Performance Comparison of Cherry Tomato Ripeness Detection Using Multiple YOLO Models
Abstract
:1. Introduction
2. Related Research
3. Ripeness Classification Algorithm
3.1. YOLO
3.2. Improved YOLO
4. Ripeness Classification Experiment
4.1. Dataset
4.2. Cherry Tomato Ripeness Classification Experiment
4.3. Experimental Setup
5. Experimental Results
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Miao, Z.; Yu, X.; Li, N.; Zhang, Z.; He, C.; Li, Z.; Deng, C.; Sun, T. Efficient tomato harvesting robot based on image processing and deep learning. Precis. Agric. 2023, 24, 254–287. [Google Scholar] [CrossRef]
- Magalhães, S.A.; Castro, L.; Moreira, G.; Dos Santos, F.N.; Cunha, M.; Dias, J.; Moreira, A.P. Evaluating the single-shot multibox detector and YOLO deep learning models for the detection of tomatoes in a greenhouse. Sensors 2021, 21, 3569. [Google Scholar] [CrossRef] [PubMed]
- Mitaritonna, C.; Ragot, L. After Covid-19, will seasonal migrant agricultural workers in Europe be replaced by robots. CEPII Policy Brief 2020, 33, 1–10. [Google Scholar]
- Kim, M.K.; Lim, S.M.; Won, M.C. Seedling area recognition algorithm for autonomous rice planter based on deep learning and image processing. J. Inst. Control Robot. Syst. 2023, 29, 245–251. (In Korean) [Google Scholar] [CrossRef]
- Lim, S.M.; Kim, M.K.; Lee, D.H.; Won, M.C. Vision-based farmland boundary detection algorithm for automation of an agricultural tractor. J. Inst. Control Robot. Syst. 2023, 29, 208–216. (In Korean) [Google Scholar] [CrossRef]
- Lawal, O.M. Development of tomato detection model for robotic platform using deep learning. Multimed. Tools Appl. 2021, 80, 26751–26772. [Google Scholar] [CrossRef]
- Kim, J.E.; Seol, J.H.; Son, H.I. Preliminary experimental results of a deep learning-based intelligent spraying system for pear orchard. J. Inst. Control Robot. Syst. 2020, 26, 23–28. (In Korean) [Google Scholar] [CrossRef]
- Jocher, G. Ultralytics yolov5. 2020. Available online: https://github.com/ultralytics/yolov5 (accessed on 1 November 2024).
- Jocher, G.; Chaurasia, A.; Qiu, J. Ultralytics yolov8. 2023. Available online: https://github.com/ultralytics/ultralytics (accessed on 1 November 2024).
- Li, J.; Qiao, Y.; Liu, S.; Zhang, J.; Yang, Z.; Wang, M. An improved yolov5-based vegetable disease detection method. Comput. Electron. Agric. 2022, 202, 107345. [Google Scholar] [CrossRef]
- Khan, A.; Hassan, T.; Shafay, M.; Fahmy, I.; Werghi, N.; Mudigansalage, S.; Hussain, I. Tomato maturity recognition with convolutional transformers. Sci. Rep. 2023, 13, 22885. [Google Scholar] [CrossRef] [PubMed]
- Vo, H.-T.; Mui, K.C.; Thien, N.N.; Tien, P.P. Automating tomato ripeness classification and counting with YOLOv9. Int. J. Adv. Comput. Sci. Appl. 2024, 15. [Google Scholar] [CrossRef]
- Li, P.; Zheng, J.; Li, P.; Long, H.; Li, M.; Gao, L. Tomato maturity detection and counting model based on MHSAYOLOv8. Sensors 2023, 23, 6701. [Google Scholar] [CrossRef] [PubMed]
- Yang, G.; Wang, J.; Nie, Z.; Yang, H.; Yu, S. A lightweight yolov8 tomato detection algorithm combining feature enhancement and attention. Agronomy 2023, 13, 1824. [Google Scholar] [CrossRef]
- Xiao, B.; Nguyen, M.; Yan, W.Q. Fruit ripeness identification using YOLOv8 model. Multimed. Tools Appl. 2024, 83, 28039–28056. [Google Scholar] [CrossRef]
- Afonso, M.; Fonteijn, H.; Fiorentin, F.S.; Lensink, D.; Mooij, M.; Faber, N.; Polder, G.; Wehrens, R. Tomato fruit detection and counting in greenhouses using deep learning. Front. Plant Sci. 2020, 11, 571299. [Google Scholar] [CrossRef] [PubMed]
- Bresilla, K.; Perulli, G.D.; Boini, A.; Morandi, B.; Corelli Grappadelli, L.; Manfrini, L. Single-shot convolution neural networks for real-time fruit detection within the tree. Front. Plant Sci. 2019, 10, 421226. [Google Scholar] [CrossRef]
- Edan, Y.; Han, S.; Kondo, N. Automation in agriculture. In Springer Handbook of Automation; Springer: New York, NY, USA, 2009; pp. 1095–1128. [Google Scholar]
- Mao, S.; Li, Y.; Ma, Y.; Zhang, B.; Zhou, J.; Wang, K. Automatic cucumber recognition algorithm for harvesting robots in the natural environment using deep learning and multifeature fusion. Comput. Electron. Agric. 2020, 170, 105254. [Google Scholar] [CrossRef]
- Jiang, P.; Ergu, D.; Liu, F.; Cai, Y.; Ma, B. A review of YOLO algorithm developments. Procedia Comput. Sci. 2022, 199, 1066–1073. [Google Scholar] [CrossRef]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar]
Model | Precision | Recall | mAP | Layers | Parameters | GFLOPs |
---|---|---|---|---|---|---|
YOLO-v5s | 0.657 | 0.751 | 0.701 | 157 | 7,015,519 | 15.8 |
YOLO-v9s | 0.679 | 0.755 | 0.738 | 917 | 7,318,368 | 27.6 |
YOLO-v8s | 0.639 | 0.739 | 0.654 | 168 | 11,126,358 | 28.4 |
YOLO-v8m | 0.604 | 0.774 | 0.67 | 218 | 25,840,918 | 78.7 |
YOLO-v8l | 0.626 | 0.729 | 0.671 | 268 | 43,608,150 | 164.8 |
YOLO-v8x | 0.616 | 0.717 | 0.657 | 268 | 68,125,484 | 257.4 |
YOLO-v8s (ResNet50) | 0.668 | 0.784 | 0.721 | 350 | 30,990,102 | 86.7 |
YOLO-v8m (ResNet50) | 0.677 | 0.76 | 0.733 | 378 | 39,229,974 | 111.8 |
YOLO-v8l (ResNet50) | 0.707 | 0.775 | 0.757 | 406 | 49,231,382 | 151.7 |
YOLO-v8x (ResNet50) | 0.718 | 0.768 | 0.745 | 406 | 62,828,886 | 196.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, D.; Ju, C. Performance Comparison of Cherry Tomato Ripeness Detection Using Multiple YOLO Models. AgriEngineering 2025, 7, 8. https://doi.org/10.3390/agriengineering7010008
Yang D, Ju C. Performance Comparison of Cherry Tomato Ripeness Detection Using Multiple YOLO Models. AgriEngineering. 2025; 7(1):8. https://doi.org/10.3390/agriengineering7010008
Chicago/Turabian StyleYang, Dayeon, and Chanyoung Ju. 2025. "Performance Comparison of Cherry Tomato Ripeness Detection Using Multiple YOLO Models" AgriEngineering 7, no. 1: 8. https://doi.org/10.3390/agriengineering7010008
APA StyleYang, D., & Ju, C. (2025). Performance Comparison of Cherry Tomato Ripeness Detection Using Multiple YOLO Models. AgriEngineering, 7(1), 8. https://doi.org/10.3390/agriengineering7010008