Improving Water Use and Sugarcane Yield Using Irrigation Strategies in Nicaragua
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Characterization
2.2. Experimental Design
2.3. Soil Moisture Content and Irrigation Management
2.4. Sugarcane Yield and Growth Variables
2.5. Irrigation Water Depth and Water Use Efficiency
2.6. Agronomical Practices
2.7. Statistical Analysis
3. Results and Discussion
3.1. Irrigation Water Applied and Soil Moisture Content
3.2. Sugarcane Yield Responses According to Irrigation Management Strategies
3.3. Sugarcane Growth Variables During the Crop Cycle
3.4. Sugarcane Yield Under Different Irrigation Management Strategies
3.5. Water Use Efficiency for Sugarcane Under Different Irrigation Management Strategies
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- CNPA. Comité Nacional de Productores de Azúcar—Nicaragua. Importancia Económica la caña Azúcar en Nicaragua. 2022. Available online: https://www.mag.gob.ni/index.php/brochures-tecnicos/brochures-tenicos-agricolas (accessed on 21 January 2024).
- Méndez, E.Z.; Zegarra, O.C. Diagnóstico Sobre la Situación y Potencial del Sector Riego en Nicaragua; Nota Técnica del BID (1063); Banco Interamericano de Desarrollo: Washington, DC, USA, 2016. [Google Scholar]
- Oliveira, L.A.; Miranda, J.H.; Cooke, R.A.C. Water management for sugarcane and corn under future climate scenarios in Brazil. Agric. Water Manag. 2018, 201, 199–206. [Google Scholar] [CrossRef]
- Dingre, S.K.; Gorantiwar, S.D. Determination of the water requirement and crop coefficient values of sugarcane by field water balance method in semiarid region. Agric. Water Manag. 2020, 232, 106042. [Google Scholar] [CrossRef]
- Marin, F.R.; Inman-Bamber, G.; Silva, T.G.F.; Vianna, M.S.; Nassif, D.S.P.; Carvalho, K.S. Sugarcane evapotranspiration and irrigation requirements in tropical climates. Theor. Appl. Climatol. 2020, 140, 1349–1357. [Google Scholar] [CrossRef]
- Pereira, R.M.; Schwerz, F.; Diotto, A.V.; Sandoval, M.D.V.; Aguirre, M.J.A. Water requirement and crop coefficient of sugarcane cultivated in Nicaragua. J. Crop Sci. Biotechnol. 2024, 27, 79–89. [Google Scholar] [CrossRef]
- Alamilla-Magaña, J.C.; Carrillo-Ávila, E.; Obrador-Olán, J.J.; Landeros-Sánchez, C.; Vera-Lopez, J.; Juárez-López, J.F. Soil moisture tension effect on sugar cane growth and yield. Agric. Water Manag. 2016, 177, 264–273. [Google Scholar] [CrossRef]
- Silva, V.D.P.; Silva, B.B.; Albuquerque, W.G.; Borges, C.J.; Sousa, I.F.; Neto, J.D. Crop coefficient, water requirements, yield and water use efficiency of sugarcane growth in Brazil. Agric. Water Manag. 2013, 128, 102–109. [Google Scholar] [CrossRef]
- Oliveira, F.M.; Aspiazú, I.; Kondo, M.K.; Borges, I.D.; Pegoraro, R.F.; Vianna, E.J. Crescimento e produção de variedades de cana-de-açúcar influenciadas por diferentes adubações e supressões de irrigação. Rev. Trop. Ciênc. Agrár. Biol. 2011, 5, 56. [Google Scholar]
- Inman-Bamber, N.G.; Smith, D.M. Water relations in sugarcane and response to water deficits. Field Crops Res. 2005, 92, 185–202. [Google Scholar] [CrossRef]
- Singels, A.; Jarmain, C.; Bastidas-Obando, E.; Olivier, F.C.; Paraskevopoulos, A.L. Monitoring water use efficiency of irrigated sugarcane production in Mpumalanga, South Africa, using SEBAL. Water SA 2018, 44, 636–646. [Google Scholar] [CrossRef]
- Bhoj, R.L.; Singh, P.K. Agronomical researches on sugarcane in U.P.—A review. Sugar. Res. Dev. 1960, 6, 60–64. [Google Scholar]
- Gunasena, H.P.M. Field Crop Production; Lake House Investments: Colombo, Sri Lanka, 1974; 354p. [Google Scholar]
- Singh, G.J.D.P.; Sareon, K. Economic use of water with nitrogen fertilization and assessment of suitable indices for scheduling irrigation in sugarcane. Indian Sugar 1976, 25, 417–422. [Google Scholar]
- Bose, P.K.; Thakur, K. Critical time and irrigation and nitrogen fertilization under water deficit conditions—Review of work done at Sugarcane. Indian Sugar 1977, 26, 809–812. [Google Scholar]
- Chichaibelu, B.B.; Bekchanov, M.; Von Braun, J.; Torero, M. The global cost of reaching a world without hunger: Investment costs and policy action opportunities. Food Policy 2021, 104, 102151. [Google Scholar] [CrossRef]
- Dowgert, M.F. The impact of irrigated agriculture on a stable food supply. In Proceedings of the 22nd Annual Central Plains Irrigation Conference, Colby, KS, USA, 21–22 January 2010; pp. 1–11. [Google Scholar]
- Adu, M.O.; Yawson, D.O.; Armah, F.A.; Asare, P.A.; Frimpong, K.A. Meta-analysis of crop yields of full, deficit, and partial root-zone drying irrigation. Agric. Water Manag. 2018, 197, 79–90. [Google Scholar] [CrossRef]
- Robertson, M.J.; Inman-Bamber, N.G.; Muchow, R.C.; Wood, A.W. Physiology and productivity of sugarcane with early and mid-season water deficit. Field Crops Res. 1999, 64, 211–227. [Google Scholar] [CrossRef]
- Silva, T.G.F.; Moura, M.S.B.; Zolnier, S.; Do, J.F.A.; Carmo Souza, L.S.B. Biometria da parte aérea da cana soca irrigada no Submédio do Vale do São Francisco. Rev. Cienc. Agron. 2012, 43, 500–509. [Google Scholar] [CrossRef]
- Ecco, M.; Santiago, E.F.; Lima, P.R. Respostas biométricas em plantas jovens de cana-de-açúcar submetidas ao estresse hídrico e ao alumínio. Comun. Sci. 2014, 5, 59–67. [Google Scholar]
- Misra, V.; Solomon, S.; Mall, A.K.; Prajapati, C.P.; Hashem, A.; Abd Allah, E.F.; Ansari, M.I. Morphological assessment of water stressed sugarcane: A comparison of waterlogged and drought affected crop. Saudi J. Biol. Sci. 2020, 27, 1228–1236. [Google Scholar] [CrossRef]
- Ibragimov, N.; Evett, S.R.; Esanbekov, Y.; Kamilov, B.S.; Mirzaev, L.; Lamers, J.P. Water use efficiency of irrigated cotton in Uzbekistan under drip and furrow irrigation. Agric. Water Manag. 2007, 90, 112–120. [Google Scholar] [CrossRef]
- Lu, J.; Ookawa, T.; Hirasawa, T. The effects of irrigation regimes on the water use, dry matter production and physiological responses of paddy rice. Plant Soil 2000, 223, 207–216. [Google Scholar] [CrossRef]
- Coulombe, C.E.; Wilding, L.P.; Dixon, J.B. Overview of vertisols: Characteristics and impacts on society. Adv. Agron. 1996, 57, 289–375. [Google Scholar]
- Fernandez-Gomez, R.; Mateos, L.; Giráldez, J.V. Furrow irrigation erosion and management. Irrig. Sci. 2004, 23, 123–131. [Google Scholar] [CrossRef]
- Dinh, H.T.; Watanable, K.; Takaragawa, H.; Kawamitsu, Y. Effects of Drought Stress at Early Growth Stage on Response of Sugarcane to Different Nitrogen Application. Sugar Tech 2018, 20, 420–430. [Google Scholar] [CrossRef]
- Cesnik, R.; Miocque, J. Melhoramento da Cana-de-Açúcar; Embrapa: Brazilia, Brazil, 2014; 25p. [Google Scholar]
- Silva, M.D.A.; Alberto, J.; Enciso, J.; Sharma, V.; Jifon, J. Yield components as indicators of drought tolerance of sugarcane. Sci. Agricola 2008, 65, 620–627. [Google Scholar] [CrossRef]
- OECD. Safety Assessment of Transgenic Organisms in the Environment: OECD Consensus Documents—Sugarcane; OECD: Paris, France, 2016; 303p. [Google Scholar]
- Smit, M.A.; Singels, A. The response of sugarcane canopy development to water stress. Field Crops Res. 2006, 98, 91–97. [Google Scholar] [CrossRef]
- Landell, M.G.A.; Silva, M.A. As estratégias de seleção da cana em desenvolvimento no Brasil. Visão Agrícola 2004, 1, 18–23. [Google Scholar]
- Vasantha, S.; Shekinah, D.E.; Gupta, C.; Rakkiyappan, P. Tiller Production, Regulation and Senescence in Sugarcane (Saccharum species hybrid) Genotypes. Sugar Tech 2012, 14, 156–160. [Google Scholar] [CrossRef]
- Shrivastava, A.K.; Solomon, S.; Rai, R.K.; Singh, P.; Chandra, A.; Jain, R.; Shukla, S.P. Physiological Interventions for Enhancing Sugarcane and Sugar Productivity. Sugar Tech 2014, 17, 215–226. [Google Scholar] [CrossRef]
- Zhao, D.; Glaz, B.; Comstock, J.C. Sugarcane response to water-deficit stress during early growth on organic and sand soils. Am. J. Agric. Biol. Sci. 2010, 5, 403–414. [Google Scholar] [CrossRef]
- Albuquerque, W.G. Consumo Hídrico e Coeficiente de Cultivo Dual da Cana-de-Açúcar Cultivada sob Diferentes Lâminas de Irrigação. PhD Thesis, Universidade Federal de Campina Grande, Campina Grande, Brazil, 2012; p. 90. [Google Scholar]
- Santos, L.C.; Coelho, R.D.; Barbosa, F.S.; Leal, D.P.V.; Fraga, E.F.; Barros, T.H.S.; Lizcano, J.V.; Ribeiro, N.L. Influence of deficit irrigation on accumulation and partitioning of sugarcane biomass under drip irrigation in commercial varieties. Agric. Water Manag. 2019, 221, 322–333. [Google Scholar] [CrossRef]
- Carr, B.M.K.V.; Knox, J.W. The water relations and irrigation requirements of sugar cane (Sccharum officinarum): A Review. Exp. Agric. 2011, 47, 1–25. [Google Scholar] [CrossRef]
- Cowan, I.R.; Innes, R.F. Meteorology, evaporation and the water requirements of sugar cane. Proc. Int. Soc. Sugarcane Technol. 1956, 9, 215–232. [Google Scholar]
- Oñate, C.A.; Pereira, R.M.; Rebolledo, J.P.; Pantoja, J.E. Inhibidor de Floración (Etephon) Aplicado en Diferentes Rango de Edad en la Variedad CP72-2086 en Casur, Nicaragua—America Central; Tecnicaña: Cali, Colombia, 2017; pp. 1–10. [Google Scholar]
- Araldi, R.; Silva, F.M.L.; Ono, E.O.; Rodrigues, J.D. Florescimento em cana-de-açúcar. Ciênc. Rural 2010, 40, 694–702. [Google Scholar] [CrossRef]
- Araújo, R.; Junior, J.A.; Casaroli, D.; Wagner, A.; Evangelista, P. Variation in the sugar yield in response to drying-off of sugarcane before harvest and the occurrence of low air temperatures. Bragantia 2016, 75, 118–127. [Google Scholar] [CrossRef]
- Inman-Bamber, N.G. Sugarcane water stress criteria for irrigation and drying off. Field Crops Res. 2004, 89, 107–122. [Google Scholar] [CrossRef]
- Luo, H.H.; Zhang, Y.L.; Zhang, W.F. Effects of water stress and rewatering on photosynthesis, root activity, and yield of cotton with drip irrigation under mulch. Photosynthetica 2016, 54, 65–73. [Google Scholar] [CrossRef]
- Wang, X.L.; Qin, R.R.; Sun, R.H.; Wang, J.J.; Hou, X.G.; Qi, L.; Qin, D.H. No post-drought compensatory growth of corns with root cutting based on cytokinin induced by roots. Agric. Water Manag. 2018, 205, 9–20. [Google Scholar] [CrossRef]
- FAO. FAO Stat Database. FaoStat. Licens. CC BY-NC-SA 3.0 IGO. 2022. Available online: https://www.fao.org/faostat/en/#data/QCL (accessed on 26 May 2023).
- Rossler, R.L.; Singels, A.; Olivier, F.C.; Steyn, J.M. Growth and yield of a sugarcane plant crop under water stress imposed through deficit drip irrigation. Proc. S. Afr. Sugarcane Technol. Assoc. 2013, 86, 170–183. [Google Scholar]
- Hatfield, J.L.; Dold, C.; States, U. Water-Use Efficiency: Advances and Challenges in a Changing Climate. Front. Plant Sci. 2019, 10, 103. [Google Scholar] [CrossRef]
- Eldeiry, A.A.; Garcia, L.A.; El-Zaher, A.S.A.; Kiwan, M.E. Furrow Irrigation system design for clay soil in arid regions. Appl. Eng. Agric. 2005, 21, 411–420. [Google Scholar] [CrossRef]
- Menezes, S.M.; Da Silva, G.F.; Da Silva, M.M.; De Oliveira Filho, R.A.; Jardim, A.M.D.R.F.; Silva, J.R.I.; Dos Santos, M.A.L. Pulse Drip Irrigation Improves Yield, Physiological Responses, and Water-Use Efficiency of Sugarcane. Water Conserv. Sci. Eng. 2024, 9, 25. [Google Scholar] [CrossRef]
- Ramesh, P.; Kailasam, C.; Srinivasan, T.R. Performance of Sugarcane (Saccharum officinarum L.) Under Surface Drip, Sub Surface Drip (Biwall) and Furrow Methods of Irrigation. J. Agron. Crop Sci. 1994, 172, 237–241. [Google Scholar] [CrossRef]
- El-Halim, A.A. Impact of alternate furrow irrigation with different irrigation intervals on yield, water use efficiency, and economic return of corn. Chil. J. Agric. Res. 2013, 73, 175–180. [Google Scholar] [CrossRef]
- Chai, J.; Zeng, H.; Li, A.; Ngai, E.W. Deep learning in computer vision: A critical review of emerging techniques and application scenarios. Mach. Learn. Appl. 2021, 6, 100134. [Google Scholar] [CrossRef]
- Wang, R.F.; Su, W.H. The application of deep learning in the whole potato production Chain: A Comprehensive review. Agriculture 2024, 14, 1225. [Google Scholar] [CrossRef]
Variable | Unit | 00–25 | 25–50 | Average |
---|---|---|---|---|
Soil Layer Depth (cm) | ||||
Chemical Characterization | ||||
Organic Matter | % | 1.4 | 0.75 | 1.08 |
pH | 7.30 | 7.40 | 7.35 | |
Potassium | 0.17 | 0.14 | 0.16 | |
Calcium | 19.3 | 15.93 | 17.62 | |
Magnesium | cmol kg−1 | 1.62 | 0.96 | 1.29 |
Sodium | 6.5 | 8.64 | 7.57 | |
CEC | 27.58 | 25.66 | 26.62 | |
Phosphorus | 18.53 | 23.58 | 21.06 | |
Sulfur | 45.91 | 46.43 | 46.17 | |
Iron | 35.07 | 34.02 | 34.55 | |
Cupper | Ppm | 8.79 | 7.68 | 8.24 |
Zinc | 0.5 | 0.3 | 0.40 | |
Manganese | 1.62 | 0.96 | 1.29 | |
Boron | 0.65 | 0.65 | 0.65 | |
Physical Characterization | ||||
Clay | % | 47.00 | 53.00 | 50.00 |
Loam | 37.10 | 13.10 | 25.10 | |
Sand | 15.90 | 33.90 | 24.90 | |
Bulk Density | g cm−3 | 1.47 | 1.44 | 1.46 |
Field Capacity | g g−1 | 0.464 | 0.470 | 0.467 |
Wilting Point | 0.325 | 0.322 | 0.324 | |
Porosity | 0.580 | 0.665 | 0.623 |
Date | DAC | ISw | IFI |
---|---|---|---|
WR (mm) | |||
12 February 2021 | 12 | 117.0 | 119.2 |
2 February 2021 | 25 | 76.1 | 0.0 |
15 March 2021 | 43 | 88.1 | 116.7 |
7 April 2021 | 66 | 84.7 | 0.0 |
14 April 2021 | 73 | 61.6 | 119.0 |
27 April 2021 | 86 | 86.4 | 0.0 |
12 May 2021 | 101 | 79.4 | 117.0 |
26 May 2021 | 115 | 56.7 | 0.0 |
4 June 2021 | 124 | 0.0 | 84.5 |
25 June 2021 | 145 | 57.2 | 0.0 |
Total Irrigation Water | 707.1 | 556.4 | |
Average of WR | 78.6 | 111.3 |
DAC | Rainfall | IW | TW | Var. (%) | ||
---|---|---|---|---|---|---|
ISw | IFI | ISw | IFI | |||
0–60 | 12.0 | 281.1 | 235.9 | 293.1 | 247.9 | −15.4 |
61–90 | 24.0 | 232.7 | 119.0 | 256.7 | 143.0 | −44.3 |
91–150 | 158.0 | 193.3 | 201.5 | 351.3 | 359.5 | 2.3 |
151–210 | 331.0 | 0.0 | 0.0 | 331.0 | 331.0 | 0.0 |
211–270 | 485.0 | 0.0 | 0.0 | 485.0 | 485.0 | 0.0 |
217–300 | 201.0 | 0.0 | 0.0 | 201.0 | 201.0 | 0.0 |
301–340 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Total | 1211.0 | 707.1 | 556.4 | 1918.1 | 1767.4 | −7.9 |
Treatments | CY | IW | R | TW | IWUE | TWUE |
---|---|---|---|---|---|---|
(Mg ha−1) | (mm) | (Mg ha−1 mm−1) | ||||
ISw | 93.87 | 707.12 | 1211 | 1918.12 | 0.133 | 0.049 |
IFI | 83.84 | 556.37 | 1211 | 1767.37 | 0.151 | 0.047 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pereira, R.M.; Schwerz, F.; Diotto, A.V.; Oñate, C.A.; Sandoval, M.D.V.; Caron, B.O.; Cândido, B. Improving Water Use and Sugarcane Yield Using Irrigation Strategies in Nicaragua. AgriEngineering 2025, 7, 162. https://doi.org/10.3390/agriengineering7050162
Pereira RM, Schwerz F, Diotto AV, Oñate CA, Sandoval MDV, Caron BO, Cândido B. Improving Water Use and Sugarcane Yield Using Irrigation Strategies in Nicaragua. AgriEngineering. 2025; 7(5):162. https://doi.org/10.3390/agriengineering7050162
Chicago/Turabian StylePereira, Rafael Menezes, Felipe Schwerz, Adriano Valentim Diotto, Carolina Altamirano Oñate, Marlon Daniel Vargas Sandoval, Braulio Otomar Caron, and Bernardo Cândido. 2025. "Improving Water Use and Sugarcane Yield Using Irrigation Strategies in Nicaragua" AgriEngineering 7, no. 5: 162. https://doi.org/10.3390/agriengineering7050162
APA StylePereira, R. M., Schwerz, F., Diotto, A. V., Oñate, C. A., Sandoval, M. D. V., Caron, B. O., & Cândido, B. (2025). Improving Water Use and Sugarcane Yield Using Irrigation Strategies in Nicaragua. AgriEngineering, 7(5), 162. https://doi.org/10.3390/agriengineering7050162