Energy, Environmental and Economic Analysis of Broiler Production Systems with and Without Photovoltaic Systems
Abstract
1. Introduction
2. Materials and Methods
2.1. Characterization of the Object of Study
2.2. Assessment of Environmental Impacts Using the LCA Approach
2.2.1. Defining Goal and Scope
2.2.2. Life Cycle Inventory Analysis (LCI)
2.2.3. Life Cycle Impact Assessment (LCIA)
2.2.4. Life Cycle Interpretation
2.2.5. Uncertainty Analysis
2.3. Assessment of Economic Costs and Energy Use
2.3.1. Energy Usage Analysis
2.3.2. Economic Assessment
3. Results and Discussion
3.1. Assessment of Environmental Impacts
3.2. Energy Usage Assessment
3.3. Economic Assessment
3.4. Uncertainty Analysis
4. Conclusions
- Production systems with photovoltaic systems have the potential to reduce CO2-eq emissions by 2.58 t (positive pressure systems) to 4.96 t (negative pressure systems) annually, while also achieving better energy efficiency indices.
- No significant differences were observed between positive and negative pressure systems, with or without photovoltaic systems, across the environmental impact categories assessed, given the Brazilian electricity grid’s high share of renewable sources.
- All scenarios analyzed demonstrated economic viability, with negative-pressure systems standing out for their best cost–benefit ratio.
- Feed production represented a significant portion of global warming potential (approximately 82%) and total energy demand, indicating the need for specific strategies for this phase.
- The highest costs were for coffee husks for chicken bedding (36.5%), facility maintenance (23.1%), and firewood for heating chicks (12.4%).
- The incorporation of photovoltaic systems reduces electricity costs by 19.4% to 26.5% per year, promoting not only savings but also greater energy sustainability.
- The most sustainable system, both environmentally and economically, was the negative-pressure system with photovoltaic generation, while the least sustainable was the positive-pressure system without photovoltaic generation.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- ABPA (Associação Brasileira de Proteína Animal). Relatório Anual. 2023. Available online: https://abpa-br.org/abpa-relatorio-anual/ (accessed on 8 September 2025).
- Painel Agropecuário. Painel de Dados da Produção Agropecuária; Secretaria de Estado de Agricultura, Pecuária e Abastecimento de Minas Gerais: Belo Horizonte, Brazil, 2023. Available online: https://www.mg.gov.br/agricultura (accessed on 11 September 2025).
- Nacimento, R.A.; Rojas Moreno, D.A.; Luiz, V.T.; Avelar de Almeida, T.F.; Rezende, V.T.; Bazerla Andreta, J.M.; Ifuki Mendes, C.M.; Giannetti, B.F.; Gameiro, A.H. Sustainability assessment of commercial Brazilian organic and conventional broiler production systems under an Emergy analysis perspective. J. Clean. Prod. 2022, 359, 132050. [Google Scholar] [CrossRef]
- Rostagno, H.S.; Albino, L.; Donzele, J.L.; Gomes, P.C.; De Oliveira, R.F.; Lopes, D.C.; Ferreira, A.S.; de Toledo Barreto, S.L.; Euclides, R. Tabelas Brasileiras para Suínos e Aves: Composição de Alimentos e Exigências Nutricionais (HS Rostagno), 3rd ed.; UFV: Viçosa, Brazil, 2011. [Google Scholar]
- Mottet, A.; Tempio, G. Global poultry production: Current state and future outlook and challenges. World’s Poult. Sci. J. 2017, 73, 245–256. [Google Scholar] [CrossRef]
- Alves, E.C.; dos Santos Alves, I.H.; Soares, B.B.; Borges, A.F.; Jalal, A.; Jani, A.D.; Abreu-Junior, C.H.; Capra, G.F.; Rodrigues Nogueira, T.A. Resource recovery of biological residues from the Brazilian poultry industry in mitigating environmental impacts: A life cycle assessment (LCA) approach. J. Clean. Prod. 2023, 416, 137895. [Google Scholar] [CrossRef]
- Costantini, M.; Ferrante, V.; Guarino, M.; Bacenetti, J. Environmental sustainability assessment of poultry productions through life cycle approaches: A critical review. Trends Food Sci. Technol. 2021, 110, 201–212. [Google Scholar] [CrossRef]
- Skunca, D.; Tomasevic, I.; Nastasijevic, I.; Tomovic, V.; Djekic, I. Life cycle assessment of the chicken meat chain. J. Clean. Prod. 2018, 184, 440–450. [Google Scholar] [CrossRef]
- Bamber, N.; Jones, M.; Nelson, L.; Hannam, K.; Nichol, C.; Pelletier, N. Life cycle assessment of mulch use on Okanagan apple orchards: Part 1—Attributional. J. Clean. Prod. 2020, 267, 121960. [Google Scholar] [CrossRef]
- Khanali, M.; Kokei, D.; Aghbashlo, M.; Nasab, F.K.; Hosseinzadeh-Bandbafha, H.; Tabatabaei, M. Energy flow modeling and life cycle assessment of apple juice production: Recommendations for renewable energies implementation and climate change mitigation. J. Clean. Prod. 2020, 246, 118997. [Google Scholar] [CrossRef]
- Pelletier, N. Environmental performance in the US broiler poultry sector: Life cycle energy use and greenhouse gas, ozone depleting, acidifying and eutrophying emissions. Agric. Syst. 2008, 98, 67–73. [Google Scholar] [CrossRef]
- Pishgar-Komleh, S.H.; Akram, A.; Keyhani, A.; van Zelm, R. Life cycle energy use, costs, and greenhouse gas emission of broiler farms in different production systems in Iran—A case study of Alborz province. Environ. Sci. Pollut. Res. 2017, 24, 16041–16049. [Google Scholar] [CrossRef] [PubMed]
- da Silva Lima, D.; de Alencar Nääs, I.; Garcia, R.G.; Jorge de Moura, D. Environmental impact of Brazilian broiler production process: Evaluation using life cycle assessment. J. Clean. Prod. 2019, 237, 117752. [Google Scholar] [CrossRef]
- Martinelli, G.; Vogel, E.; Decian, M.; Farinha, M.J.U.S.; Bernardo, L.V.M.; Borges, J.A.R.; Gimenes, R.M.T.; Garcia, R.G.; Ruviaro, C.F. Assessing the eco-efficiency of different poultry production systems: An approach using life cycle assessment and economic value added. Sustain. Prod. Consum. 2020, 24, 181–193. [Google Scholar] [CrossRef]
- Rocchi, L.; Paolotti, L.; Rosati, A.; Boggia, A.; Castellini, C. Assessing the sustainability of different poultry production systems: A multicriteria approach. J. Clean. Prod. 2019, 211, 103–114. [Google Scholar] [CrossRef]
- Li, Y.; Arulnathan, V.; Heidari, M.D.; Pelletier, N. Design considerations for net zero energy buildings for intensive, confined poultry production: A review of current insights, knowledge gaps, and future directions. In Renewable and Sustainable Energy Reviews; Elsevier Ltd.: Amsterdam, The Netherlands, 2022; Volume 154. [Google Scholar] [CrossRef]
- Presidência da República. Lei nº 14.300, de 06 de Janeiro de 2022. In Institui o Marco Legal da Microgeração e Minigeração Distribuída, o Sistema de Compensação de Energia Elétrica (SCEE) e o Programa de Energia Renovável Social (PERS); Presidência da República: Brasília, Brazil, 2022. Available online: http://www.planalto.gov.br/ccivil_03/_ato2019-2022/2022/lei/L14300.htm (accessed on 11 September 2025).
- ISO 14040; Environmental Management e Life Cycle Assessment e Principles and Framework. ISO (International Standards Organization): Geneva, Switzerland, 2009.
- ISO 14044; Environmental Management e Life Cycle Assessment e Requirements and Guidelines. ISO (International Standards Organization): Geneva, Switzerland, 2009.
- Abranches Felix Cardoso Junior, R.; Schwertner Hoffmann, A.; de Barbosa, L.O.; de Azevedo Pires Soares Coutinho, R. A Geração Distribuída E A Redução De Carbono Na Matriz Elétrica Brasileira. Rev. Int. Ciências 2021, 11, 42–60. [Google Scholar] [CrossRef]
- Mendes, N.C. Métodos e Modelos de Caracterização para Avaliação de Impacto do Ciclo de vida: Análise e Subsídios para a Aplicação no Brasil. Master’s Thesis, Universidade de São Paulo, São Carlos, Brazil, 2013. [Google Scholar] [CrossRef]
- Leinonen, I.; Williams, A.G.; Wiseman, J.; Guy, J.; Kyriazakis, I. Predicting the environmental impacts of chicken systems in the United Kingdom through a life cycle assessment: Broiler production systems. Poult. Sci. 2012, 91, 8–25. [Google Scholar] [CrossRef]
- Beal, C.M.; Robinson, D.M.; Smith, J.; Gerber Van Doren, L.; Tabler, G.T.; Rochell, S.J.; Kidd, M.T.; Bottje, W.G.; Lei, X. Economic and environmental assessment of U.S. broiler production: Opportunities to improve sustainability. Poult. Sci. 2023, 102, 102887. [Google Scholar] [CrossRef]
- Sleeswijk, A.W.; van Oers, L.F.; Guinée, J.B.; Struijs, J.; Huijbregts, M.A. Normalisation in product life cycle assessment: An LCA of the global and European economic systems in the year 2000. Sci. Total Environ. 2008, 390, 227–240. [Google Scholar] [CrossRef]
- Guinée, J.B.; Gorrée, M.; Heijungs, R.; Huppes, G.; Kleijn, R.; de Koning, A.; van Oers, L.; Wegener Sleeswijk, A.; Suh, S.; Udo de Haes, H.A.; et al. Handbook on life Cycle Assessment. Operational Guide to the ISO Standards; I: LCA in perspective. IIa: Guide. IIb: Operational annex. III: Scientific background; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2002; p. 692. ISBN 1-4020-0228-9. [Google Scholar]
- Mostert, P.F.; Bos, A.P.; van Harn, J.; de Jong, I.C. The impact of changing towards higher welfare broiler production systems on greenhouse gas emissions: A Dutch case study using life cycle assessment. Poult. Sci. 2022, 101, 102151. [Google Scholar] [CrossRef]
- Usva, K.; Hietala, S.; Nousiainen, J.; Vorne, V.; Vieraankivi, M.L.; Jallinoja, M.; Leinonen, I. Environmental life cycle assessment of Finnish broiler chicken production—Focus on climate change and water scarcity impacts. J. Clean. Prod. 2023, 410, 137097. [Google Scholar] [CrossRef]
- Cheng, Z.; Jia, Y.; Bai, Y.; Zhang, T.; Ren, K.; Zhou, X.; Zhai, Y.; Shen, X.; Hong, J. Intensifying the environmental performance of chicken meat production in China: From perspective of life cycle assessment. J. Clean. Prod. 2023, 384, 35603. [Google Scholar] [CrossRef]
- PRé. Introduction to LCA with SimaPro. 2016. Available online: https://pre-sustainability.com/files/2014/05/SimaPro8IntroductionToLCA.pdf (accessed on 11 September 2025).
- PRé. SimaPro Database Manual. 2023. Available online: https://simapro.com/wp-content/uploads/2023/04/DatabaseManualMethods.pdf (accessed on 11 September 2025).
- Baiochi, A.G.; da Silva, V.G. Análise de incerteza de parâmetros com base em processos críticos em avaliação do ciclo de vida de edificações. PARC Pesqui. Arquitetura Construção 2021, 12, e021027. [Google Scholar] [CrossRef]
- Heidari, M.D.; Omid, M.; Akram, A. Energy efficiency and econometric analysis of broiler production farms. Energy 2011, 36, 6536–6541. [Google Scholar] [CrossRef]
- Elahi, E.; Zhang, Z.; Khalid, Z.; Xu, H. Application of an artificial neural network to optimise energy inputs: An energy- and cost-saving strategy for commercial poultry farms. Energy 2022, 244, 123169. [Google Scholar] [CrossRef]
- Andrade, I.R.A.; Nogueira Furtado, R.; da Silva, R.G.; Fernandes Franco Pompeu, R.C.; Duarte Cândido, M.J. Metodologias para avaliação econômica de sistemas de produção agropecuários. Arch. Zootec. 2018, 67, 610–620. Available online: https://ainfo.cnptia.embrapa.br/digital/bitstream/item/185636/1/CNPC-2018-Metodologias.pdf (accessed on 11 September 2025). [CrossRef]
- Ibrahim, D.; Moustafa, A.; Shahin, S.E.; Sherief, W.R.I.A.; Abdallah, K.; Farag, M.F.M.; Nassan, M.A.; Ibrahim, S.M. Impact of Fermented or Enzymatically Fermented Dried Olive Pomace on Growth, Expression of Digestive Enzyme and Glucose Transporter Genes, Oxidative Stability of Frozen Meat, and Economic Efficiency of Broiler Chickens. Front. Vet. Sci. 2021, 8, 644325. [Google Scholar] [CrossRef]
- Qaid, M.M.; Al-Mufarrej, S.I.; Al-Garadi, M.A.; Al-Haidary, A.A. Effects of Rumex nervosus leaf powder supplementation on carcasses compositions, small intestine dimensions, breasts color quality, economic feasibility in broiler chickens. Poult. Sci. 2023, 102, 102943. [Google Scholar] [CrossRef]
- SENAR. Gestão da Atividade Agropecuária: Custos de Produção. 2024. Available online: https://ead.senar.org.br/curso-whatsapp/gestao-da-atividade-agropecuaria-custos-de-producao (accessed on 11 September 2025).
- ONU. Sobre o Nosso Trabalho para Alcançar os Objetivos de Desenvolvimento Sustentável no Brasil; Organização das Nações Unidas: Brasília, Brazil, 2024; Available online: https://brasil.un.org/pt-br/sdgs (accessed on 11 September 2025).
- Zheng, Z.; Lei, T.; Wang, J.; Wei, Y.; Liu, X.; Yu, F.; Ji, J. Catalytic Cracking of Soybean Oil for Biofuel over γ-Al2O3/CaO Composite Catalyst. J. Braz. Chem. Soc. 2019, 30, 359–370. [Google Scholar] [CrossRef]
- Silva, F.T.M. Valorização da Madeira Eucalyptus sp. via Pirólise: Caracterização e Rendimentos dos Produtos. Ph.D. Thesis, Universidade Federal de Uberlândia, Uberlândia, Brazil, 2019; 152p. [Google Scholar] [CrossRef]
- de Freitas, C.P.M. O Potencial do Resíduo do Café Como Fonte de Geração de Energia. Master’s Thesis, Universidade Federal de Viçosa, Viçosa, Brazil, 2022; 97p. [Google Scholar]
- Teodoro, M.I.T.M. Energia Embutida na Construção de Edificações no Brasil: Contribuições para o Desenvolvimento de Políticas Públicas a Partir de um Estudo de Caso em Mato Grosso do Sul. Ph.D. Thesis, Universidade de São Paulo, São Paulo, Brazil, 2017. [Google Scholar] [CrossRef]
- Pasolini, V.H.; Costa, A.B.S.; Perazzini, M.T.B.; Cipriano, D.F.; Freitas, J.C.C.; Perazzini, H.; Sousa, R.C. Valorization of pure poultry manure for biomass applications: Drying and energy potential characteristics. Renew. Energy 2024, 220, 119609. [Google Scholar] [CrossRef]
- Sordi, C.; De Tavernari, F.C.; Surek, D.; Ribeiro Júnior, V. Características Físicas de Rações Para Frangos de Corte Contendo Glicerina Bruta. In Jornada de Iniciação Científica (Jinc) 10, Concórdia; Anais; Embrapa: Brasília, Brazil, 2016; pp. 127–128. [Google Scholar]
- EPE. Plano Nacional de Energia 2050; Ministério de Minas e Energia: Brasília, Brazil, 2020. Available online: https://www.epe.gov.br/pt/publicacoes-dados-abertos/publicacoes/Plano-Nacional-de-Energia-2050 (accessed on 11 September 2025).
- Presidência da República. Lei nº 11.326, de 24 de Julho de 2006. Estabelece as Diretrizes para a Formulação da Política Nacional da Agricultura Familiar e Empreendimentos Familiares Rurais; Presidência da República: Brasília, Brazil, 2006. Available online: https://www.planalto.gov.br/ccivil_03/_ato2004-2006/2006/lei/l11326.htm (accessed on 11 September 2025).
- Karlsson, L.; Röös, L.; Röös, E. What is a better chicken? Exploring trade-offs between animal welfare and greenhouse gas emissions in higher-welfare broiler systems. Sustain. Prod. Consum. 2025, 55, 203–216. [Google Scholar] [CrossRef]
- Bigiotti, S.; Costantino, C.; Patriarca, A.; Mancini, G.; Provolo, G.; Recanatesi, F.; Ripa, M.N.; Marucci, A. Energy Efficiency and Environmental Sustainability in Rural Buildings: A Life Cycle Assessment of Photovoltaic Integration in Poultry Tunnels—A Case Study in Central Italy. Appl. Sci. 2025, 15, 5094. [Google Scholar] [CrossRef]
- Kang, H.Y.; Hwang, Y.W.; Lee, J.H.; Cho, S.J.; Jeon, Y.S.; Kim, N.S.; Kim, J. Evaluating the greenhouse gas emissions footprint of chicken meat production in South Korea: A life cycle perspective. Food Bioprod. Process. 2025, 150, 230–239. [Google Scholar] [CrossRef]




| Inputs | Unit | Study Scenarios | |||
|---|---|---|---|---|---|
| PP-SFV | PP-CFV | PN-SFV | PN-CFV | ||
| Subsystem: Feed production | |||||
| Use of water and energy | |||||
| Electric energy—distributor (*) | kWh | 0.05729 | 0.03595 | ||
| Diesel | kg | 0.00027 | 0.00017 | ||
| Water use | L | 0.25461 | 0.15976 | ||
| Feed ingredients (elemental average composition between phases) | |||||
| Corn | kg | 0.98397 | 0.91570 | ||
| Soybean meal | kg | 0.03135 | 0.02917 | ||
| Dicalcium phosphate | kg | 0.60745 | 0.56530 | ||
| Soy oil | kg | 0.07785 | 0.07245 | ||
| Limestone | kg | 0.02107 | 0.01961 | ||
| Choline Chloride (70%) | kg | 0.00853 | 0.00794 | ||
| L-Lysine HCL | kg | 0.00244 | 0.00227 | ||
| Premix vitamins | kg | 0.00348 | 0.00324 | ||
| DL-methionine | kg | 0.00087 | 0.00081 | ||
| Sodium chloride | kg | 0.00192 | 0.00178 | ||
| Premix minerals | kg | 0.00139 | 0.00130 | ||
| Avilamycin | kg | 0.00017 | 0.00016 | ||
| Monensin | kg | 0.00104 | 0.00097 | ||
| Subsystem: Chicken Production | |||||
| Area, chicks, and bird nutrition | |||||
| Day-old chicks | kg | 0.01402 | 0.01351 | ||
| Shed area | m2 | 0.00470 | 0.00381 | ||
| Chicken feed | kg | 1.74155 | 1.62070 | ||
| Energy (Electricity, Biomass, and Fuels) | |||||
| Electric energy—distributor (*) | kWh | 0.05719 | 0.00176 | 0.07066 | 0.00110 |
| Diesel | kg | 0.00093 | 0.00174 | ||
| Gasoline | kg | 0.00039 | 0.00024 | ||
| Natural gas | kg | 0.00023 | 0.00029 | ||
| Firewood for heating (Eucalyptus urograndis) | kg | 0.00035 | 0.00033 | ||
| Water | |||||
| Water—Cooling | L | 0.00000 | 1.09166 | ||
| Water—Nebulizer | L | 1.11782 | 1.09166 | ||
| Water—Drinking Fountain | L | 1.49043 | 3.63885 | ||
| Road transport by trucks | |||||
| Transport—Feed | t/km | 5.82 × 10−7 | 3.79 × 10−7 | ||
| Transport—Day-old chicks | t/km | 2.80 × 10−9 | 2.70 × 10−9 | ||
| Transport—Chicken for slaughter | t/km | 4.53 × 10−7 | 3.09 × 10−7 | ||
| Batch start preparation | |||||
| Coffee husk—chicken litter | kg | 0.13948 | 0.11935 | ||
| Semi-kraft paper—day-old chicks | kg | 0.00053 | 0.00033 | ||
| Coefficient | Unit | Production System | |
|---|---|---|---|
| Pressure Positive | Pressure Negative | ||
| Shed area | m2 | 1.605 | 2.074 |
| Lots per year | Number of batches/year | 6 | 6 |
| Average age of slaughter | days | 46 | 46 |
| Average interval between batches | days | 14 | 14 |
| Chickens produced per batch | heads/lot | 17.867 | 27.808 |
| Chickens produced per year | heads/year | 107.203 | 166.848 |
| Density | heads/m2 | 11.13 | 13.41 |
| Average final weight | kg/head | 3.187 | 3.108 |
| Feed consumption | kg/head | 5.550 | 5.289 |
| Average amount paid | USD/head | 0.2010 | 0.2241 |
| Mortality | %/batch | 5.97 | 4.76 |
| Food conversion | kg feed/kg chicken | 1.76 | 1.69 |
| Unit | Production System | |||
|---|---|---|---|---|
| grams/ head | Positive Pressure | Negative Pressure | ||
| Males | Females | Males | Females | |
| 72.06 | 63.43 | 72.05 | 64.36 | |
| Impact Category | Unit | Study Scenarios | |||
|---|---|---|---|---|---|
| PP-SFV | PP-CFV | PN-SFV | PN-CFV | ||
| Acidification Potential (AP) | kg SO2-eq | 1.78 × 10−2 | 1.77 × 10−2 | 1.54 × 10−2 | 1.53 × 10−2 |
| Eutrophication Potential (EP) | kg PO4-eq | 2.29 × 10−2 | 2.29 × 10−2 | 1.98 × 10−2 | 1.98 × 10−2 |
| Global Warming Potential (GWP) | kg CO2-eq | 2.921 | 2.913 | 2.530 | 2.520 |
| Energy Values per Scenario (MJ·Year−1) | ||||||
|---|---|---|---|---|---|---|
| Unit | Energy Coefficient (MJ/Unit) | PP-SFV | PP-CFV | PN-SFV | PN-CFV | |
| A. Inputs | ||||||
| Subsystem: Feed production | ||||||
| Energy usage | ||||||
| Electricity | kWh | 11.21 a | 2.190 × 108 | 2.190 × 108 | 2.190 × 108 | 2.190 × 108 |
| Diesel | L | 47.80 a | 4.370 × 106 | 4.370 × 106 | 4.370 × 106 | 4.370 × 106 |
| Feed ingredients (basic composition) | ||||||
| Corn | kg | 7.24 a | 2.430 × 109 | 2.430 × 109 | 3.610 × 109 | 3.610 × 109 |
| Soybean meal | kg | 10.94 a | 1.170 × 108 | 1.170 × 108 | 1.740 × 108 | 1.740 × 108 |
| Dicalcium phosphate | kg | 10.00 a | 2.080 × 109 | 2.080 × 109 | 3.080 × 109 | 3.080 × 109 |
| Soy oil | kg | 38.60 b | 1.030 × 109 | 1.030 × 109 | 1.520 × 109 | 1.520 × 109 |
| Limestone | m3 | 1.59 a | 1.580 × 104 | 1.580 × 104 | 2.350 × 104 | 2.350 × 104 |
| Choline Chloride (70%) | m3 | 1.59 a | 6.410 × 103 | 6.410 × 103 | 9.510 × 103 | 9.510 × 103 |
| L-Lysine HCL | m3 | 1.59 a | 1.830 × 103 | 1.830 × 103 | 2.720 × 103 | 2.720 × 103 |
| Premix vitamins | m3 | 1.59 a | 2.620 × 103 | 2.620 × 103 | 3.880 × 103 | 3.880 × 103 |
| DL-methionine | m3 | 1.59 a | 6.550 × 102 | 6.550 × 102 | 9.710 × 102 | 9.710 × 102 |
| Sodium chloride | m3 | 1.59 a | 1.440 × 103 | 1.440 × 103 | 2.140 × 103 | 2.140 × 103 |
| Premix minerals | m3 | 1.59 a | 1.050 × 103 | 1.050 × 103 | 1.550 × 103 | 1.550 × 103 |
| Avilaminica | m3 | 1.59 a | 1.310 × 102 | 1.310 × 102 | 1.940 × 102 | 1.940 × 102 |
| Mononsina | m3 | 1.59 a | 7.850 × 102 | 7.850 × 102 | 1.160 × 103 | 1.160 × 103 |
| Subsystem: Chicken Production | ||||||
| Chicks and bird nutrition | ||||||
| Day-old chicks | kg | 10.33 a | 4.950 × 107 | 4.950 × 107 | 7.600 × 107 | 7.600 × 107 |
| Energy (Electricity, Biomass, and Fuels) | ||||||
| Electric energy—distributor (*) | kWh | 11.21 a | 2.190 × 108 | 6.730 × 106 | 4.310 × 108 | 6.730 × 106 |
| Diesel | L | 47.80 a | 1.520 × 107 | 1.520 × 107 | 4.530 × 107 | 4.530 × 107 |
| Gasoline | L | 28.99 c | 3.850 × 106 | 3.850 × 106 | 3.850 × 106 | 3.850 × 106 |
| Natural gas | m3 | 49.50 a | 4.950 × 106 | 4.950 × 106 | 9.900 × 106 | 9.900 × 106 |
| Firewood for heating (Eucalyptus urograndis) | kg | 20.25 d | 2.430 × 106 | 2.430 × 106 | 3.650 × 106 | 3.650 × 106 |
| Preparation for the beginning of the cycle | ||||||
| Coffee husk—bed | kg | 17.55 e | 8.360 × 108 | 8.360 × 108 | 1.140 × 109 | 1.140 × 109 |
| Semi Kraft Paper—One Day Chicks | kg | 37.70 f | 6.790 × 106 | 6.790 × 106 | 6.790 × 106 | 6.790 × 106 |
| Economic and social data | ||||||
| Labor | H | 1.96 a | 1.130 × 107 | 1.130 × 107 | 1.130 × 107 | 1.130 × 107 |
| Total energy input (MJ·Year−1) | 7.029 × 109 | 6.817 × 109 | 1.034 × 1010 | 9.911 × 109 | ||
| B. Outputs | ||||||
| Live chicken | kg | 10.96 a | 3.730 × 109 | 5.660 × 109 | ||
| Chicken litter | kg | 13.37 g | 2.810 × 109 | 4.010 × 109 | ||
| Total energy output (MJ·Year−1) | 6.540 × 109 | 9.670 × 109 | ||||
| Index | Unit | Study Scenarios | |||
|---|---|---|---|---|---|
| PP-SFV | PP-CFV | PN-SFV | PN-CFV | ||
| Energy Efficiency (EE) | - | 0.930 | 0.966 | 0.944 | 0.988 |
| Energy Productivity (PE) | kg·(MJ)−1 | 4.84 × 10−5 | 4.99 × 10−5 | 5.00 × 10−5 | 5.21 × 10−5 |
| Net Energy (EL) | MJ | −4.89 × 108 | −2.77 × 108 | −6.65 × 108 | −2.41 × 108 |
| Study Scenarios | ||||
|---|---|---|---|---|
| PP-SFV | PP-CFV | PN-SFV | PN-CFV | |
| A. Producer cost (USD·Year−1 ) | ||||
| Energy (Electricity, Biomass, and Fuels) | ||||
| Electric energy—distributor (*) | 3779.76 | 116.07 | 7443.26 | 116.07 |
| Diesel | 415.06 | 1189.83 | ||
| Gasoline | 198.21 | 198.21 | ||
| Natural gas | 124.19 | 248.39 | ||
| Firewood for heating (Eucalyptus urograndis) | 1987.10 | 2980.66 | ||
| Preparation for the beginning of the cycle | ||||
| Coffee husk—bed | 6147.60 | 8383.10 | ||
| Semi Kraft Paper—One Day Chicks | 365.13 | 365.13 | ||
| Economic and social data | ||||
| Labor | 12,605.69 | 12,605.69 | ||
| Taxes | ||||
| Charging for the Use of Water Resources | 199.79 | 199.79 | ||
| Environmental Licensing | 201.45 | 201.45 | ||
| Harvesting and selling firewood | 36.49 | 36.49 | ||
| Chainsaw registration | 25.02 | 25.02 | ||
| Other expenses | ||||
| Food—Pick up service | 447.10 | 894.20 | ||
| Telephone and Internet | 99.36 | 670.65 | ||
| Maintenance of equipment, machines, and facilities | 4502.03 | 4452.35 | ||
| Fire extinguishers | 16.56 | 16.56 | ||
| Pest control and cleaning products | 129.42 | 167.43 | ||
| Total producer cost (USD·Year−1) | 31,279.97 | 27,616.28 | 40,078.20 | 32,751.01 |
| B. Recipes | ||||
| Live chicken | 21,548.66 | 37,398.89 | ||
| Chicken litter | 17,387.16 | 24,838.80 | ||
| Total revenue (USD·Year−1) | 38,935.82 | 62,237.69 | ||
| Unit | Study Scenarios | ||||
|---|---|---|---|---|---|
| PP-SFV | PP-CFV | PN-SFV | PN-CFV | ||
| Gross Income | USD year−1 | 38,935.82 | 38,935.82 | 62,237.69 | 62,237.69 |
| Variable costs | |||||
| COE | 30,733.51 | 27,069.82 | 34,397.01 | 27,069.82 | |
| Fixed Costs | |||||
| COT | 33,543.41 | 31,349.34 | 37,206.91 | 31,349.34 | |
| Opportunity cost | 2190.16 | 2190.16 | 2190.16 | 2190.16 | |
| Total Cost | 35,733.57 | 33,539.50 | 39,397.07 | 33,539.50 | |
| Profit | 3202.25 | 5396.32 | 22,840.62 | 28,698.19 | |
| Gross Margin | 8202.31 | 11,866.00 | 27,840.68 | 35,167.87 | |
| Net Margin | 5392.41 | 7586.48 | 25,030.78 | 30,888.35 | |
| Cost–Benefit Ratio | - | 1.09 | 1.16 | 1.58 | 1.86 |
| Study Scenario | Impact Category | Acidification Potential (AP) | Eutrophication Potential (EP) | Global Warming Potential (GWP) |
|---|---|---|---|---|
| Unit | kg SO2-eq | kg PO4-eq | kg CO2-eq | |
| PP-SFV | Average | 1.84 × 10−2 | 2.30 × 10−2 | 2.921 |
| CV(%) | 164.11 | 39.34 | 11.76 | |
| PP-CFV | Average | 1.79 × 10−2 | 2.30 × 10−2 | 2.913 |
| CV (%) | 172.04 | 39.67 | 11.99 | |
| PN-SFV | Average | 1.58 × 10−2 | 1.99 × 10−2 | 2.530 |
| CV (%) | 166.93 | 39.07 | 11.70 | |
| PN-CFV | Average | 1.61 × 10−2 | 1.99 × 10−2 | 2.520 |
| CV (%) | 162.45 | 39.19 | 11.81 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Braga, L.R.; Renato, N.d.S.; Lima, N.D.d.S.; Ruviaro, C.F.; Bamber, N. Energy, Environmental and Economic Analysis of Broiler Production Systems with and Without Photovoltaic Systems. AgriEngineering 2025, 7, 384. https://doi.org/10.3390/agriengineering7110384
Braga LR, Renato NdS, Lima NDdS, Ruviaro CF, Bamber N. Energy, Environmental and Economic Analysis of Broiler Production Systems with and Without Photovoltaic Systems. AgriEngineering. 2025; 7(11):384. https://doi.org/10.3390/agriengineering7110384
Chicago/Turabian StyleBraga, Luan Ribeiro, Natalia dos Santos Renato, Nilsa Duarte da Silva Lima, Clandio Favarini Ruviaro, and Nicole Bamber. 2025. "Energy, Environmental and Economic Analysis of Broiler Production Systems with and Without Photovoltaic Systems" AgriEngineering 7, no. 11: 384. https://doi.org/10.3390/agriengineering7110384
APA StyleBraga, L. R., Renato, N. d. S., Lima, N. D. d. S., Ruviaro, C. F., & Bamber, N. (2025). Energy, Environmental and Economic Analysis of Broiler Production Systems with and Without Photovoltaic Systems. AgriEngineering, 7(11), 384. https://doi.org/10.3390/agriengineering7110384

