Intermittent Flow Control Schemes for Heat Stress Mitigation in Lactating Sows on a Floor Cooling Pad
Abstract
:1. Introduction
- Collect sufficient data to determine top plate temperature average, heat rejection, and coolant effectiveness for the cooling pad under various live animal test conditions;
- Measure thermal and coolant flow for the eight-pipe cooling pad at 2.6 L/min for time-controlled protocols with a 0.5 min on/2.5 min off (3 min total), 0.5 min on/5.5 min off (6 min total), and 0.5 min on/8.5 min off (9 min total) intermittent coolant flows at ambient barn temperatures of 27 °C and 32 °C;
- Measure thermal and coolant flow for the eight-pipe cooling pad at 2.6 L/min for temperature-controlled protocols of 31.0 °C on/29.0 °C off and 29.5 °C on/27.5 °C off intermittent coolant flows at ambient barn temperatures of 27 °C and 32 °C;
- Allow an initial statistical comparison of the measured physiological heat stress indicators of rectal temperature (RT), skin temperature (ST), and respiration rate (RR) between the treatment (c-cooled) sow and the control (u-uncooled) sow using various flow-controlled protocols with the following test propositions:
- Rectal Temperature: H0: RTu ≤ RTc, H1: RTu > RTc
- Skin Temperature: H0: STu ≤ STc, H1: STu > STc
- Respiration Rate: H0: RRu ≤ RRc, H1: RRu > RRc
2. Materials and Methods
2.1. System Design
2.1.1. Cooling Pad Design
2.1.2. Control System Design
2.2. Sensor Calibration
2.3. Sensor Verification
2.4. Experimental Design
2.4.1. Sow Measurements
2.4.2. Schedule of Experimental Protocol
2.4.3. Sow Treatment Assignment
3. Results and Discussion
3.1. Calibration of Sensors
3.2. Verification of Temperature Sensors
- Having post-experiment variance greater than its pre-experiment variance;
- Having post-experiment variance at least two STD above the pre-experiment mean.
3.3. Effect of Ambient Temperature on Heat Stress
3.4. Physiological Metrics
3.5. Cooling Pad Metrics
- For a given effective flowrate, which control scheme developed the greatest heat transfer efficiency and cooling effectiveness;
- For a given cycle time, which flowrate developed the greatest heat transfer efficiency and cooling effectiveness.
4. Conclusions and Future Work
- Temperature threshold control and temporal control schemes outperformed their relative control treatments with no cooling in both rectal temperature and respiration rate;
- Temperature threshold control schemes overall outperformed the temporal control schemes;
- Previous continuous flow studies exhibited greater heat transfer rates, but much lower cooling effectiveness than the intermittent control schemes examined in this study;
- Previous intermittent flow studies outperformed comparable control schemes from this study, but that can be attributed to the lower flowrates during the earlier testing;
- Optimization of the flush frequency will be necessary to assess the trade-offs between heat transfer efficiency and cooling effectiveness.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pang, Z.Z.; Li, B.M.; Zheng, W.C.; Lin, B.Z.; Liu, Z.H. Effects of water-cooled cover on physiological and production parameters of farrowing sows under hot and humid climates. Int. J. Agric. Biol. Eng. 2016, 9, 178–184. [Google Scholar] [CrossRef]
- Black, J.L.; Mullan, B.P.; Lorschy, M.L.; Giles, L.R. Lactation in sow during heat stress. Livest. Prod. Sci. 1993, 35, 153–170. [Google Scholar] [CrossRef]
- Ross, J.W.; Hale, B.J.; Gabler, N.K.; Rhoads, R.P.; Keating, A.F.; Baumgard, L.H. Physiological consequences of heat stress in pigs. Anim. Prod. Sci. 2015, 55, 1381–1390. [Google Scholar] [CrossRef]
- Baumgard, L.H.; Rhoads, R.P. Effects of heat stress on postabsorptive metabolism and energetics. Annu. Rev. Anim. Biosci. 2013, 1, 311–337. [Google Scholar] [CrossRef]
- Pedersen, L.J.; Malmkvist, J.; Kammersgaard, T.; Jorgensen, E. Avoiding hypothemia in neonatal pigs: Effect of duration of floor heating at different room temperatures. J. Anim. Sci. 2013, 91, 425–432. [Google Scholar] [CrossRef]
- Cabezon, F.A.; Schinckel, A.P.; Richert, B.T.; Peralta, W.A.; Gandarillas, M. Development and application of a model of heat production for lactating sows. J. Anim. Sci. 2017, 95, 30. [Google Scholar] [CrossRef]
- Cabezon, F.A.; Schinckel, A.P.; Richert, B.T.; Peralta, W.A.; Gandarillas, M. Application of models to estimate daily heat production of lactating sows. Prof. Anim. Sci. 2017, 33, 357–362. [Google Scholar] [CrossRef]
- Cabezon, F.A.; Schinckel, A.P.; Stewart, K.R.; Richert, B.T.; Gandarillas, M.; Marchant-Forde, J.N.; Johnson, J.S.; Peralta, W.A.; Stwalley, R.M., III. 243 Young Scholar Presentation: Heat stress alleviation in lactating sows by dietary betaine Supplementation and cooling pads. J. Anim. Sci. 2017, 95, 116–117. [Google Scholar] [CrossRef]
- Renaudeau, D.; Collin, A.; Yahav, S.; de Basilio, V.; Gourdine, J.L.; Collier, R.J. Adaptation to hot climate and strategies to alleviate heat stress in livestock production. Animal 2012, 6, 707–728. [Google Scholar] [CrossRef]
- Quinion, N.; Dagorn, J.; Gaudre, D. Variation of piglets’ birth weight and consequences on subsequent performance. Livest. Prod. Sci. 2002, 78, 63–70. [Google Scholar] [CrossRef]
- USDA: Foreign Agricultural Service. Livestock and Poultry: World Markets and Trade; United States Government: Washington, DC, USA, 2019; Available online: https://downloads.usda.librarycornell.edu/usda-esmis/files/73666448x/g445ct12h/ff365k146/Livestock_poultry.pdf (accessed on 24 January 2023).
- Mayorga, E.J.; Renaudeau, D.; Ramirez, B.C.; Ross, J.W.; Baumgard, L.H. Heat stress adaptations in pigs. Anim. Front. 2019, 9, 54–61. [Google Scholar] [CrossRef] [PubMed]
- Renaudeau, D.; Quiniou, N.; Noblet, J. Effects of exposure to high ambient temperature and dietary protein level on performance of multiparous lactating sows. J. Anim. Sci. 2001, 79, 1240–1249. [Google Scholar] [CrossRef] [PubMed]
- Noblet, J.; Quiniou, N. Influence of high ambient temperatures on performance of multiparous lactating sows. J. Anim. Sci. 1999, 77, 2124–2134. [Google Scholar] [CrossRef]
- Johnson, J.S.; Jansen, T.L.; Galvin, M.; Field, T.C.; Graham, J.R.; Stwalley, R.M., III; Schinckel, A.P. Electronically controlled cooling pads can improve litter growth performance and indirect measures of milk production in heat-stressed lactating sows. J. Anim. Sci. 2022, 100, skab371. [Google Scholar] [CrossRef]
- de Oliveira, G.M., Jr.; Ferreira, A.S.; Oliveira, R.F.; Silva, B.A.; de Figueiredo, E.M.; Santos, M. Behaviour and performance of lactating sows housed in different types of farrowing rooms during summer. Livest. Sci. 2011, 141, 194–201. [Google Scholar] [CrossRef]
- Silva, B.A.N.; Oliveira, R.F.M.; Donzele, J.L.; Fernandes, H.C.; Lima, A.L.; Renaudeau, D.; Noblet, J. Effect of floor cooling and dietary amino acids content on performance and behavior of lactating primiparous sows during summer. Livest. Sci. 2009, 120, 20–34. [Google Scholar] [CrossRef]
- Silva, B.A.N.; Olivera, R.F.M.; Donzele, J.L.; Feranandes, H.C.; Abreu, M.L.T.; Noblet, J.; Nunes, C.G.V. Effect of floor cooling on performance of lactating sows during summer. Livest. Sci. 2006, 105, 176–184. [Google Scholar] [CrossRef]
- Murphy, J.P.; Nichols, D.A.; Robbins, F.V. Drip cooling of lactating sows. Appl. Eng. Agric. 1987, 3, 200–202. [Google Scholar] [CrossRef]
- Perin, J.; Gaggini, T.S.; Manica, S.; Magnabosco, D.; Bernardi, M.L.; Wentz, I.; Bortolozzo, F.P. Evaporative snout cooling system on the the performance of lactating sows and their litters in a subtropical region. Cienc. Rural. 2016, 46, 342–347. [Google Scholar] [CrossRef]
- Pang, Z.Z.; Li, B.M.; Xin, H.W.; Yuan, X.Y.; Wang, C.Y. Characterization of an experimental water-cooled cover for sows. Biosyst. Eng. 2010, 105, 439–447. [Google Scholar] [CrossRef]
- van Wagenberg, A.V.; van der Peet-Schwering, C.M.; Binnendijk, G.P.; Claessen, P.P. Effect of floor cooling on farrowing sow and litter performance: Field experiment under Dutch conditions. Trans. ASABE 2006, 49, 1521–1527. [Google Scholar] [CrossRef]
- Bjerg, B.; Brandt, P.; Sorensen, K.; Pedersen, P.; Zhang, G. Review of methods to mitigate heat stress among sows. In Proceedings of the 2019 ASABE Annual International Meeting, Boston, MA, USA, 7–10 July 2019. [Google Scholar] [CrossRef]
- Schinckel, A.P.; Stwalley, R.M., III. Systems and Methods for Cooling an Animal. U.S. Patent 11,219,192, Purdue University Office of Technology Commercialization, 11 January 2022. [Google Scholar]
- Geis, E.; Zumwalt, D.; Carter, J. Sow Cooling Pad; Lafayette, W., Ed.; American Society of Agricultural and Biological Engineers: St. Joseph, MI, USA, 2015; Available online: https://engineering.purdue.edu/ABE/academics/seniorprojects/2015 (accessed on 24 January 2023).
- Cabezon, F.A.; Field, T.C.; Winslow, E.; Schinckel, A.P.; Stwalley, R.M., III. Computerized data acquisition to demonstrate the influence of coil density on hog cooling pad heat transfer and long-term operational sustainability. Int. J. Agric. Sci. 2021, 11, 1–17. [Google Scholar] [CrossRef]
- Cabezon, F.A.; Schinckel, A.P.; Stwalley, C.S.; Stwalley, R.M., III. Heat transfer properties of hog cooling pad. Trans. ASABE 2018, 61, 1693–1703. [Google Scholar] [CrossRef]
- Cabezon, F.A.; Maskal, J.; Schinckel, A.P.; Marchant-Forde, J.N.; Johnson, J.S.; Stwalley, R.M., III. 14 Evaluation of floor cooling on lactating sows under mild and moderate heat stress. J. Anim. Sci. 2018, 96, 7–8. [Google Scholar] [CrossRef]
- Maskal, J.; Cabezon, F.A.; Schinckel, A.P.; Marchant-Forde, J.N.; Johnson, J.S.; Stwalley, R.M., III. 480 Evaluation of floor cooling on lactating sows under moderate heat stress within a day and relationships of measures of heat stress to estimated heat removal rates. J. Anim. Sci. 2018, 96, 257. [Google Scholar] [CrossRef]
- Maskal, J.; Cabezon, F.A.; Schinckel, A.P.; Smith, A.J.; Marchant-Forde, J.N.; Johnson, J.S.; Stwalley, R.M., III. Evaluation of floor cooling on lactating sows under mild and moderate heat stress. Prof. Anim. Sci. 2018, 34, 84–94. [Google Scholar] [CrossRef]
- Parois, S.P.; Cabezon, F.A.; Schinckel, A.P.; Johnson, J.S.; Stwalley, R.M., III; Marchant-Forde, J.N. Effect of floor cooling on behavior and heart rate of late lactation sows under acute heat stress. Front. Vet. Sci. 2018, 5, 223. [Google Scholar] [CrossRef]
- Cabezon, F.A.; Schinckel, A.P.; Stwalley, R.M., III. Thermal capacity of hog-cooling pad. Appl. Eng. Agric. 2017, 33, 891–899. [Google Scholar] [CrossRef]
- Cabezon, F.A.; Schinckel, A.P.; Smith, A.J.; Marchant-Forde, J.N.; Johnson, J.S.; Stwalley, R.M., III. Effect of floor cooling on late lactation sows under acute heat stress. Livest. Sci. 2017, 206, 113–120. [Google Scholar] [CrossRef]
- Cabezon, F.A.; Schinckel, A.P.; Smith, A.J.; Marchant-Forde, J.N.; Johnson, J.S.; Stwalley, R.M., III. Technical Note: Initial evaluation of floor cooling on lactating sows under acute heat stress. Prof. Anim. Sci. 2017, 33, 254–260. [Google Scholar] [CrossRef]
- Smith, A.J.; Cabezon, F.A.; Schinckel, A.P.; Marchant-Forde, J.N.; Johnson, J.S.; Stwalley, R.M., III. 379 Initial evaluation of floor cooling on lactating sows under acute heat stress. J. Anim. Sci. 2017, 95, 183–184. [Google Scholar] [CrossRef]
- Cabezon, F.A.; Field, T.C.; Johnson, J.S.; Schinckel, A.P.; Stwalley, R.M., III. Initial evaluation of sow cooling pad coolant protocols on performance and physiological conditions measured by precision animal data system. Appl. Eng. Agric. 2022, 38, 179–191. [Google Scholar] [CrossRef]
- Field, T.C.; Schinckel, A.P.; Stwalley, R.M., III. Impact of variation in electronic control scheme parameters for hog cooling pads. In Proceedings of the 2020 ASABE Annual International Virtual Meeting, Omaha, NE, USA, 13–15 July 2020. [Google Scholar] [CrossRef]
- Field, T.C.; Burgett, M.I.; Schinckel, A.P.; Stwalley, R.M., III. Electronic control for hog cooling pads. In Proceedings of the 2019 ASABE Annual International Meeting, Boston, MA, USA, 7–10 July 2019. [Google Scholar] [CrossRef]
- Field, T.C.; Schinckel, A.P.; Stwalley, R.M., III. Development of a hog-cooling panel. In Proceedings of the 2018 ASABE Annual International Meeting, Detroit, MI, USA, 29 July–1 August 2018. [Google Scholar] [CrossRef]
- Seidel, D.S.; Field, T.C.; Schinckel, A.P.; Stwalley, C.S.; Stwalley, R.M., III. Effects of temperature probe orientation on the Purdue hog cooling pad data acquisition. Comput. Electron. Agric. 2020, 175, 105609. [Google Scholar] [CrossRef]
Flowrate | 6 Pipe Design | 8 Pipe Design | |||
---|---|---|---|---|---|
Coolant Cycle (On-Off, Min) | Effective Flowrate () | Heat Rejection () | Effectiveness () | Heat Rejection () | Effectiveness () |
1-1 | 1.3 | 187 | 8.3 | 285 | 11.3 |
1-2 | 0.87 | 174 | 11.7 | 240 | 16.0 |
1-3 | 0.65 | 148 | 13.6 | 222 | 18.9 |
Flowrate: 2.6 L/min | Ambient Barn Temperature | ||||||
---|---|---|---|---|---|---|---|
23 °C | 28 °C | 33 °C | |||||
Cycle Time | Effective Flowrate (L/min) | Heat Rejection (W) | Effectiveness (kJ/L) | Heat Rejection (W) | Effectiveness (kJ/L) | Heat Rejection (W) | Effectiveness (kJ/L) |
9 min | 0.14 | 132 | 54.8 | 132 | 54.8 | 133 | 55.2 |
6 min | 0.22 | 168 | 46.5 | 212 | 58.7 | 156 | 43.2 |
3 min | 0.43 | 234 | 32.4 | 438 | 60.6 | 354 | 49 |
2 min | 0.65 | X | X | X | X | 531 | 49 |
Temporal Scheme | CONTROL Never | LOW 9 min OFF | MEDIUM 6 min OFF | HIGH 3 min OFF |
---|---|---|---|---|
(Flush Frequency/ Effective Flowrate) | 0 L/min | 0.21 L/min | 0.31 L/min | 0.57 L/min |
Temperature Threshold Scheme (Threshold Temperature) | None | 28.0 °C | 29.5 °C | 31.0 °C |
Crate Number | Ambient Temperature Calibration | Ice Water Temperature Calibration | Calibration Coefficients | |||
---|---|---|---|---|---|---|
Measured Temp (°C) | Real Temperature (°C) | Measured Temp (°C) | Real Temperature (°C) | Slope (mcorr) | Intercept (bcorr) | |
1 | 20.5 | 21.8 | 0 | −0.8 | 1.10 | −0.78 |
2 | 21.0 | 20.5 | 0 | −1.5 | 1.05 | −1.50 |
3 | 24.0 | 25.5 | 0 | −1.5 | 1.13 | −1.50 |
4 | 23.0 | 23.0 | 0.5 | −0.4 | 1.04 | −0.91 |
5 | 22.5 | 23.0 | −0.5 | 0 | 1.00 | 0.50 |
6 | 23.5 | 23.0 | −0.5 | −0.1 | 0.96 | 0.37 |
7 | 22.0 | 21.7 | −0.5 | −0.1 | 0.97 | 0.37 |
8 | 25.0 | 26.2 | −0.5 | −0.5 | 1.05 | 0.02 |
9 | 21.5 | 22.0 | −0.5 | −0.6 | 1.03 | −0.10 |
10 | 23.5 | 23.0 | −0.5 | −0.6 | 0.98 | −0.12 |
11 | 23.5 | 23.0 | −0.4 | 0 | 0.96 | 0.36 |
12 | 22.0 | 23.0 | −0.5 | 0 | 1.02 | 0.51 |
Crate Number | Measured Flowrate (L/min) | Percent Error (%) |
---|---|---|
1 | 3.94 | −1.5 |
2 | 4.02 | 0.5 |
3 | 4.00 | 0 |
4 | 4.08 | 2.0 |
5 | 3.88 | −3.0 |
6 | 4.00 | 0 |
7 | 3.96 | −1.0 |
8 | 3.92 | −2.0 |
9 | 3.94 | −1.5 |
10 | 3.86 | −3.5 |
11 | 3.88 | −3.0 |
12 | 4.00 | 0 |
Crate Number | Pad Rear | Pad Mid | Outlet | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Pre | Post | Pre | Post | Pre | Post | Pre | Post | Pre | Post | Pre | Post | |
1 | 0.00 | 0.04 | 0.06 | 0.06 | 0.00 | 0.06 | ||||||
2 | 0.04 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | ||||||
3 | 0.00 | 0.31 | 0.05 | 0.14 | 0.00 | 0.06 | 0.00 | 0.00 | 0.00 | 0.02 | 0.00 | 0.03 |
4 | 0.00 | 0.00 | 0.00 | 0.06 | 0.04 | 0.00 | 0.00 | 0.00 | 0.01 | 0.06 | 0.00 | 0.00 |
5 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.05 | ||
6 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | ||
7 | 0.10 | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | ||
8 | 0.00 | 0.00 | 0.04 | 0.00 | 0.00 | 0.00 | 0.00 | 0.06 | 0.00 | 0.00 | 0.01 | 0.00 |
9 | 0.06 | 0.00 | 0.00 | 0.00 | 0.03 | 0.00 | 0.00 | 0.04 | ||||
10 | 0.00 | 0.00 | 0.06 | 0.00 | 0.06 | 0.00 | 0.00 | 0.00 | 0.00 | 0.06 | 0.00 | 0.00 |
11 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.06 | 0.00 | 0.00 | 0.00 | 0.05 |
12 | 0.05 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.04 | 0.00 | 0.01 | 0.00 | 0.00 |
Temperature Threshold Treatment Group | Ambient Temperature | Difference Between Ambient Temperatures | ||||
---|---|---|---|---|---|---|
27 °C | 32 °C | |||||
Heat Transfer (W) | Cooling Effectiveness (kJ/L) | Heat Transfer (W) | Cooling Effectiveness (kJ/L) | Heat Transfer (W/°C) | Cooling Effectiveness (kJ/L/°C) | |
CONTROL | 0 | 0 | 0 | 0 | 0 | 0 |
28.0 °C | 322 | 33.6 | 444 | 35.0 | 24.5 | 0.27 |
29.5 °C | X | X | X | X | X | X |
31.0 °C | 195 | 51.9 | 308 | 36.1 | 22.8 | –3.15 |
Treatment | Average Pad Temperature R2 Value | Heat Transfer Rate R2 Value |
---|---|---|
3 MIN | 75.51% | 60.67% |
6 MIN | 73.59% | 61.93% |
9 MIN | 74.98% | 12.91% |
28.0 °C | 88.97% | 67.09% |
29.5 °C | 77.53% | 41.51% |
31.0 °C | 91.34% | 35.82% |
Treatment | Heat Transfer Efficiency (W) | Cooling Effectiveness (kJ/L) | ||
---|---|---|---|---|
Mean | Std. Err. | Mean | Std. Err. | |
3 MIN | 324 | 0.94 | 60.7 | 0.18 |
6 MIN | 128 | 0.20 | 46.6 | 0.07 |
9 MIN | 84 | 0.26 | 47.0 | 0.14 |
28.0 °C | 348 | 0.05 | 53.2 | 0.01 |
29.5 °C | 383 | 0.09 | 63.9 | 0.02 |
31.0 °C | 268 | 0.61 | 64.7 | 0.15 |
Treatment | Effective Cycle Time (Including 30 s Flush) | Effective Flowrate (L/min) | Heat Transfer Efficiency (W) | Cooling Effectiveness (kJ/L) |
---|---|---|---|---|
3 MIN | 3.5 min | 0.57 | 324 | 60.7 |
6 MIN | 6.5 min | 0.31 | 128 | 46.6 |
9 MIN | 9.5 min | 0.21 | 84 | 47.0 |
28.0 °C | 5.10 min | 0.39 | 348 | 53.2 |
29.5 °C | 5.55 min | 0.36 | 383 | 63.9 |
31.0 °C | 8.07 min | 0.25 | 268 | 64.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Field, T.C.; Schinckel, A.P.; Stwalley, R.M., III. Intermittent Flow Control Schemes for Heat Stress Mitigation in Lactating Sows on a Floor Cooling Pad. AgriEngineering 2024, 6, 3989-4010. https://doi.org/10.3390/agriengineering6040226
Field TC, Schinckel AP, Stwalley RM III. Intermittent Flow Control Schemes for Heat Stress Mitigation in Lactating Sows on a Floor Cooling Pad. AgriEngineering. 2024; 6(4):3989-4010. https://doi.org/10.3390/agriengineering6040226
Chicago/Turabian StyleField, Tyler C., Allan P. Schinckel, and Robert M. Stwalley, III. 2024. "Intermittent Flow Control Schemes for Heat Stress Mitigation in Lactating Sows on a Floor Cooling Pad" AgriEngineering 6, no. 4: 3989-4010. https://doi.org/10.3390/agriengineering6040226
APA StyleField, T. C., Schinckel, A. P., & Stwalley, R. M., III. (2024). Intermittent Flow Control Schemes for Heat Stress Mitigation in Lactating Sows on a Floor Cooling Pad. AgriEngineering, 6(4), 3989-4010. https://doi.org/10.3390/agriengineering6040226