.H.; van Dam, Y.K. The Quantified Animal: Precision Livestock Farming and the Ethical Implications of Objectification. Food Ethics 2018, 2, 77–92. [Google Scholar] [CrossRef]
- Singer, P.; Tse, Y.F. AI Ethics: The Case for Including Animals. AI Ethics 2022, 3, 539–551. [Google Scholar] [CrossRef]
- Bankins, S.; Formosa, P. The Ethical Implications of Artificial Intelligence (AI) For Meaningful Work. J. Bus. Ethics 2023, 185, 725–740. [Google Scholar] [CrossRef]
- Klerkx, L.; Jakku, E.; Labarthe, P. A Review of Social Science on Digital Agriculture, Smart Farming and Agriculture 4.0: New Contributions and a Future Research Agenda. NJAS Wagening. J. Life Sci. 2019, 90–91, 100315. [Google Scholar] [CrossRef]
- Jiang, B.; Tang, W.; Cui, L.; Deng, X. Precision Livestock Farming Research: A Global Scientometric Review. Animals 2023, 13, 2096. [Google Scholar] [CrossRef]
- Dhiman, P.; Kaur, A.; Iwendi, C.; Mohan, S.K. A Scientometric Analysis of Deep Learning Approaches for Detecting Fake News. Electronics 2023, 12, 948. [Google Scholar] [CrossRef]
- Donthu, N.; Kumar, S.; Mukherjee, D.; Pandey, N.; Lim, W.M. How to Conduct a Bibliometric Analysis: An Overview and Guidelines. J. Bus Res. 2021, 133, 285–296. [Google Scholar] [CrossRef]
- Weinberg, B.H. Bibliographic Coupling: A Review. Inf. Storage Retr. 1974, 10, 189–196. [Google Scholar] [CrossRef]
- Dara, R.; Hazrati Fard, S.M.; Kaur, J. Recommendations for Ethical and Responsible Use of Artificial Intelligence in Digital Agriculture. Front. Artif. Intell. 2022, 5, 884192. [Google Scholar] [CrossRef]
- Alexander, C.S.; Yarborough, M.; Smith, A. Who Is Responsible for ‘Responsible AI’?: Navigating Challenges to Build Trust in AI Agriculture and Food System Technology. Precis. Agric. 2024, 25, 146–185. [Google Scholar] [CrossRef]
- Jobin, A.; Ienca, M.; Vayena, E. The Global Landscape of AI Ethics Guidelines. Nat. Mach. Intell. 2019, 1, 389–399. [Google Scholar] [CrossRef]
- Thayyib, P.V.; Mamilla, R.; Khan, M.; Fatima, H.; Asim, M.; Anwar, I.; Shamsudheen, M.K.; Khan, M.A. State-of-the-Art of Artificial Intelligence and Big Data Analytics Reviews in Five Different Domains: A Bibliometric Summary. Sustainability 2023, 15, 4026. [Google Scholar] [CrossRef]
- Tedeschi, L.O.; Greenwood, P.L.; Halachmi, I. Advancements in Sensor Technology and Decision Support Intelligent Tools to Assist Smart Livestock Farming. J. Anim. Sci. 2021, 99, skab038. [Google Scholar] [CrossRef] [PubMed]
- Manning, L.; Brewer, S.; Craigon, P.J.; Frey, J.; Gutierrez, A.; Jacobs, N.; Kanza, S.; Munday, S.; Sacks, J.; Pearson, S. Artificial Intelligence and Ethics within the Food Sector: Developing a Common Language for Technology Adoption across the Supply Chain. Trends Food Sci. Technol. 2022, 125, 33–42. [Google Scholar] [CrossRef]
- Cross, E.S.; Hortensius, R.; Wykowska, A. From Social Brains to Social Robots: Applying Neurocognitive Insights to Human–Robot Interaction. Philos. Trans. R. Soc. B 2019, 374, 20180024. [Google Scholar] [CrossRef]
- Bossert, L.N.; Coeckelbergh, M. From MilkingBots to RoboDolphins: How AI Changes Human-Animal Relations and Enables Alienation towards Animals. Humanit. Soc. Sci. Commun. 2024, 11, A. [Google Scholar] [CrossRef]
- Zhang, L.; Guo, W.; Lv, C.; Guo, M.; Yang, M.; Fu, Q.; Liu, X. Advancements in Artificial Intelligence Technology for Improving Animal Welfare: Current Applications and Research Progress. Anim. Res. One Health 2024, 2, 93–109. [Google Scholar] [CrossRef]
- Mishra, S. The Age of Explainable AI: Improving Trust and Transparency in AI Models. Int. J. Sci. Res. 2020, 9, 1603–1611. [Google Scholar] [CrossRef]
- Elliott, K.; Werkheiser, I. A Framework for Transparency in Precision Livestock Farming. Animals 2023, 13, 3358. [Google Scholar] [CrossRef]
- Bahangulu, J.; Owusu-Berko, L. Algorithmic Bias, Data Ethics, and Governance: Ensuring Fairness, Transparency and Compliance in AI-Powered Business Analytics Applications. World J. Adv. Res. Rev. 2025, 25, 1746–1763. [Google Scholar] [CrossRef]
- Cheong, B. Transparency and Accountability in AI Systems: Safeguarding Wellbeing in the Age of Algorithmic Decision-Making. Front. Hum. Dyn. 2024, 6, 1421273. [Google Scholar] [CrossRef]
- Engelmann, A. Algorithmic Transparency as a Fundamental Right in the Democratic Rule of Law. Braz. J. Law Technol. Innov. 2023, 1, 169–188. [Google Scholar] [CrossRef]
- Kaminski, M. Understanding Transparency in Algorithmic Accountability. In Algorithmic Regulation; Cambridge University Press: Cambridge, UK, 2020. [Google Scholar] [CrossRef]
Research Topic | Main Focus | Common Approach in the Literature |
---|---|---|
Animal Welfare | Monitoring, stress, emotions | Use of sensors, computer vision, and AI for behavioral assessment |
Algorithmic Justice | Bias, transparency, accountability | Concerns about fairness and ethics in decision-making algorithms |
Livestock Automation | Efficiency, productivity | Application of AI for management optimization and cost reduction |
Social Impacts | Rural labor, digital inequality | Discussion on digital exclusion and changes in labor profiles |
Technological Governance | Regulation, applied ethics | Proposals for regulatory frameworks and ethical codes of conduct |
Thematic Cluster | Dominant Keywords | Thematic Description |
---|---|---|
1. AI Technologies and Precision Livestock Farming | artificial intelligence, machine learning, precision livestock, smart farming | Refers to the application of intelligent technologies for monitoring and automating production processes. Emphasizes the use of AI for decision-making, productivity gains, and operational efficiency. |
2. Algorithmic Justice and Ethical Governance | AI ethics, fairness, transparency, accountability | Groups publications focused on the ethical risks related to the use of algorithms in livestock farming, such as bias, lack of transparency, accountability for errors, and the need for regulatory guidelines. |
3. Animal Welfare and Behavioral Monitoring | animal welfare, livestock, computer vision, stress detection | This cluster focuses on the use of AI to assess animal welfare, highlighting computer vision techniques and sensors to monitor behavior, health, and emotional states. |
4. Clinical Applications and Veterinary Practices | diagnosis, physiology, cattle disease, veterinary AI | Encompasses studies on AI applications in veterinary diagnostics, animal physiology, and disease prevention, reinforcing the clinical role of technology in livestock production. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Santana, T.C.; Guiselini, C.; Pandorfi, H.; Vigoderis, R.B.; Barbosa Filho, J.A.D.; Soares, R.G.F.; Araújo, M.d.F.; Gomes, N.F.; Lima, L.D.d.; Santos, P.C.d.S. Ethics, Animal Welfare, and Artificial Intelligence in Livestock: A Bibliometric Review. AgriEngineering 2025, 7, 202. https://doi.org/10.3390/agriengineering7070202
Santana TC, Guiselini C, Pandorfi H, Vigoderis RB, Barbosa Filho JAD, Soares RGF, Araújo MdF, Gomes NF, Lima LDd, Santos PCdS. Ethics, Animal Welfare, and Artificial Intelligence in Livestock: A Bibliometric Review. AgriEngineering. 2025; 7(7):202. https://doi.org/10.3390/agriengineering7070202
Chicago/Turabian StyleSantana, Taize Calvacante, Cristiane Guiselini, Héliton Pandorfi, Ricardo Brauer Vigoderis, José Antônio Delfino Barbosa Filho, Rodrigo Gabriel Ferreira Soares, Maria de Fátima Araújo, Nicoly Farias Gomes, Leandro Dias de Lima, and Paulo César da Silva Santos. 2025. "Ethics, Animal Welfare, and Artificial Intelligence in Livestock: A Bibliometric Review" AgriEngineering 7, no. 7: 202. https://doi.org/10.3390/agriengineering7070202
APA StyleSantana, T. C., Guiselini, C., Pandorfi, H., Vigoderis, R. B., Barbosa Filho, J. A. D., Soares, R. G. F., Araújo, M. d. F., Gomes, N. F., Lima, L. D. d., & Santos, P. C. d. S. (2025). Ethics, Animal Welfare, and Artificial Intelligence in Livestock: A Bibliometric Review. AgriEngineering, 7(7), 202. https://doi.org/10.3390/agriengineering7070202