Hydrogel Soil Conditioner as an Input for Ornamental Sunflower Production Under Saline Water Irrigation: An Alternative Use for Low-Quality Water
Abstract
1. Introduction
2. Materials and Methods
2.1. Local and Environmental Conditions
2.2. Treatments and Experimental Design
2.3. Substrate and Hydrogel Preparation
2.4. Saline Water Preparation
2.5. Plant Management
2.6. Irrigation
2.7. Fluorescence Parameters
2.8. Gas Exchange Parameters
2.9. Plant Biomass
2.10. Statistical Analyses
3. Results
3.1. Plant Biomass
3.2. Gas Exchange Parameters
3.2.1. Photosynthetic Rate
3.2.2. Stomatal Conductance
3.2.3. Transpiration Rate
3.3. Fluorescence Parameters
3.3.1. Initial Fluorescence
3.3.2. Maximum Fluorescence
3.3.3. Variable Fluorescence
3.4. Maximum Yield of Photosystem II
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tarolli, P.; Luo, J.; Park, E.; Barcaccia, G.; Masin, R. Soil salinization in agriculture: Mitigation and adaptation strategies combining nature-based solutions and bioengineering. iScience 2024, 27, 108830. [Google Scholar] [CrossRef] [PubMed]
- Demo, A.H.; Gemeda, M.K.; Abdo, D.R.; Guluma, T.N.; Adugna, D.B. Impact of soil salinity, sodicity, and irrigation water salinity on crop production and coping mechanism in areas of dryland farming. Agrosyst Geosci Environ. 2025, 8, e70072. [Google Scholar] [CrossRef]
- Zörb, C.; Geilfus, C.M.; Dietz, K.J. Salinity and crop yield. Plant Biol. 2019, 21, 31–38. [Google Scholar] [CrossRef]
- Isayenkov, S.V.; Maathuis, F.J.M. Plant salinity stress: Many unanswered questions remain. Front. Plant Sci. 2019, 10, 80. [Google Scholar] [CrossRef]
- Lessa, C.I.N.; Lacerda, C.F.; Cajazeiras, C.C.A.; Neves, A.L.R.; Lopes, F.B.; Silva, A.O.; Sousa, H.C.; Gheyi, H.R.; Nogueira, R.S.; Lima, S.C.R.V.; et al. Potential of brackish groundwater for different biosaline agriculture systems in the Brazilian semi-arid region. Agriculture 2023, 13, 550. [Google Scholar] [CrossRef]
- Bernardo, S.; Mantovani, E.C.; Silva, D.D.; Soares, A.A. Manual de Irrigação, 9th ed.; UFV: Viçosa, Brazil, 2019; 625p. [Google Scholar]
- Thakur, P.; Shubham, H.W.; Kaushal, S. Soil Conditioners: Refinement of Soil Health for Better Tomorrow. Curr. J. Appl. Sci. Technol. 2023, 42, 1–9. [Google Scholar] [CrossRef]
- Buitrago-Arias, C.; Ganan-Rojo, P.; Torres-Taborda, M.; Perdomo-Villar, L.; Alvarez-Lopez, C.; Jaramillo-Quiceno, N.; Hincapie-Llanos, G.A. Analysis of the Growth of Hydrogel Applications in Agriculture: A Review. Gels 2025, 11, 731. [Google Scholar] [CrossRef]
- Fernández, R.D.R.; Gallo, F.M. Absorción de agua de hidrogel de uso agrícola y su humedecimiento de tres tipos de suelo. Rev. Fac. Cienc. Agrar. 2018, 50, 15–21. [Google Scholar]
- Schmidt, C.J.; Lorenzetti, J.B.; Danilussi, M.T.Y.; Dieter, J.; Schmidt, A.O. Retenção de nitrogênio, fósforo e potássio provenientes de água residuária de suinocultura por hidrogel. Braz. J. Dev. 2020, 6, 2582–2626. [Google Scholar] [CrossRef]
- Wu, Y.; Li, S.; Chen, G. Hydrogels as water and nutrient reservoirs in agricultural soil: A comprehensive review of classification, performance, and economic advantages. Environ Dev. Sustain. 2024, 26, 24653–24685. [Google Scholar] [CrossRef]
- Agbna, G.H.D.; Zaidi, S.J. Hydrogel Performance in Boosting Plant Resilience to Water Stress—A Review. Gels 2025, 11, 276. [Google Scholar] [CrossRef]
- Marques, P.A.A.; Mendonça, F.C.; Marques, T.A.; Silva, L.P.P.; Tiritan, C.S.; Villa e Vila, V.; Mailapalli, D.R. Hydrogel polymer as a sustainable input for mitigating nutrient leaching and promoting plant growth in sugarcane crops. Acta Sci. Agron. 2025, 4, e68642. [Google Scholar] [CrossRef]
- Branco, L.M.C.; Lacerda, C.F.; Marinho, A.B.; Sousa, C.H.C.; Calvet, A.S.F.; Oliveira, E.G. Production of Bambusa vulgaris seedlings from rhizomes under brackish water irrigation. Rev. Bras. Eng. Agric. Ambient 2020, 24, 337–342. [Google Scholar] [CrossRef]
- Batista, M.C.; Nascimento, R.; Maia Júnior, S.O.; Nascimento, E.C.S.; Bezerra, C.V.C.; Lima, R.F. Physiology and production of cherry tomato cultivars in a hydroponic system using brackish water. Rev. Bras. Eng. Agric. Ambient 2021, 25, 219–227. [Google Scholar] [CrossRef]
- Zhu, C.; Huang, M.; Zhai, Y.; Zhang, Z.; Zheng, J.; Liu, Z. Response of gas exchange and chlorophyll fluorescence of maize to alternate irrigation with fresh- and brackish water. Acta Agric. Scand. Sect. B Soil Plant Sci. 2017, 67, 474–484. [Google Scholar] [CrossRef]
- Martins, J.B.; Santos Júnior, J.A.; Leal, L.Y.C.; Paulino, M.K.S.S.; Souza, E.R.; Gheyi, H.R. Fluorescence emission and photochemical yield of parsley under saline waters of different cationic nature. Sci. Hortic. 2020, 273, 109574. [Google Scholar] [CrossRef]
- Kalaji, H.M.; Jajoo, A.; Oukarroum, A.; Brestic, M.; Zivcak, M.; Samborska, I.A.; Cetner, M.D.; Łukasik, I.; Goltsev, V.; Ladle, R.J. Chlorophyll a fluorescence as a tool to monitor physiological status of plants under abiotic stress conditions. Acta Physiol. Plant 2016, 38, 102. [Google Scholar] [CrossRef]
- Willadino, L.; Camara, T.R.; Ribeiro, M.B.; Amaral, D.O.J.A.; Suassuna, F.; Silva, M.V. Mechanisms of tolerance to salinity in banana: Physiological, biochemical, and molecular aspects. Rev. Bras. Frutic. 2017, 39, e-723. [Google Scholar] [CrossRef]
- Cvejić, S.; Ćuk, N.; Babec, B.; Jocić, S.; Miladinović, D. Advances in Breeding, Biotechnology and Molecular Biology in Ornamental Sunflower (Helianthus annuus L.). In Breeding of Ornamental Crops: Annuals and Cut Flowers. Advances in Plant Breeding Strategies; Al-Khayri, J.M., Jain, S.M., Wani, M.A., Eds.; Springer: Cham, Switzerland, 2025; Volume 6. [Google Scholar]
- Hajano, A.A.; Jamali, A.R.; Memon, N.U.N.; Wahocho, N.A.; Kaleri, A.A.; Jamali, S.; Kalhoro, A.; Hajano, G.Q. Response of different nitrogen doses on growth and flowering of ornamental sunflower (Helianthus annuus L.). Int. J. Biol. Biotech. 2025, 22, 699–709. [Google Scholar]
- Chiradza, T.O.; Mutengwa, C.S.; Chiuta, N.E. Response of Sunflower Genotypes to Salinity Stress Under Laboratory Conditions. Stresses 2025, 5, 50. [Google Scholar] [CrossRef]
- Oliveira, M.L.A.; Paz, V.P.S.; Gonçalves, K.S.; Oliveira, G.X.S. Crescimento e produção de girassol ornamental irrigado com diferentes lâminas e diluições de água residuária. Irriga 2017, 22, 204–219. [Google Scholar] [CrossRef]
- Melo, M.R.S.; Dias, N.S.; Medeiros, I.J.N.; Travassos, K.D.; Miranda, N.O.; Gurgel, M.T.; Neto, H.S.L.; Fernandes, C.S. Strategies for applying gray water effluent on ornamental sunflower crops. Environ. Sci. Pollut. Res. 2020, 27, 38537–38544. [Google Scholar] [CrossRef]
- Alvares, C.A.; Stape, J.L.; Sentelhas, P.C.; Gonçalves, J.L.M.; Sparovek, G. Köppen’s climate classification map for Brazil. Meteorol. Z. 2013, 22, 711–728. [Google Scholar] [CrossRef]
- Santos, H.G.; Jacomine, P.K.T.; Anjos, L.H.C.; Oliveira, V.Á.; Lumbreras, J.F.; Coelho, M.R.; Almeida, J.Á.; Araújo Filho, J.C.; Oliveira, J.B.; Cunha, T.J.F. Sistema Brasileiro de Classificação de Solos, 5th ed.; Embrapa Solos: Brasília, Brazil, 2018. [Google Scholar]
- Van Raij, B.; Cantarella, H.; Quaggio, J.A.; Furlani, A.M.C. Boletim Técnico 100; Instituto Agronômico de Campinas: Campinas, Brazil, 1997. [Google Scholar]
- Kiehl, E.J. Manual de Edafologia—Relação Solo-Planta; Ceres: São Paulo, Brazil, 1979; 273p. [Google Scholar]
- Gao, Z.; Yang, D.; Li, C.; Zhang, J.; Wang, Q. A review of lysimeters from the perspective of measurement performance and intelligent development in China. Irrig. Drain. 2025, 74, 276–298. [Google Scholar] [CrossRef]
- Ferreira, D.F. SISVAR: A computer analysis system for fixed effects split plot type designs. Rev. Bras. Biom. 2019, 37, 529–535. [Google Scholar] [CrossRef]
- Cheng, M.; Wang, H.; Fan, J.; Wang, X.; Sun, X.; Yang, L.; Zhang, S.; Xiang, Y.; Zhang, F. Crop yield and water productivity under salty water irrigation: A global meta-analysis. Agric. Water Manag. 2021, 256, 107105. [Google Scholar] [CrossRef]
- Li, D.; Wan, S.; Li, X.; Kang, Y.; Han, X. Effect of water-salt regulation drip irrigation with saline water on tomato quality in an arid region. Agric. Water Manag. 2022, 261, 107347. [Google Scholar] [CrossRef]
- Tessema, N.; Yadeta, D.; Kebede, A.; Ayele, G.T. Soil and Irrigation Water Salinity, and Its Consequences for Agriculture in Ethiopia: A Systematic Review. Agriculture 2023, 13, 109. [Google Scholar] [CrossRef]
- Tefera, B.B.; Bayabil, H.K.; Tong, Z.; Teshome, F.T.; Wenbo, P.; Li, Y.C.; Hailegnaw, N.S.; Gao, B. Using liquefied biomass hydrogel to mitigate salinity in salt-affected soils. Chemosphere 2022, 309, 136480. [Google Scholar] [CrossRef] [PubMed]
- Riseh, R.S.; Ebrahimi-Zarandi, M.; Tamanadar, E.; Moradi Pour, M.; Thakur, V.K. Salinity Stress: Toward Sustainable Plant Strategies and Using Plant Growth-Promoting Rhizobacteria Encapsulation for Reducing It. Sustainability 2021, 13, 12758. [Google Scholar] [CrossRef]
- Ziogas, V.; Tanou, G.; Morianou, G.; Kourgialas, N. Drought and Salinity in Citriculture: Optimal Practices to Alleviate Salinity and Water Stress. Agronomy 2021, 11, 1283. [Google Scholar] [CrossRef]
- Soliman, D.M.; Elkaramany, M.F.; El-sayed, I.M. Using hydrogel polymers to mitigate the negative impact of salinity stress on Calendula officinalis plants. Egypt. J. Chem. 2024, 67, 57–77. [Google Scholar] [CrossRef]
- García-Caparrós, P.; Llanderal, A.; Pestana, M.; Correia, P.J.; Lao, M.T. Tolerance mechanisms of three potted ornamental plants grown under moderate salinity. Sci. Hortic. 2016, 201, 84–91. [Google Scholar] [CrossRef]
- Martins, J.B.; Santos Júnior, J.A.; Silva Júnior, F.J.; Silva, G.F.; Medeiros, S.S. Production of parsley in hydroponic conditions under isosmotic brackish nutrient solutions. Cienc. Agrotec. 2019, 43, e023418. [Google Scholar] [CrossRef]
- Silva Júnior, F.J.; Santos Júnior, J.A.; Dias, N.S.; Gheyi, H.R.; Rivera, R.C.; Silva, G.F.; Fernandes, C.S. Green onion production under strategies of replacement and frequencies of circulation of brackish nutritive solutions. Biosci. J. 2019, 35, 796–805. [Google Scholar] [CrossRef]
- Nejad, F.Y.; Chorom, M.; Javaherin, M. Study on the use of biodegradable fertilizer hydrogels in tomato cultivation affected by soil salinity in greenhouse conditions. Soil Res. 2025, 39, 127–151. [Google Scholar]
- El-Asmar, J.; Jaafar, H.; Bashour, I.; Farran, M.T.; Saoud, I.P. Hydrogel banding improves plant growth, survival, and water use efficiency in two calcareous soils. Clean Soil Air Water 2017, 45, 1700251. [Google Scholar] [CrossRef]
- Bae, Y.H.; Okano, T.; Hsu, R.; Kim, S.W. Thermo-sensitive polymers as on-off switches for drug release. Die Makromol. Chem. 1987, 8, 481–485. [Google Scholar] [CrossRef]
- Costa, M.C.G.; Freire, A.G.; Lourenço, D.V.; Sousa, R.R.; Feitosa, J.P.A.; Mota, J.C.A. Hydrogel composed of potassium acrylate, acrylamide, and mineral as soil conditioner under saline conditions. Sci. Agric. 2022, 79, e20200235. [Google Scholar] [CrossRef]
- Hou, Y.; Ma, S.; Hao, J.; Lin, C.; Zhao, J.; Sui, X. Construction and Ion Transport-Related Applications of the Hydrogel-Based Membrane with 3D Nanochannels. Polymers 2022, 14, 4037. [Google Scholar] [CrossRef]
- Seleiman, M.F.; Al-Suhaibani, N.; Ali, N.; Akmal, M.; Alotaibi, M.; Refay, Y.; Dindaroglu, T.; Abdul-Wajid, H.H.; Battaglia, M.L. Drought Stress Impacts on Plants and Different Approaches to Alleviate Its Adverse Effects. Plants 2021, 10, 259. [Google Scholar] [CrossRef]
- Blatt, M.R.; Jezek, M.; Lew, V.L.; Hills, A. What can mechanistic models tell us about guard cells, photosynthesis, and water use efficiency? Trends Plant Sci. 2022, 27, 166–179. [Google Scholar] [CrossRef]
- Kaur, P.; Agrawal, R.; Pfeffer, F.M.; Williams, R.; Bohidar, H.B. Hydrogels in Agriculture: Prospects and Challenges. J. Polym. Environ. 2023, 31, 3701–3718. [Google Scholar] [CrossRef]
- Nascimento, C.D.V.; Feitosa, J.P.A.; Simmons, R.; Dias, C.T.S.; Nascimento, I.V.; Mota, J.C.A.; Costa, M.C.G. Durability indicatives of hydrogel for agricultural and forestry use in saline conditions. J. Arid. Environ. 2021, 195, 104622. [Google Scholar] [CrossRef]
- Gomes, K.R.; Sousa, G.G.; Lima, F.A.; Viana, T.V.A.; Azevedo, B.M.; Silva, G.L. Irrigação com água salina na cultura do girassol (Helianthus annuus L.) em solo com biofertilizante bovino. Irriga 2015, 20, 680–693. [Google Scholar] [CrossRef]
- Lima, M.J.A.; Ferias, V.D.S.; Costa, D.L.P.; Sampaio, L.S.; Souza, P.J.O.P. Efeito combinado das variáveis meteorológicas sobre a condutância estomática do feijão-caupi. Hortic. Bras. 2016, 34, 547–553. [Google Scholar] [CrossRef]
- Dawes, M.A.; Hagedorn, F.; Handa, I.T.; Streit, K.; Ekblad, A.; Rixen, C.; Korner, C.; Hattenschwiler, S. An alpine treeline in a carbon dioxide-rich world: Synthesis of a nine-year free-air carbon dioxide enrichment study. Oecologia 2013, 171, 623–637. [Google Scholar] [CrossRef]
- Nóbrega, J.S.; Bruno, R.L.A.; Figueiredo, F.R.A.; Silva, T.I.; Fátima, R.T.; Ferreira, J.T.A.; Silva, R.T.S.; Cavalcante, L.F. Growth and fluorescence rates of Mesosphaerum suaveolens (L.) Kuntze under saline stress and salicylic acid doses. Rev. Bras. Ciênc. Agrar. 2020, 15, e7012. [Google Scholar] [CrossRef]
- Ghassemi-Golezani, K.; Lotfi, R. The impact of salicylic acid and silicon on chlorophyll a fluorescence in mung bean under salt stress. Russ. J. Plant Physiol. 2015, 62, 611–616. [Google Scholar] [CrossRef]
- Foyer, C.H. Reactive oxygen species, oxidative signaling and the regulation of photosynthesis. Environ. Exp. Bot. 2018, 154, 134–142. [Google Scholar] [CrossRef] [PubMed]
- González, M.C.; Cejudo, F.J.; Sahrawy, M.; Serrato, A.J. Current Knowledge on Mechanisms Preventing Photosynthesis Redox Imbalance in Plants. Antioxidants 2021, 10, 1789. [Google Scholar] [CrossRef] [PubMed]
- Saha, A.; Sekharan, S.; Manna, U. Superabsorbent hydrogel (SAH) as a soil amendment for drought management: A review. Soil Tillage Res. 2020, 204, 104736. [Google Scholar] [CrossRef]
- Guo, Y.; Guo, R.; Shi, X.; Lian, S.; Zhou, Q.; Chen, Y.; Liu, W.; Li, W. Synthesis of cellulose-based superabsorbent hydrogel with high salt tolerance for soil conditioning. Int. J. Biol. Macromol. 2022, 209, 1169–1178. [Google Scholar] [CrossRef] [PubMed]
- Haque, S.I.; Matsubara, Y.I. Relationship between salt tolerance and free amino acid content in mycorrhized strawberry plants. J. Jpn. Soc. Agric. Technol. Manag. 2018, 25, 43–50. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marques, P.A.A.; Martins, J.B.; Santos Júnior, J.A.; Gomes, T.M.; Coelho, R.D.; Fritsche-Neto, R.; Villa e Vila, V. Hydrogel Soil Conditioner as an Input for Ornamental Sunflower Production Under Saline Water Irrigation: An Alternative Use for Low-Quality Water. AgriEngineering 2025, 7, 344. https://doi.org/10.3390/agriengineering7100344
Marques PAA, Martins JB, Santos Júnior JA, Gomes TM, Coelho RD, Fritsche-Neto R, Villa e Vila V. Hydrogel Soil Conditioner as an Input for Ornamental Sunflower Production Under Saline Water Irrigation: An Alternative Use for Low-Quality Water. AgriEngineering. 2025; 7(10):344. https://doi.org/10.3390/agriengineering7100344
Chicago/Turabian StyleMarques, Patricia Angélica Alves, Juliana Bezerra Martins, José Amilton Santos Júnior, Tamara Maria Gomes, Rubens Duarte Coelho, Roberto Fritsche-Neto, and Vinícius Villa e Vila. 2025. "Hydrogel Soil Conditioner as an Input for Ornamental Sunflower Production Under Saline Water Irrigation: An Alternative Use for Low-Quality Water" AgriEngineering 7, no. 10: 344. https://doi.org/10.3390/agriengineering7100344
APA StyleMarques, P. A. A., Martins, J. B., Santos Júnior, J. A., Gomes, T. M., Coelho, R. D., Fritsche-Neto, R., & Villa e Vila, V. (2025). Hydrogel Soil Conditioner as an Input for Ornamental Sunflower Production Under Saline Water Irrigation: An Alternative Use for Low-Quality Water. AgriEngineering, 7(10), 344. https://doi.org/10.3390/agriengineering7100344