Development and Performance Testing of a Combined Cultivating Implement and Organic Fertilizer Applicator for Sugarcane Ratooning
Abstract
:1. Introduction
2. Materials and Methods
2.1. Overall Design
2.2. The Combined Cultivating Implement
2.3. Selection of the Appropriate Size of a Two-Way Horizontal Screw Conveyor for Conveying the Organic Fertilizer
2.4. Tractor and Experimental Site
2.5. Instrumentation and Testing Methods
3. Results
3.1. Combined Cultivating Implement Test in a Ratoon Sugarcane Field
3.2. Two-Way Horizontal Screw Conveyor Test
3.3. Field Performance Test
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Xu, F.; Wang, Z.; Lu, G.; Zeng, R.; Que, Y. Sugarcane Ratooning Ability: Research Status, Shortcomings, and Prospects. Biology 2021, 10, 1052. [Google Scholar] [CrossRef] [PubMed]
- Riajaya, P.D.; Hariyono, B.; Cholid, M.; Kadarwati, F.T.; Santoso, B.; Djumali; Subiyakto. Growth and Yield Potential of New Sugarcane Varieties during Plant and First Ratoon Crops. Sustainability 2022, 14, 14396. [Google Scholar] [CrossRef]
- De Aquino, G.S.; de Conti Medina, C.; da Costa, D.C.; Shahab, M.; Santiago, A.D. Sugarcane straw management and its impact on production and development of ratoons. Ind. Crops Prod. 2017, 102, 58–64. [Google Scholar] [CrossRef]
- Bluett, C.; Tullberg, J.N.; McPhee, J.E.; Antille, D.L. Soil and Tillage Research: Why still focus on soil compaction? Soil Tillage Res. 2019, 194, 1–2. [Google Scholar] [CrossRef]
- Aguilera Esteban, D.A.; de Souza, Z.M.; Tormena, C.A.; Lovera, L.H.; de Souza Lima, E.; de Oliveira, I.N.; de Paula Ribeiro, N. Soil compaction, root system and productivity of sugarcane under different row spacing and controlled traffic at harvest. Soil Tillage Res. 2019, 187, 60–71. [Google Scholar] [CrossRef]
- Otto, R.; Silva, A.P.; Franco, H.C.J.; Oliveira, E.C.A.; Trivelin, P.C.O. High soil penetration resistance reduces sugarcane root system development. Soil Tillage Res. 2011, 117, 201–210. [Google Scholar] [CrossRef]
- Silva, R.P.; Rolim, M.M.; Gomes, I.F.; Pedrosa, E.M.R.; Tavares, U.E.; Santos, A.N. Numerical modeling of soil compaction in a sugarcane crop using the finite element method. Soil Tillage Res. 2018, 181, 1–10. [Google Scholar] [CrossRef]
- Oldfield, E.E.; Bradford, M.A.; Wood, S.A. Global meta-analysis of the relationship between soil organic matter and crop yields. Soil 2019, 5, 15–32. [Google Scholar] [CrossRef]
- Surendran, U.; Ramesh, V.; Jayakumar, M.; Marimuthu, S.; Sridevi, G. Improved sugarcane productivity with tillage and trash management practices in semi arid tropical agro ecosystem in India. Soil Tillage Res. 2016, 158, 10–21. [Google Scholar] [CrossRef]
- Yadav, R.L.; Prasad, S.R.; Singh, R.; Srivastava, V.K. Recycling sugarcane trash to conserve soil organic carbon for sustaining yields of successive ratoon crops in sugarcane. Bioresour. Technol. 1994, 49, 231–235. [Google Scholar]
- Shukla, S.K.; Jaiswal, V.P.; Sharma, L.; Tiwari, R.; Pathak, A.D.; Gaur, A.; Awasthi, S.K.; Srivastava, A. Trash management and Trichoderma harzianum influencing photosynthesis, soil carbon sequestration, and growth and yield of sugarcane ratoon in subtropical India. Eur. J. Agron. 2022, 141, 126631. [Google Scholar] [CrossRef]
- Barbosa, L.C.; Magalhães, P.S.G.; Bordonal, R.O.; Cherubin, M.R.; Castioni, G.A.F.; Tenelli, S.; Franco, H.C.J.; Carvalho, J.L.N. Soil physical quality associated with tillage practices during sugarcane planting in south-central Brazil. Soil Tillage Res. 2019, 195, 104383. [Google Scholar] [CrossRef]
- Kaur, R.; Arora, V.K. Deep tillage and residue mulch effects on productivity and water and nitrogen economy of spring maize in north-west India. Agric. Water Manag. 2019, 213, 724–731. [Google Scholar] [CrossRef]
- Scarpare, F.V.; de Jong van Lier, Q.; de Camargo, L.; Pires, R.C.M.; Ruiz-Corrêa, S.T.; Bezerra, A.H.F.; Gava, G.J.C.; Dias, C.T.S. Tillage effects on soil physical condition and root growth associated with sugarcane water availability. Soil Tillage Res. 2019, 187, 110–118. [Google Scholar] [CrossRef]
- Chen, Z.; Du, Z.; Zhang, Z.; Wang, G.; Li, J. Dynamic changes in soil organic carbon induced by long-term compost application under a wheat-maize double cropping system in North China. Sci. Total Environ. 2024, 913, 169407. [Google Scholar] [CrossRef]
- Wang, H.; Xu, J.; Liu, X.; Zhang, D.; Li, L.; Li, W.; Sheng, L. Effects of long-term application of organic fertilizer on improving organic matter content and retarding acidity in red soil from China. Soil Tillage Res. 2019, 195, 104382. [Google Scholar] [CrossRef]
- Navarro-Pedreño, J.; Almendro-Candel, M.B.; Zorpas, A.A. The Increase of Soil Organic Matter Reduces Global Warming, Myth or Reality? Sci 2021, 3, 18. [Google Scholar] [CrossRef]
- Prout, J.M.; Shepherd, K.D.; McGrath, S.P.; Kirk, G.J.D.; Haefele, S.M. What is a good level of soil organic matter? An index based on organic carbon to clay ratio. Eur. J. Soil Sci. 2020, 72, 2493–2503. [Google Scholar] [CrossRef]
- Robertson, F.A.; Thorburn, P.J. Decomposition of sugarcane harvest residue in different climatic zones. Aust. J. Soil Res. 2007, 45, 1–11. [Google Scholar] [CrossRef]
- Moitinho, M.R.; Ferraudo, A.S.; Panosso, A.R.; Bicalho, E.d.S.; Teixeira, D.D.B.; Barbosa, M.d.A.; Tsai, S.M.; Borges, B.M.F.; Cannavan, F.d.S.; Souza, J.A.M.d.; et al. Effects of burned and unburned sugarcane harvesting systems on soil CO2 emission and soil physical, chemical, and microbiological attributes. CATENA 2021, 196, 104903. [Google Scholar] [CrossRef]
- Panosso, A.R.; Marques, J.; Milori, D.M.B.P.; Ferraudo, A.S.; Barbieri, D.M.; Pereira, G.T.; La Scala, N. Soil CO2 emission and its relation to soil properties in sugarcane areas under Slash-and-burn and Green harvest. Soil Tillage Res. 2011, 111, 190–196. [Google Scholar] [CrossRef]
- Morais, M.C.; Siqueira-Neto, M.; Guerra, H.P.; Satiro, L.S.; Soltangheisi, A.; Cerri, C.E.P.; Feigl, B.J.; Cherubin, M.R. Trade-Offs between Sugarcane Straw Removal and Soil Organic Matter in Brazil. Sustainability 2020, 12, 9363. [Google Scholar] [CrossRef]
- Dlamini, N.E.; Zhou, M. Soils and seasons effect on sugarcane ratoon yield. Field Crops Res. 2022, 284, 108588. [Google Scholar] [CrossRef]
- Dietrich, G.; Sauvadet, M.; Recous, S.; Redin, M.; Pfeifer, I.C.; Garlet, C.M.; Bazzo, H.; Giacomini, S.J. Sugarcane mulch C and N dynamics during decomposition under different rates of trash removal. Agric. Ecosyst. Environ. 2017, 243, 123–131. [Google Scholar] [CrossRef]
- Koorneef, G.J.; Pulleman, M.M.; Comans, R.N.J.; van Rijssel, S.Q.; Barré, P.; Baudin, F.; de Goede, R.G.M. Assessing soil functioning: What is the added value of soil organic carbon quality measurements alongside total organic carbon content? Soil Biol. Biochem. 2024, 196, 109507. [Google Scholar] [CrossRef]
- Biratu, G.K.; Elias, E.; Ntawuruhunga, P. Does the application of mineral and organic fertilizer affect cassava tuber quality? An evidence from Zambia. J. Agric. Food Res. 2022, 9, 100339. [Google Scholar] [CrossRef]
- Tröster, M.F.; Pahl, H.; Sauer, J. Effects of application costs on fertilizer application strategy. Comput. Electron. Agric. 2019, 167, 105033. [Google Scholar] [CrossRef]
- Hu, J.; He, J.; Wang, Y.; Wu, Y.; Chen, C.; Ren, Z.; Li, X.; Shi, S.; Du, Y.; He, P. Design and study on lightweight organic fertilizer distributor. Comput. Electron. Agric. 2020, 169, 105149. [Google Scholar] [CrossRef]
- Xu, B.; Cui, Q.; Guo, L.; Hao, L. Design and Parameter Optimization of a Combined Rotor and Lining Plate Crushing Organic Fertilizer Spreader. Agronomy 2024, 14, 1732. [Google Scholar] [CrossRef]
- Wang, Y.-x.; Chen, S.-p.; Zhang, D.-x.; Yang, L.; Cui, T.; Jing, H.-r.; Li, Y.-h. Effects of subsoiling depth, period interval and combined tillage practice on soil properties and yield in the Huang-Huai-Hai Plain, China. J. Integr. Agric. 2020, 19, 1596–1608. [Google Scholar] [CrossRef]
- Kuzucu, M.; Dökmen, F. The Effects of Tillage on Soil Water Content in Dry Areas. Agric. Agric. Sci. Procedia 2015, 4, 126–132. [Google Scholar] [CrossRef]
- Beckett, C.T.S.; Bewsher, S.; Guzzomi, A.L.; Lehane, B.M.; Fourie, A.B.; Riethmuller, G. Evaluation of the dynamic cone penetrometer to detect compaction in ripped soils. Soil Tillage Res. 2018, 175, 150–157. [Google Scholar] [CrossRef]
- Voltr, V.; Menšík, L.; Hlisnikovský, L.; Hruška, M.; Pokorný, E.; Pospíšilová, L. The Soil Organic Matter in Connection with Soil Properties and Soil Inputs. Agronomy 2021, 11, 779. [Google Scholar] [CrossRef]
- Chen, G.; Wang, Q.; Xu, D.; Li, H.; He, J.; Lu, C. Design and experimental research on the counter roll differential speed solid organic fertilizer crusher based on DEM. Comput. Electron. Agric. 2023, 207, 107748. [Google Scholar] [CrossRef]
- Zinkevičienė, R.; Jotautienė, E.; Juostas, A.; Comparetti, A.; Vaiciukevičius, E. Simulation of Granular Organic Fertilizer Application by Centrifugal Spreader. Agronomy 2021, 11, 247. [Google Scholar] [CrossRef]
- Yu, Y.; Arnold, P.C. Theoretical modelling of torque requirements for single screw feeders. Powder Technol. 1997, 93, 151–162. [Google Scholar] [CrossRef]
- Fernandez, J.W.; Cleary, P.W.; McBride, W. Effect of screw design on hopper draw down by a horizontal screw feeder. In Proceedings of the Seventh International Conference on CFD in the Minerals and Process Industries CSIRO, Melbourne, Australia, 9–11 December 2009. [Google Scholar]
- ASABE. Agricultural Machinery Management Data; American Society of Agricultural and Biological Engineers: St. Joseph, MI, USA, 2009. [Google Scholar]
- Schneider, F.; Don, A.; Hennings, I.; Schmittmann, O.; Seidel, S.J. The effect of deep tillage on crop yield—What do we really know? Soil Tillage Res. 2017, 174, 193–204. [Google Scholar] [CrossRef]
- Damanauskas, V.; Velykis, A.; Satkus, A. Efficiency of disc harrow adjustment for stubble tillage quality and fuel consumption. Soil Tillage Res. 2019, 194, 104311. [Google Scholar] [CrossRef]
- Zeng, Z.; Chen, Y.; Zhang, X. Modelling the interaction of a deep tillage tool with heterogeneous soil. Comput. Electron. Agric. 2017, 143, 130–138. [Google Scholar] [CrossRef]
Disk Harrow Size | Subsoiler Type | Gear (MF-4245) | Engine Speed, rpm | Working Speed, m·s−1 | % Slip | Draft Force, kN |
---|---|---|---|---|---|---|
18 inches | Straight | Low3 | 1500 | 0.93 ± 0.03 d | 7.06 ± 1.47 a | 11.80 ± 0.62 a |
1900 | 1.19 ± 0.04 d | 7.87 ± 1.13 a | 12.90 ± 0.82 a | |||
Low4 | 1500 | 1.29 ± 0.04 d | 8.24 ± 0.96 a | 12.95 ± 0.77 a | ||
1900 | 1.64 ± 0.04 d | 8.49 ± 1.39 a | 13.20 ± 0.95 a | |||
Inclined | Low3 | 1500 | 0.95 ± 0.04 c | 8.08 ± 0.88 ab | 11.70 ± 0.60 a | |
1900 | 1.20 ± 0.03 c | 7.92 ± 1.43 ab | 12.75 ± 0.80 a | |||
Low4 | 1500 | 1.22 ± 0.03 c | 8.81 ± 1.39 ab | 12.58 ± 1.01 a | ||
1900 | 1.57 ± 0.05 c | 10.26 ± 1.47 ab | 12.95 ± 1.12 a | |||
Curved | Low3 | 1500 | 0.93 ± 0.02 cd | 6.80 ± 0.60 a | 12.00 ± 0.42 a | |
1900 | 1.24 ± 0.02 cd | 7.95 ± 0.75 a | 13.01 ± 0.59 a | |||
Low4 | 1500 | 1.25 ± 0.04 cd | 8.04 ± 1.54 a | 13.01 ± 0.85 a | ||
1900 | 1.58 ± 0.06 cd | 8.89 ± 1.71 a | 13.31 ± 0.91 a | |||
22 inches | Straight | Low3 | 1500 | 0.92 ± 0.02 bc | 6.67 ± 0.98 ab | 14.70 ± 0.56 bc |
1900 | 1.18 ± 0.04 bc | 8.46 ± 1.04 ab | 14.95 ± 0.95 bc | |||
Low4 | 1500 | 1.19 ± 0.05 bc | 8.69 ± 1.59 ab | 15.03 ± 1.21 bc | ||
1900 | 1.59 ± 0.05 bc | 8.81 ± 1.02 ab | 15.52 ± 1.15 bc | |||
Inclined | Low3 | 1500 | 0.92 ± 0.02 a | 7.74 ± 0.64 b | 14.30 ± 0.98 b | |
1900 | 1.14 ± 0.03 a | 8.91 ± 0.81 b | 14.50 ± 0.82 b | |||
Low4 | 1500 | 1.18 ± 0.04 a | 8.82 ± 0.93 b | 14.55 ± 0.92 b | ||
1900 | 1.51 ± 0.04 a | 10.92 ± 1.33 b | 15.32 ± 1.05 b | |||
Curved | Low3 | 1500 | 0.91 ± 0.03 ab | 7.25 ± 0.95 ab | 15.26 ± 0.80 c | |
1900 | 1.15 ± 0.04 ab | 7.88 ± 1.18 ab | 15.50 ± 1.01 c | |||
Low4 | 1500 | 1.21 ± 0.04 ab | 9.54 ± 0.96 ab | 15.72 ± 1.20 c | ||
1900 | 1.52 ± 0.04 ab | 10.60 ± 1.20 ab | 16.05 ± 1.09 c |
PTO Shaft Speed, rpm | Screw Size, Inches | Mass flow rate, kg·s−1 | Torque, Nm | PTO Power, kW | Specific mass flow rate, kg·kW−1·s−1 |
---|---|---|---|---|---|
300 | 4 | 0.27 ± 0.02 a | 3.67 ± 0.61 a | 0.12 ± 0.02 a | 2.34 ± 0.27 a |
6 | 0.94 ± 0.02 b | 7.03 ± 0.71 b | 0.22 ± 0.02 b | 4.30 ± 0.41 b | |
8 | 2.13 ± 0.02 c | 9.33 ± 0.85 c | 0.29 ± 0.03 c | 7.32 ± 0.72 c | |
360 | 4 | 0.32 ± 0.02 a | 8.33 ± 0.95 a | 0.31 ± 0.04 a | 1.02 ± 0.18 a |
6 | 1.12 ± 0.02 b | 11.87 ± 1.05 b | 0.45 ± 0.04 b | 2.52 ± 0.23 b | |
8 | 2.61 ± 0.02 c | 20.87 ± 1.46 c | 0.79 ± 0.05 c | 3.32 ± 0.23 c | |
420 | 4 | 0.38 ± 0.01 a | 20.00 ± 1.80 a | 0.88 ± 0.08 a | 0.43 ± 0.03 a |
6 | 1.31 ± 0.02 b | 23.90 ± 1.23 b | 1.05 ± 0.05 b | 1.24 ± 0.06 b | |
8 | 2.96 ± 0.02 c | 36.43 ± 1.81 c | 1.60 ± 0.08 c | 1.85 ± 0.09 c | |
480 | 4 | 0.43 ± 0.02 a | 31.37 ± 2.85 a | 1.58 ± 0.14 a | 0.28 ± 0.04 a |
6 | 1.50 ± 0.02 b | 39.13 ± 2.15 b | 1.97 ± 0.11 b | 0.77 ± 0.04 b | |
8 | 3.22 ± 0.02 c | 47.57 ± 1.45 c | 2.39 ± 0.07 c | 1.35 ± 0.04 c | |
540 | 4 | 0.48 ± 0.02 a | 45.67 ± 3.35 a | 2.58 ± 0.19 a | 0.19 ± 0.02 a |
6 | 1.69 ± 0.02 b | 55.20 ± 2.56 b | 3.12 ± 0.14 b | 0.54 ± 0.03 b | |
8 | 3.42 ± 0.02 c | 64.47 ± 1.55 c | 3.65 ± 0.09 c | 0.94 ± 0.02 c |
Description | Unit | Value |
---|---|---|
Field width | m | 54 |
Field length | m | 108 |
Test area | ha | 0.58 |
Sugarcane row distance | m | 1.5 |
Quantity | rows | 36 |
Slip | % | 7.7 |
Working speed | m·s−1 (km·hr−1) | 1.25 (4.50) |
Tillage depth | cm | 25 |
Fuel consumption | L·ha−1 | 13.1 |
Returning time | s | 795 |
Working time | s | 2350 |
Theoretical field capacity | ha·hr−1 | 1.35 |
Actual field capacity | ha·hr−1 | 0.89 |
Field efficiency | % | 66.17 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abdullakasim, W.; Khongman, K.; Sukcharoenvipharat, W.; Usaborisut, P. Development and Performance Testing of a Combined Cultivating Implement and Organic Fertilizer Applicator for Sugarcane Ratooning. AgriEngineering 2025, 7, 105. https://doi.org/10.3390/agriengineering7040105
Abdullakasim W, Khongman K, Sukcharoenvipharat W, Usaborisut P. Development and Performance Testing of a Combined Cultivating Implement and Organic Fertilizer Applicator for Sugarcane Ratooning. AgriEngineering. 2025; 7(4):105. https://doi.org/10.3390/agriengineering7040105
Chicago/Turabian StyleAbdullakasim, Wanrat, Kawee Khongman, Watcharachan Sukcharoenvipharat, and Prathuang Usaborisut. 2025. "Development and Performance Testing of a Combined Cultivating Implement and Organic Fertilizer Applicator for Sugarcane Ratooning" AgriEngineering 7, no. 4: 105. https://doi.org/10.3390/agriengineering7040105
APA StyleAbdullakasim, W., Khongman, K., Sukcharoenvipharat, W., & Usaborisut, P. (2025). Development and Performance Testing of a Combined Cultivating Implement and Organic Fertilizer Applicator for Sugarcane Ratooning. AgriEngineering, 7(4), 105. https://doi.org/10.3390/agriengineering7040105