Advances in Sustainable Crop Management: Integrating Precision Agriculture and Proximal Sensing
Abstract
:1. Introduction
2. Role of Precision Agriculture in Sustainable Crop Management
2.1. Map-Based Approach
2.1.1. Satellite Remote Sensing
Crop | Aim | Platform (Spatial Resolution or Distance from the Target) Satellite | Sensor | Reference |
---|---|---|---|---|
Cotton (Gossypium spp.) | Nitrogen VRT fertilization |
| RapidEye MSI: Blue (475 nm), green (555 nm), red (658 nm), red-edge (710 nm) and near-infrared (805 nm) | [36] |
Soil | Variable Rate Irrigation based on soil properties |
| Sentinel-2: B4 (Red): 665 ± 30 nm–B8 (Near-Infrared–NIR): 842 ± 115 nm | [40] |
Winter wheat | Compare RS and PS for site-specific crop management |
| Sentinel-2: B02 (Blue): 490 nm–B03 (Green): 560 nm–B04 (Red): 665 nm–B05 (Red Edge 1): 705 nm–B06 (Red Edge 2): 740 nm–B07 (Red Edge 3): 783 nm–B08 (NIR): 842 nm–B11 (SWIR): 1610 nm); Fritzmeier ISARIA: (660–780 nm) | [42] |
Potato and maize | Map-based site-specific seeding of seed potato production |
| Sentinel-2: (B04 (Red): 665 nm, B08 (NIR): 842 nm). | [43,53,54,55,60] |
Wheat and barley | Develop a model for estimating crop yield |
| Deimos-1: (Red): 630–690 nm–(NIR): 770–900 nm; Landsat 7: (B03 (Red)): 0.63–0.69 µm–(B04 (NIR)): 0.77–0.90 µm; Landsat 8: (B04 (Red)): 0.64–0.67 µm–B05 (NIR)): 0.85–0.88 µm; Sentinel-2 (S2A): (B04 (Red)): 665 nm–B08 (NIR)): 842 nm); Sentinel-2 (S2B): B04 (Red)): 665 nm-B08 (NIR)): 842 nm; | [48] |
Corn and soybean | Compare satellite sensors to assess field yield variability |
| WorldView-3 (WV-3): Coastal Blue: 0.426 µm- Blue: 0.479 µm- Green: 0.552 µm- Yellow: 0.610 µm- Red: 0.662 µm- Red-Edge: 0.726 µm- NIR1: 0.831 µm- NIR2: 0.910 µm; Planet (Dove-Classic Sensors): Blue: 0.485 µm - Green: 0.545 µm- Red: 0.630 µm- NIR: 0.820 µm; Harmonized Landsat Sentinel-2 (HLS): Green: ~0.560 µm- Red: ~0.660 µm- NIR (8A band of Sentinel-2): ~0.865 µm- SWIR: ~1.5 µm and ~2.2 µm. | [44] |
(Triticum aestivum L., cv. PRR58) | Compare different nitrogen VRT fertilization |
| Sentinel-2 (S2A): (B04 (Red)): 665 nm–B08 (NIR)): 842 nm). | [50] |
Wheat | Disease detection (powdery mildew) |
| SPOT-6 B1: Blue (455–525 nm)- B2 Green (530–590 nm)- B3: Red (625–695 nm)- B4: Near Infrared (NIR) (760–890 nm). | [51] |
Wheat | Growth monitoring (Biomass, moisture and structure) |
| Polarimetric SAR Interferometry (Pol-InSAR): L-, C- and X-Bands | [56] |
Wheat | Disease detection pathogens powdery mildew (Blumeria graminis) and leaf rust (Puccinia recondita). |
| QuickBird Satellite: Blue: 450–520 nm–Green: 520–600 nm–Red: 630–690 nm–Near-Infrared (NIR): 760–900 nm; HyMap Airborne: 126 bands (450 nm-2480 nm); ASD FieldSpec Pro (350–2500 nm). | [57] |
Pigeonpea (Cajanus cajan) plants | Disease detection (Fusarium wilt) |
| Red-Edge (690–740 nm), Short Wave Infra-Red (SWIR) (1510–1680 nm), and Green (530–570 nm) | [59] |
Onion | Comparing data acquired by fixed-wing UAV satellite to crop monitoring. |
| UAV: Parrot Sequoia MS (Green (530–570 nm), Red (640–680 nm), Red Edge (730–740 nm), and NIR (770–810 nm); Sentinel-2: Blue 426–558 (width 66)–Green 523–595 (width 36-) Red 633–695 (width 31)–NIR 726–938 (width 106); PlanrtScope: Blue 464–517 (width 26.5)–Green 547–585 (width 19)–Red 650–682 (width 16)–NIR 846–888 (width 21) | [58] |
2.1.2. Unmanned Aerial Vehicles
2.2. Sensor-Based Approach
Objective | Experimental Condition | Crop (s) | Stress Evaluated | Sensors | Reference | |
---|---|---|---|---|---|---|
Type | Specifications | |||||
Develop a modular robot system for automatic disease detection. | Controlled greenhouse environment | Vitis vinifera, (cv. Cabernet Sauvignon) | Powdery mildew (Erysiphe necator) | CIR | 3-CCD, R-G-NIR camera (MS4100, DuncanTech, Auburn, CA, USA): Green (540 nm), Red (660 nm), and NIR (800 nm); | [12] |
Develope. A human-robot framework for target detection, involving a remote human operator and a robotic platform equipped with target detection algorithms. | Field | Grapevines | N.S. | RGB | (IDS Inc. (Washington, DC, USA), uEye USB video camera with a Wide VGA [752 × 480] resolution); | [104] |
Develop an image processing based on a variable-rate chemical sprayer assisted with remote monitoring | Field | Coconut plantations | Two-colored coconut leaf beetles (Brontispa longissima) Coconut black-headed caterpillars (Opisina arenosella) Coconut rhinoceros beetles (Oryctes rhinoceros) | RGB | (IDS Inc., uEye USB video camera with a Wide VGA [752 × 480] resolution); | [105] |
Develop a variable-rate spraying system for precise application of agrochemicals based on plant disease severity. | Field | Paddy (rice) | White-tip disease caused by Aphelenchoides besseyi Christie. | RGB | Web cameras (Logitech Pro 9000, San Jose, CA, USA); | [106] |
Evaluate a system based on digital image processing for detection of weeds in row crops | Field | Maize (Zea maize L.), Sugar beets (Beta vulgaris L.), and Sunflower (Helianthus annuus L.). | Weed | CIR | RGB imager with an R/NIR filter,(Robert Bosch GmbH).; | [107] |
Evaluate the possibility of using a low-cost imaging system to drive a precision orchard spraying system. | Both laboratory and field test | Olive tree orchard | N.S | RGB | Camera (TSCO, VGA (640 × 480), 30 fps, 10 Megapixels). | [108] |
Develop a low-cost and smart technology for precision weed management. | Field | N.S | Weeds: | RGB | Low-cost web cameras (LOGITECH c920, Newark, CA, USA) 640 × 480 pixels resolution. | [13] |
Develop a smart technology for precision weed management. | Field | Maize, Winter wheat, Winter barley, and Sugar beets | Weeds: Winter Rape:Alopecurus myosuroides, Apera spica-venti, broad-leaves; Maize: Echinochloa crus-galli L., Chenopodium album L., Galinsoga parviflora Cav., Solanum nigrum L.; Winter wheat/barley: Echinochloa crus-galli L., Chenopodium album L., Galinsoga parviflora Cav., Solanum nigrum L.; Suger beets: Chenopodium album, Galium aparine, Alopecurus myosuroides | RGB | Digital bi-spectral cameras (N.S). | [109] |
Develop a site-specific agrochemical application. | Both controlled laboratory conditions and field. | Potato (Solanum tuberosum L.) | Weed (lambsquarters); Simulated disease (early blight) infected plants at a laboratory scale. | RGB | Two types of cameras (Canon PowerShot SX540 HS camera and Logitech C270 HD Webcam). | [14] |
Evaluate the performance accuracy of a modified variable rate granular (MVRG) fertilizer spreader on a tractor. | Field | Wild blueberry (Vaccinium angustifolium Ait.) | Fertilizer application | RGB | Six µEye color cameras (UI-1220SE/C, IDS Imaging Development System Inc., Woburn, MA, USA) | [23] |
Design an automated prototype VR sprayer on the tractor. | Field | Wild blueberries (Vaccinium angustifolium). | Fungicide and fertilizer application. | RGB | Four µEye digital color cameras (UI-1220SE/C, IDS Imaging Development System Inc., Woburn, MA, USA). | [22,102] |
Testing the intelligent orchard pesticide precision sprayer. | Field | Peach and Apricot trees, and grapevines | Pesticide spraying based on leaf Wall Area (LWA) | RGB_Depht | Microsoft’s Kinect | [110] |
Development of Deep Learning-Based Variable Rate Agrochemical Spraying System for Targeted Weeds | Both laboratory and field | Strawberry | Weed: spotted spurge and Shepherd’s purse. | RGB | Two digital cameras with resolutions ranging from 3000 × 2000 to 1500 × 1000 pixels | [111] |
Develop a multi-parametric system for variable rate nitrogen application. | Field | Winter wheat (Triticum aestivum L.) | Nitrogen fertilizers application | MSI N sensor | The Yara N-Sensor ALS 2 (Yara GmbH and Co. KG, based in Dülmen, Germany): (670, 730, 740, and 770 nm). | [103] |
Design and evaluate an on-the-go VR fertilization system for the application of phosphate (P2O5). | Field | Maize | Phosphorus (P) fertilizer | VIS-NIR | A portable, fiber-type, VIS-NIR spectrophotometer (Zeiss Corona 45 visnir 1.7, Germany): (305–1711 nm): (401–1135 nm ± 3.2 nm) and (1135–1663 nm ± 6 nm). | [97] |
Develop a low-cost agricultural robot for spraying fertilizers. | Greenhouse | Rosemary crops | Spraying liquid fertilizers and pesticides. | RGB | The GoPro Hero 5 action video camera. | [112] |
Design an intelligent robot equipped with a wireless control to monitor the nutritional needs of the spinach plant. | Greenhouse | Baby spinach (Spinacia oleracea) | Iron deficiency | RGB | ESP32CAM digital camera with a resolution of 1200 × 1622 pixels. | [25] |
Develop an autonomous robot-driven CSSF and evaluate its agro-economic and environmental feasibility in maize production. | Field | Maize | Site-specific seeding and nitrogen (N) fertilization solution | VIS-NIR | on-line vis-NIRS (Visible and Near-Infrared Spectroscopy) system developed by Mouazen (2006). | [113] |
Develop an online plant health monitoring system to assess overall plant health in real-time. | Field | Maize, Wheat, Soybeans, and Tomatoes. | Pathogens or nutrient deficiencies relevant to the chosen crop would be considered, such as fungal diseases, pest infestations, or nitrogen deficiency. | RGB-NIR | RGB and NIR imaging cameras (N.S). | [114] |
Develop a flexible robotic-based approach with proximal sensing tools (XF-ROVIM) specifically developed to detect X. Fastidiosa on olive orchard | Field | Olive tree ochard | Xylella fastidiosa (X. fastidiosa) infection | CIR; MSI; HyS Imager; Thermal camera | CIR: two digital single-lens reflex (DSLR) modified cameras (EOS 600D, Canon Inc., Tokyo, Japan); MSI: (CMS-V, Silios Technologies, Peynier, France) that can obtain simultaneous images at eight different wavelengths (558, 589, 623, 656, 699, 732, 769, and 801 nm); HyS: (spectrograph Imspector V10, Specim Spectral Imaging Ltd., Oulu, Finland (400 nm–1000 nm) + camera uEye 5220CP, iDS Imaging Development Systems (GmbH, Obersulm, Germany); Thermal camera: (A320, FLIR Systems, Wilsonville, OR, USA). | [115] |
Develop a remote-controlled field robot (RobHortic) for inspecting the presence of pests and diseases in horticultural crops using proximal sensing. | Both laboratory and filed | Carrots | Disease (Candidatus Liberibacter solanacearum). | CIR; MSI; HyS Imager; Thermal camera | MSI: (CMS-V, Silios Technologies, France) (558, 589, 623, 656, 699, 732, 769, and 801 nm,); CIR: three DSLR (Digital Single Lens Reflex) cameras (EOS 600D, Canon Inc, Japan), two modified to capture images in near-infrared (NIR) from 400 to 1000 nm); HyS:(InSpectral-VNIR, Infaimon SL, Spain) (410–1130 nm); Thermal camera: (A320, FLIR systems, Wilsonville, OR, USA). | [116] |
Develop an autonomous machine vision-based system for precise nitrogen fertilizing management to improve nitrogen use efficiency in greenhouse crops. | Greenhouse | Cucumber. | Site-specific fertilizer | RGB | CCD color camera (mod. DF-7107, Sony, Tokyo, Japan) | [117] |
Design, development, and testing of a robot for plant-species–specific weed management | Filed | Cotton, Wild oats, and Sowthistle | Weed | RGB | IDS UI-1240SE 1.3 MP global shutter camera. | [118] |
Develop a prototype of a robotic platform to address the specific needs of this field type at an individual plant level rather than per strip or field section. | Filed | Cabbage and red cabbage | Site-specific fertilizer | MSI and RGB. | MSI: Parrot Sequoia multi-spectral (MS) camera; RGB: Vorsch RGB; | [119] |
Develop a robotic disease detection system in greenhouses | Greenhouse | Bell peppers | Powdery mildew (PM) and Tomato spotted wilt virus (TSWV) | RGB | RGB camera (PowerShot SX210 IS, Canon, USA) 4320 × 3240 pixels resolution. | [120] |
Develop a robotic disease detection system in greenhouses | Greenhouse | Bell peppers | Powdery mildew (PM) and Tomato spotted wilt virus (TSWV) | RGB; MSI | RGB RGB camera (LifeCam NX-6000 WebCam, Microsoft, Redmond, WA, USA) with a resolution of 1600 × 1200 pixels; MSI: NIR-R-G multispectral camera (ADC Lite, 520–920 nm, equivalent to TM2, TM3, and TM4, Tetracam, Chatsworth, CA, USA) with a resolution of 2048 × 1536 pixels, and a single-laser-beam distance sensor (DT35, SICK, Waldkirch, Germany). | [121] |
Develop a robotic platform for single-plant fertilization | Field | Organic vegetable | Single Plant Fertilization | MSI | The multispectral camera (model Sequoia; Parrot Drones SAS, France). | [122] |
Develop a smart irrigation system | Field | Soil | Smart irrigation | RGB | Digital camera (Model Nikon D5300) (6000 × 4000 pixels resolution). | [101] |
Develop a variable rate fertilizer applicator to detect real-time deficiency of N | Field | Wheat | Site-specific fertilizer | VIS-NIR | Greenseeker handheld sensor (Trimble Inc., Sunnyvale, CA, USA) | [123] |
Develop a computer-vision system for detecting crop plants at different growth stages for robotic weed management | Field | Lettuce (Lactuca, L.) and broccoli (Brassica oleracea L. var. botrytis L.). | Weeds: bromegrass (Bromus inermis Leyss), pigweed (Amaranthus spp.), lambsquarters (Chenopodium album), waterhemp (Amaranthus rudis), barnyardgrass (Echinochloa crus-galli), bindweed (Convolvulus arvensis), purslane (Portulaca oleracea), and white clover (Trifolium repens) | RGb-Depth | RGB-D sensor (Kinect version 2; Microsoft) | [124] |
3. Proximal Sensing Techniques for Crop Health Monitoring
3.1. Characterizing the Physiological Response to Stress: The Principles of Optoelectronic Techniques
3.2. Abiotic Crop Stresses
3.3. Biotic Crop Stresses
4. Results and Discussions
5. Conclusions and Future Trends
- The effect of using these technologies, such as UAVs, autonomous robots, and multispectral sensors, offering precise and high-resolution data, allows the farmers to estimate, with a decision based on objective data, the quantity, time, and location of agrochemicals application.
- A gap exists between sensors used for monitoring and those for real-time decision-making. Multi-band sensors are frequently used in monitoring. However, digital sensors like RGB cameras are preferred for real-time applications.
- Despite the multispectral and RGB-modified (CIR) sensors being optimal for close-range monitoring, challenges include image alignment and noise removal and/or reduction, which require better algorithms and image processing techniques.
- Integration with artificial intelligence allows for the development of predictive models and real-time decision-making systems that improve crop management and resource optimization.
- Further research is needed to improve image processing algorithms, enhance sensor calibration techniques, and develop more efficient data management systems.
Author Contributions
Funding
Conflicts of Interest
References
- FAO. The Future of Food and Agriculture and Challenges; Food and Agriculture Organization of the United Nations: Rome, Italy, 2017. [Google Scholar]
- Kirchmann, H.; Thorvaldsson, G. Challenging Targets for Future Agriculture. Eur. J. Agron. 2000, 12, 145–161. [Google Scholar] [CrossRef]
- Qin, Y.; Horvath, A. What Contributes More to Life-Cycle Greenhouse Gas Emissions of Farm Produce: Production, Transportation, Packaging, or Food Loss? Resour. Conserv. Recycl. 2022, 176, 105945. [Google Scholar] [CrossRef]
- FAO. Emissions Due to Agriculture. Global, Regional and Country Trends 2000–2018; Food and Agriculture Organization of the United Nations: Rome, Italy, 2020. [Google Scholar]
- Guo, L.; Zhao, S.; Song, Y.; Tang, M.; Li, H. Green Finance, Chemical Fertilizer Use and Carbon Emissions from Agricultural Production. Agriculture 2022, 12, 313. [Google Scholar] [CrossRef]
- Balafoutis, A.; Beck, B.; Fountas, S.; Vangeyte, J.; Van Der Wal, T.; Soto, I.; Gómez-Barbero, M.; Barnes, A.; Eory, V. Precision Agriculture Technologies Positively Contributing to GHG Emissions Mitigation, Farm Productivity and Economics. Sustainability 2017, 9, 1339. [Google Scholar] [CrossRef]
- Bongiovanni, R.; Lowenberg-Deboer, J. Precision Agriculture and Sustainability. Precis. Agric. 2004, 5, 359–387. [Google Scholar] [CrossRef]
- Moysiadis, V.; Sarigiannidis, P.; Vitsas, V.; Khelifi, A. Smart Farming in Europe. Comput. Sci. Rev. 2021, 39, 100345. [Google Scholar] [CrossRef]
- Kamilaris, A.; Kartakoullis, A.; Prenafeta-Boldú, F.X. A Review on the Practice of Big Data Analysis in Agriculture. Comput. Electron. Agric. 2017, 143, 23–37. [Google Scholar] [CrossRef]
- Gallardo, M.; Elia, A.; Thompson, R.B. Decision Support Systems and Models for Aiding Irrigation and Nutrient Management of Vegetable Crops. Agric. Water Manag. 2020, 240, 106209. [Google Scholar] [CrossRef]
- Campos, J.; Llop, J.; Gallart, M.; García-Ruiz, F.; Gras, A.; Salcedo, R.; Gil, E. Development of Canopy Vigour Maps Using UAV for Site-Specific Management during Vineyard Spraying Process. Precis. Agric. 2019, 20, 1136–1156. [Google Scholar] [CrossRef]
- Oberti, R.; Marchi, M.; Tirelli, P.; Calcante, A.; Iriti, M.; Tona, E.; Hočevar, M.; Baur, J.; Pfaff, J.; Schütz, C.; et al. Selective Spraying of Grapevines for Disease Control Using a Modular Agricultural Robot. Biosyst. Eng. 2016, 146, 203–215. [Google Scholar] [CrossRef]
- Partel, V.; Charan Kakarla, S.; Ampatzidis, Y. Development and Evaluation of a Low-Cost and Smart Technology for Precision Weed Management Utilizing Artificial Intelligence. Comput. Electron. Agric. 2019, 157, 339–350. [Google Scholar] [CrossRef]
- Hussain, N.; Farooque, A.A.; Schumann, A.W.; McKenzie-Gopsill, A.; Esau, T.; Abbas, F.; Acharya, B.; Zaman, Q. Design and Development of a Smart Variable Rate Sprayer Using Deep Learning. Remote Sens. 2020, 12, 4091. [Google Scholar] [CrossRef]
- Linaza, M.T.; Posada, J.; Bund, J.; Eisert, P.; Quartulli, M.; Döllner, J.; Pagani, A.; Olaizola, I.G.; Barriguinha, A.; Moysiadis, T.; et al. Data-Driven Artificial Intelligence Applications for Sustainable Precision Agriculture. Agronomy 2021, 11, 1227. [Google Scholar] [CrossRef]
- Sishodia, R.P.; Ray, R.L.; Singh, S.K. Applications of Remote Sensing in Precision Agriculture: A Review. Remote Sens. 2020, 12, 3136. [Google Scholar] [CrossRef]
- Pallottino, F.; Antonucci, F.; Costa, C.; Bisaglia, C.; Figorilli, S.; Menesatti, P. Optoelectronic Proximal Sensing Vehicle-Mounted Technologies in Precision Agriculture: A Review. Comput. Electron. Agric. 2019, 162, 859–873. [Google Scholar] [CrossRef]
- Gebbers, R.; Adamchuk, V.I. Precision Agriculture and Food Security. Science 2010, 327, 828–831. [Google Scholar] [CrossRef]
- Zhang, N.; Wang, M.; Wang, N. Precision Agriculture—A Worldwide Overview. Comput. Electron. Agric. 2002, 36, 113–132. [Google Scholar] [CrossRef]
- Precision Ag Definition|International Society of Precision Agriculture. Available online: https://ispag.org/about/definition (accessed on 31 July 2024).
- Monteiro, A.; Santos, S.; Gonçalves, P. Precision Agriculture for Crop and Livestock Farming—Brief Review. Animals 2021, 11, 2345. [Google Scholar] [CrossRef]
- Esau, T.; Zaman, Q.; Groulx, D.; Farooque, A.; Schumann, A.; Chang, Y. Machine Vision Smart Sprayer for Spot-Application of Agrochemical in Wild Blueberry Fields. Precis. Agric. 2018, 19, 770–788. [Google Scholar] [CrossRef]
- Chattha, H.S.; Zaman, Q.U.; Chang, Y.K.; Read, S.; Schumann, A.W.; Brewster, G.R.; Farooque, A.A. Variable Rate Spreader for Real-Time Spot-Application of Granular Fertilizer in Wild Blueberry. Comput. Electron. Agric. 2014, 100, 70–78. [Google Scholar] [CrossRef]
- Sun, Y.; Tong, C.; He, S.; Wang, K.; Chen, L. Identification of Nitrogen, Phosphorus, and Potassium Deficiencies Based on Temporal Dynamics of Leaf Morphology and Color. Sustainability 2018, 10, 762. [Google Scholar] [CrossRef]
- Nadafzadeh, M.; Banakar, A.; Abdanan Mehdizadeh, S.; Zare Bavani, M.; Minaei, S.; Hoogenboom, G. Design, Fabrication and Evaluation of a Robot for Plant Nutrient Monitoring in Greenhouse (Case Study: Iron Nutrient in Spinach). Comput. Electron. Agric. 2024, 217, 108579. [Google Scholar] [CrossRef]
- Mahlein, A.K. Plant Disease Detection by Imaging Sensors—Parallels and Specific Demands for Precision Agriculture and Plant Phenotyping. Plant Dis. 2016, 100, 241–254. [Google Scholar] [CrossRef] [PubMed]
- Mahlein, A.K.; Steiner, U.; Hillnhütter, C.; Dehne, H.W.; Oerke, E.C. Hyperspectral Imaging for Small-Scale Analysis of Symptoms Caused by Different Sugar Beet Diseases. Plant Methods 2012, 8, 3. [Google Scholar] [CrossRef]
- Mahlein, A.K.; Rumpf, T.; Welke, P.; Dehne, H.W.; Plümer, L.; Steiner, U.; Oerke, E.C. Development of Spectral Indices for Detecting and Identifying Plant Diseases. Remote Sens. Environ. 2013, 128, 21–30. [Google Scholar] [CrossRef]
- Dandrifosse, S.; Carlier, A.; Dumont, B.; Mercatoris, B. Registration and Fusion of Close-Range Multimodal Wheat Images in Field Conditions. Remote Sens. 2021, 13, 1380. [Google Scholar] [CrossRef]
- Laveglia, S.; Altieri, G. A Method for Multispectral Images Alignment at Different Heights on the Crop. Lect. Notes Civ. Eng. 2024, 458, 401–419. [Google Scholar] [CrossRef]
- Elbasi, E.; Mostafa, N.; AlArnaout, Z.; Zreikat, A.I.; Cina, E.; Varghese, G.; Shdefat, A.; Topcu, A.E.; Abdelbaki, W.; Mathew, S.; et al. Artificial Intelligence Technology in the Agricultural Sector: A Systematic Literature Review. IEEE Access 2023, 11, 171–202. [Google Scholar] [CrossRef]
- Yost, M.A.; Kitchen, N.R.; Sudduth, K.A.; Sadler, E.J.; Drummond, S.T.; Volkmann, M.R. Long-Term Impact of a Precision Agriculture System on Grain Crop Production. Precis. Agric. 2017, 18, 823–842. [Google Scholar] [CrossRef]
- Xue, J.; Su, B. Significant Remote Sensing Vegetation Indices: A Review of Developments and Applications. J. Sens. 2017, 2017, 1353691. [Google Scholar] [CrossRef]
- Al-Gaadi, K.A.; Tola, E.; Alameen, A.A.; Madugundu, R.; Marey, S.A.; Zeyada, A.M.; Edrris, M.K. Control and Monitoring Systems Used in Variable Rate Application of Solid Fertilizers: A Review. J. King Saud Univ. Sci. 2023, 35, 102574. [Google Scholar] [CrossRef]
- Viscarra Rossel, R.A.; McBratney, A.B. Soil Chemical Analytical Accuracy and Costs: Implications from Precision Agriculture. Aust. J. Exp. Agric. 1998, 38, 765–775. [Google Scholar] [CrossRef]
- Leo, S.; De Antoni Migliorati, M.; Nguyen, T.H.; Grace, P.R. Combining Remote Sensing-Derived Management Zones and an Auto-Calibrated Crop Simulation Model to Determine Optimal Nitrogen Fertilizer Rates. Agric. Syst. 2023, 205, 103559. [Google Scholar] [CrossRef]
- Basso, B.; Ritchie, J.T.; Pierce, F.J.; Braga, R.P.; Jones, J.W. Spatial Validation of Crop Models for Precision Agriculture. Agric. Syst. 2001, 68, 97–112. [Google Scholar] [CrossRef]
- Khanal, S.; Fulton, J.; Klopfenstein, A.; Douridas, N.; Shearer, S. Integration of High Resolution Remotely Sensed Data and Machine Learning Techniques for Spatial Prediction of Soil Properties and Corn Yield. Comput. Electron. Agric. 2018, 153, 213–225. [Google Scholar] [CrossRef]
- Toscano, P.; Castrignanò, A.; Di Gennaro, S.F.; Vonella, A.V.; Ventrella, D.; Matese, A. A Precision Agriculture Approach for Durum Wheat Yield Assessment Using Remote Sensing Data and Yield Mapping. Agronomy 2019, 9, 437. [Google Scholar] [CrossRef]
- Serrano, J.; Shahidian, S.; da Silva, J.M.; Paixão, L.; Moral, F.; Carmona-Cabezas, R.; Garcia, S.; Palha, J.; Noéme, J. Mapping Management Zones Based on Soil Apparent Electrical Conductivity and Remote Sensing for Implementation of Variable Rate Irrigation—Case Study of Corn under a Center Pivot. Water 2020, 12, 3427. [Google Scholar] [CrossRef]
- Serrano, L.; Muriel, S.; Martínez-Ortega, M.; San, M.; De La Parte, E.; Serrano, S.L.; Elduayen, M.M.; Martínez-Ortega, J.-F. Spatio-Temporal Semantic Data Model for Precision Agriculture IoT Networks. Agriculture 2023, 13, 360. [Google Scholar] [CrossRef]
- Mezera, J.; Lukas, V.; Horniaček, I.; Smutný, V.; Elbl, J. Comparison of Proximal and Remote Sensing for the Diagnosis of Crop Status in Site-Specific Crop Management. Sensors 2022, 22, 19. [Google Scholar] [CrossRef]
- Munnaf, M.A.; Haesaert, G.; Mouazen, A.M. Map-Based Site-Specific Seeding of Seed Potato Production by Fusion of Proximal and Remote Sensing Data. Soil Tillage Res. 2021, 206, 104801. [Google Scholar] [CrossRef]
- Skakun, S.; Kalecinski, N.I.; Brown, M.G.L.; Johnson, D.M.; Vermote, E.F.; Roger, J.C.; Franch, B. Assessing Within-Field Corn and Soybean Yield Variability from WorldView-3, Planet, Sentinel-2, and Landsat 8 Satellite Imagery. Remote Sens. 2021, 13, 872. [Google Scholar] [CrossRef]
- Paccioretti, P.; Córdoba, M.; Balzarini, M. FastMapping: Software to create field maps and identify management zones in precision agriculture. Comput. Electron. Agric. 2020, 175, 105556. [Google Scholar] [CrossRef]
- Mulla, D.J. Twenty Five Years of Remote Sensing in Precision Agriculture: Key Advances and Remaining Knowledge Gaps. Biosyst. Eng. 2013, 114, 358–371. [Google Scholar] [CrossRef]
- Weiss, M.; Jacob, F.; Duveiller, G. Remote Sensing for Agricultural Applications: A Meta-Review. Remote Sens. Env. 2020, 236, 111402. [Google Scholar] [CrossRef]
- Campoy, J.; Campos, I.; Villodre, J.; Bodas, V.; Osann, A.; Calera, A. Remote Sensing-Based Crop Yield Model at Field and within-Field Scales in Wheat and Barley Crops. Eur. J. Agron. 2023, 143, 126720. [Google Scholar] [CrossRef]
- Marino, S. Understanding the Spatio-Temporal Behavior of Crop Yield, Yield Components and Weed Pressure Using Time Series Sentinel-2-Data in an Organic Farming System. Eur. J. Agron. 2023, 145, 126785. [Google Scholar] [CrossRef]
- Vizzari, M.; Santaga, F.; Benincasa, P. Sentinel 2-Based Nitrogen VRT Fertilization in Wheat: Comparison between Traditional and Simple Precision Practices. Agronomy 2019, 9, 278. [Google Scholar] [CrossRef]
- Yuan, L.; Pu, R.; Zhang, J.; Wang, J.; Yang, H. Using High Spatial Resolution Satellite Imagery for Mapping Powdery Mildew at a Regional Scale. Precis. Agric. 2016, 17, 332–348. [Google Scholar] [CrossRef]
- Khanal, S.; Kushal, K.C.; Fulton, J.P.; Shearer, S.; Ozkan, E. Remote Sensing in Agriculture—Accomplishments, Limitations, and Opportunities. Remote Sens. 2020, 12, 3783. [Google Scholar] [CrossRef]
- Munnaf, M.A.; Haesaert, G.; Van Meirvenne, M.; Mouazen, A.M. Map-Based Site-Specific Seeding of Consumption Potato Production Using High-Resolution Soil and Crop Data Fusion. Comput. Electron. Agric. 2020, 178, 105752. [Google Scholar] [CrossRef]
- Munnaf, M.A.; Haesaert, G.; Van Meirvenne, M.; Mouazen, A.M. Multi-Sensors Data Fusion Approach for Site-Specific Seeding of Consumption and Seed Potato Production. Precis. Agric. 2021, 22, 1890–1917. [Google Scholar] [CrossRef]
- Munnaf, M.A.; Mouazen, A.M. Optimising Site-Specific Potato Seeding Rates for Maximum Yield and Profitability. Biosyst. Eng. 2021, 212, 126–140. [Google Scholar] [CrossRef]
- Pichierri, M.; Hajnsek, I.; Zwieback, S.; Rabus, B. On the Potential of Polarimetric SAR Interferometry to Characterize the Biomass, Moisture and Structure of Agricultural Crops at L-, C- and X-Bands. Remote Sens. Environ. 2018, 204, 596–616. [Google Scholar] [CrossRef]
- Franke, J.; Menz, G. Multi-Temporal Wheat Disease Detection by Multi-Spectral Remote Sensing. Precis. Agric. 2007, 8, 161–172. [Google Scholar] [CrossRef]
- Messina, G.; Peña, J.M.; Vizzari, M.; Modica, G. A Comparison of UAV and Satellites Multispectral Imagery in Monitoring Onion Crop. An Application in the ‘Cipolla Rossa Di Tropea’ (Italy). Remote Sens. 2020, 12, 3424. [Google Scholar] [CrossRef]
- Dutta, A.; Tyagi, R.; Chattopadhyay, A.; Chatterjee, D.; Sarkar, A.; Lall, B.; Sharma, S. Early Detection of Wilt in Cajanus Cajan Using Satellite Hyperspectral Images: Development and Validation of Disease-Specific Spectral Index with Integrated Methodology. Comput. Electron. Agric. 2024, 219, 108784. [Google Scholar] [CrossRef]
- Munnaf, M.A.; Haesaert, G.; Mouazen, A.M. Site-Specific Seeding for Maize Production Using Management Zone Maps Delineated with Multi-Sensors Data Fusion Scheme. Soil Tillage Res. 2022, 220, 105377. [Google Scholar] [CrossRef]
- Osorio, K.; Puerto, A.; Pedraza, C.; Jamaica, D.; Rodríguez, L. A Deep Learning Approach for Weed Detection in Lettuce Crops Using Multispectral Images. AgriEngineering 2020, 2, 471–488. [Google Scholar] [CrossRef]
- Tsouros, D.C.; Bibi, S.; Sarigiannidis, P.G. A Review on UAV-Based Applications for Precision Agriculture. Information 2019, 10, 349. [Google Scholar] [CrossRef]
- Bah, M.D.; Hafiane, A.; Canals, R. Deep Learning with Unsupervised Data Labeling for Weed Detection in Line Crops in UAV Images. Remote Sens. 2018, 10, 1690. [Google Scholar] [CrossRef]
- Pérez-Ortiz, M.; Peña, J.M.; Gutiérrez, P.A.; Torres-Sánchez, J.; Hervás-Martínez, C.; López-Granados, F. A Semi-Supervised System for Weed Mapping in Sunflower Crops Using Unmanned Aerial Vehicles and a Crop Row Detection Method. Appl. Soft. Comput. 2015, 37, 533–544. [Google Scholar] [CrossRef]
- de Castro, A.I.; Torres-Sánchez, J.; Peña, J.M.; Jiménez-Brenes, F.M.; Csillik, O.; López-Granados, F. An Automatic Random Forest-OBIA Algorithm for Early Weed Mapping between and within Crop Rows Using UAV Imagery. Remote Sens. 2018, 10, 285. [Google Scholar] [CrossRef]
- Nevavuori, P.; Narra, N.; Linna, P.; Lipping, T. Crop Yield Prediction Using Multitemporal UAV Data and Spatio-Temporal Deep Learning Models. Remote Sens. 2020, 12, 4000. [Google Scholar] [CrossRef]
- Garcia-Ruiz, F.; Campos, J.; Llop-Casamada, J.; Gil, E. Assessment of Map Based Variable Rate Strategies for Copper Reduction in Hedge Vineyards. Comput. Electron. Agric. 2023, 207, 107753. [Google Scholar] [CrossRef]
- Pranaswi, D.; Jagtap, M.P.; Shinde, G.U.; Khatri, N.; Shetty, S.; Pare, S. Analyzing the Synergistic Impact of UAV-Based Technology and Knapsack Sprayer on Weed Management, Yield-Contributing Traits, and Yield in Wheat (Triticum aestivum L.) for Enhanced Agricultural Operations. Comput. Electron. Agric. 2024, 219, 108796. [Google Scholar] [CrossRef]
- Song, C.; Zhou, Z.; Zang, Y.; Zhao, L.; Yang, W.; Luo, X.; Jiang, R.; Ming, R.; Zang, Y.; Zi, L.; et al. Variable-Rate Control System for UAV-Based Granular Fertilizer Spreader. Comput. Electron. Agric. 2021, 180, 105832. [Google Scholar] [CrossRef]
- Castaldi, F.; Pelosi, F.; Pascucci, S.; Casa, R. Assessing the Potential of Images from Unmanned Aerial Vehicles (UAV) to Support Herbicide Patch Spraying in Maize. Precis. Agric. 2017, 18, 76–94. [Google Scholar] [CrossRef]
- Jiang, J.; Wu, Y.; Liu, Q.; Liu, Y.; Cao, Q.; Tian, Y.; Zhu, Y.; Cao, W.; Liu, X. Developing an Efficiency and Energy-Saving Nitrogen Management Strategy for Winter Wheat Based on the UAV Multispectral Imagery and Machine Learning Algorithm. Precis. Agric. 2023, 24, 2019–2043. [Google Scholar] [CrossRef]
- Fu, Z.; Zhang, J.; Jiang, J.; Zhang, Z.; Cao, Q.; Tian, Y.; Zhu, Y.; Cao, W.; Liu, X. Using the Time Series Nitrogen Diagnosis Curve for Precise Nitrogen Management in Wheat and Rice. Field Crops Res. 2024, 307, 109259. [Google Scholar] [CrossRef]
- Kefauver, S.C.; Vicente, R.; Vergara-Díaz, O.; Fernandez-Gallego, J.A.; Kerfal, S.; Lopez, A.; Melichar, J.P.E.; Serret Molins, M.D.; Araus, J.L. Comparative UAV and Field Phenotyping to Assess Yield and Nitrogen Use Efficiency in Hybrid and Conventional Barley. Front. Plant Sci. 2017, 8, 287612. [Google Scholar] [CrossRef]
- Wu, Z.; Li, M.; Lei, X.; Wu, Z.; Jiang, C.; Zhou, L.; Ma, R.; Chen, Y. Simulation and Parameter Optimisation of a Centrifugal Rice Seeding Spreader for a UAV. Biosyst. Eng. 2020, 192, 275–293. [Google Scholar] [CrossRef]
- Barzin, R.; Pathak, R.; Lotfi, H.; Varco, J.; Bora, G.C. Use of UAS Multispectral Imagery at Different Physiological Stages for Yield Prediction and Input Resource Optimization in Corn. Remote Sens. 2020, 12, 2392. [Google Scholar] [CrossRef]
- Castrignanò, A.; Belmonte, A.; Antelmi, I.; Quarto, R.; Quarto, F.; Shaddad, S.; Sion, V.; Muolo, M.R.; Ranieri, N.A.; Gadaleta, G.; et al. Semi-Automatic Method for Early Detection of Xylella Fastidiosa in Olive Trees Using UAV Multispectral Imagery and Geostatistical-Discriminant Analysis. Remote Sens. 2020, 13, 14. [Google Scholar] [CrossRef]
- Guo, A.; Huang, W.; Dong, Y.; Ye, H.; Ma, H.; Liu, B.; Wu, W.; Ren, Y.; Ruan, C.; Geng, Y. Wheat Yellow Rust Detection Using UAV-Based Hyperspectral Technology. Remote Sens. 2021, 13, 123. [Google Scholar] [CrossRef]
- Abdulridha, J.; Ampatzidis, Y.; Qureshi, J.; Roberts, P. Laboratory and UAV-Based Identification and Classification of Tomato Yellow Leaf Curl, Bacterial Spot, and Target Spot Diseases in Tomato Utilizing Hyperspectral Imaging and Machine Learning. Remote Sens. 2020, 12, 2732. [Google Scholar] [CrossRef]
- Franceschini, M.H.D.; Bartholomeus, H.; van Apeldoorn, D.F.; Suomalainen, J.; Kooistra, L. Feasibility of Unmanned Aerial Vehicle Optical Imagery for Early Detection and Severity Assessment of Late Blight in Potato. Remote Sens. 2019, 11, 224. [Google Scholar] [CrossRef]
- Kerkech, M.; Hafiane, A.; Canals, R. Vine Disease Detection in UAV Multispectral Images Using Optimized Image Registration and Deep Learning Segmentation Approach. Comput. Electron. Agric. 2020, 174, 105446. [Google Scholar] [CrossRef]
- Qiao, L.; Gao, D.; Zhang, J.; Li, M.; Sun, H.; Ma, J. Dynamic Influence Elimination and Chlorophyll Content Diagnosis of Maize Using UAV Spectral Imagery. Remote Sens. 2020, 12, 2650. [Google Scholar] [CrossRef]
- Zheng, H.; Cheng, T.; Li, D.; Zhou, X.; Yao, X.; Tian, Y.; Cao, W.; Zhu, Y. Evaluation of RGB, Color-Infrared and Multispectral Images Acquired from Unmanned Aerial Systems for the Estimation of Nitrogen Accumulation in Rice. Remote Sens. 2018, 10, 824. [Google Scholar] [CrossRef]
- Zhang, J.; Xie, T.; Yang, C.; Song, H.; Jiang, Z.; Zhou, G.; Zhang, D.; Feng, H.; Xie, J. Segmenting Purple Rapeseed Leaves in the Field from UAV RGB Imagery Using Deep Learning as an Auxiliary Means for Nitrogen Stress Detection. Remote Sens. 2020, 12, 1403. [Google Scholar] [CrossRef]
- Sharma, V.; Honkavaara, E.; Hayden, M.; Kant, S. UAV Remote Sensing Phenotyping of Wheat Collection for Response to Water Stress and Yield Prediction Using Machine Learning. Plant Stress 2024, 12, 100464. [Google Scholar] [CrossRef]
- Matese, A.; Baraldi, R.; Berton, A.; Cesaraccio, C.; Di Gennaro, S.F.; Duce, P.; Facini, O.; Mameli, M.G.; Piga, A.; Zaldei, A. Estimation of Water Stress in Grapevines Using Proximal and Remote Sensing Methods. Remote Sens. 2018, 10, 114. [Google Scholar] [CrossRef]
- Wang, J.; Lou, Y.; Wang, W.; Liu, S.; Zhang, H.; Hui, X.; Wang, Y.; Yan, H.; Maes, W.H. A Robust Model for Diagnosing Water Stress of Winter Wheat by Combining UAV Multispectral and Thermal Remote Sensing. Agric. Water Manag. 2024, 291, 108616. [Google Scholar] [CrossRef]
- Wu, H.; Wiesner-Hanks, T.; Stewart, E.L.; DeChant, C.; Kaczmar, N.; Gore, M.A.; Nelson, R.J.; Lipson, H. Autonomous Detection of Plant Disease Symptoms Directly from Aerial Imagery. Plant Phenome J. 2019, 2, 1–9. [Google Scholar] [CrossRef]
- Sivakumar, A.N.V.; Li, J.; Scott, S.; Psota, E.; Jhala, A.J.; Luck, J.D.; Shi, Y. Comparison of Object Detection and Patch-Based Classification Deep Learning Models on Mid- to Late-Season Weed Detection in UAV Imagery. Remote Sens. 2020, 12, 2136. [Google Scholar] [CrossRef]
- Khan, S.; Tufail, M.; Khan, M.T.; Khan, Z.A.; Anwar, S. Deep Learning-Based Identification System of Weeds and Crops in Strawberry and Pea Fields for a Precision Agriculture Sprayer. Precis. Agric. 2021, 22, 1711–1727. [Google Scholar] [CrossRef]
- Chia, M.Y.; Huang, Y.F.; Koo, C.H.; Fung, K.F. On-Farm Evaluation of Prescription Map-Based Variable Rate Application of Pesticides in Vineyards. Agronomy 2020, 10, 102. [Google Scholar] [CrossRef]
- Gao, P.; Zhang, Y.; Zhang, L.; Noguchi, R.; Ahamed, T. Development of a Recognition System for Spraying Areas from Unmanned Aerial Vehicles Using a Machine Learning Approach. Sensors 2019, 19, 313. [Google Scholar] [CrossRef]
- Pérez-Ortiz, M.; Peña, J.M.; Gutiérrez, P.A.; Torres-Sánchez, J.; Hervás-Martínez, C.; López-Granados, F. Selecting Patterns and Features for between- and within- Crop-Row Weed Mapping Using UAV-Imagery. Expert Syst. Appl. 2016, 47, 85–94. [Google Scholar] [CrossRef]
- Deng, L.; Mao, Z.; Li, X.; Hu, Z.; Duan, F.; Yan, Y. UAV-Based Multispectral Remote Sensing for Precision Agriculture: A Comparison between Different Cameras. ISPRS J. Photogramm. Remote Sens. 2018, 146, 124–136. [Google Scholar] [CrossRef]
- Omia, E.; Bae, H.; Park, E.; Kim, M.S.; Baek, I.; Kabenge, I.; Cho, B.K. Remote Sensing in Field Crop Monitoring: A Comprehensive Review of Sensor Systems, Data Analyses and Recent Advances. Remote Sens. 2023, 15, 354. [Google Scholar] [CrossRef]
- Oerke, E.C.; Mahlein, A.K.; Steiner, U. Proximal Sensing of Plant Diseases. In Detection and Diagnostics of Plant Pathogens; Gullino, M.L., Bonants, P.J.M., Eds.; Springer: Dordrecht, The Netherlands, 2014; pp. 55–68. [Google Scholar] [CrossRef]
- Herrmann, I.; Berger, K. Remote and Proximal Assessment of Plant Traits. Remote Sens. 2021, 13, 1893. [Google Scholar] [CrossRef]
- Maleki, M.R.; Mouazen, A.M.; De Ketelaere, B.; Ramon, H.; De Baerdemaeker, J. On-the-Go Variable-Rate Phosphorus Fertilisation Based on a Visible and Near-Infrared Soil Sensor. Biosyst. Eng. 2008, 99, 35–46. [Google Scholar] [CrossRef]
- Siemens, M.C.; Hulick, D.E.; Jepsen, B. Development of a Trigger-On Indicator for a Weed Sensing Spray Unit. Crop Manag. 2007, 6, 1–3. [Google Scholar] [CrossRef]
- Visser, R.; Timmermans, A.J.M. Weed-It: A New Selective Weed Control System. In Optics in Agriculture, Forestry, and Biological Processing II; Society of Photo-Optical Instrumentation Engineers (SPIE): Bellingham, WA, USA, 1996. [Google Scholar]
- Genna, N.G.; Gourlie, J.A.; Barroso, J. Herbicide Efficacy of Spot Spraying Systems in Fallow and Postharvest in the Pacific Northwest Dryland Wheat Production Region. Plants 2021, 10, 2725. [Google Scholar] [CrossRef]
- Al-Naji, A.; Fakhri, A.B.; Gharghan, S.K.; Chahl, J. Soil Color Analysis Based on a RGB Camera and an Artificial Neural Network towards Smart Irrigation: A Pilot Study. Heliyon 2021, 7, e06078. [Google Scholar] [CrossRef] [PubMed]
- Esau, T.J.; Zaman, Q.U.; Chang, Y.K.; Schumann, A.W.; Percival, D.C.; Farooque, A.A. Spot-Application of Fungicide for Wild Blueberry Using an Automated Prototype Variable Rate Sprayer. Precis. Agric. 2014, 15, 147–161. [Google Scholar] [CrossRef]
- Heiß, A.; Paraforos, D.S.; Sharipov, G.M.; Griepentrog, H.W. Modeling and Simulation of a Multi-Parametric Fuzzy Expert System for Variable Rate Nitrogen Application. Comput. Electron. Agric. 2021, 182, 106008. [Google Scholar] [CrossRef]
- Berenstein, R.; Edan, Y. Human-Robot Collaborative Site-Specific Sprayer. J. Field Robot 2017, 34, 1519–1530. [Google Scholar] [CrossRef]
- Samseemoung, G.; Soni, P.; Suwan, P. Development of a Variable Rate Chemical Sprayer for Monitoring Diseases and Pests Infestation in Coconut Plantations. Agriculture 2017, 7, 89. [Google Scholar] [CrossRef]
- Tewari, V.K.; Pareek, C.M.; Lal, G.; Dhruw, L.K.; Singh, N. Image Processing Based Real-Time Variable-Rate Chemical Spraying System for Disease Control in Paddy Crop. Artif. Intell. Agric. 2020, 4, 21–30. [Google Scholar] [CrossRef]
- Spaeth, M.; Sökefeld, M.; Schwaderer, P.; Gauer, M.E.; Sturm, D.J.; Delatrée, C.C.; Gerhards, R. Smart Sprayer a Technology for Site-Specific Herbicide Application. Crop Prot. 2024, 177, 106564. [Google Scholar] [CrossRef]
- Asaei, H.; Jafari, A.; Loghavi, M. Site-Specific Orchard Sprayer Equipped with Machine Vision for Chemical Usage Management. Comput. Electron. Agric. 2019, 162, 431–439. [Google Scholar] [CrossRef]
- Gerhards, R.; Oebel, H. Practical Experiences with a System for Site-Specific Weed Control in Arable Crops Using Real-Time Image Analysis and GPS-Controlled Patch Spraying. Weed Res. 2006, 46, 185–193. [Google Scholar] [CrossRef]
- Xiao, K.; Ma, Y.; Gao, G. An Intelligent Precision Orchard Pesticide Spray Technique Based on the Depth-of-Field Extraction Algorithm. Comput. Electron. Agric. 2017, 133, 30–36. [Google Scholar] [CrossRef]
- Liu, J.; Abbas, I.; Noor, R.S. Development of Deep Learning-Based Variable Rate Agrochemical Spraying System for Targeted Weeds Control in Strawberry Crop. Agronomy 2021, 11, 1480. [Google Scholar] [CrossRef]
- Ghafar, A.S.A.; Hajjaj, S.S.H.; Gsangaya, K.R.; Sultan, M.T.H.; Mail, M.F.; Hua, L.S. Design and Development of a Robot for Spraying Fertilizers and Pesticides for Agriculture. Mater Today Proc. 2023, 81, 242–248. [Google Scholar] [CrossRef]
- Munnaf, M.A.; Wang, Y.; Mouazen, A.M. Robot Driven Combined Site-Specific Maize Seeding and N Fertilization: An Agro-Economic Investigation. Comput. Electron. Agric. 2024, 219, 108761. [Google Scholar] [CrossRef]
- Rizk, H.; Habib, M.K. Robotized Early Plant Health Monitoring System. In Proceedings of the IECON 2018—44th Annual Conference of the IEEE Industrial Electronics Society, Washington, DC, USA, 21–23 October 2018; pp. 3795–3800. [Google Scholar] [CrossRef]
- Rey, B.; Aleixos, N.; Cubero, S.; Blasco, J. Xf-Rovim. A Field Robot to Detect Olive Trees Infected by Xylella Fastidiosa Using Proximal Sensing. Remote Sens. 2019, 11, 221. [Google Scholar] [CrossRef]
- Cubero, S.; Marco-Noales, E.; Aleixos, N.; Barbé, S.; Blasco, J. RobHortic: A Field Robot to Detect Pests and Diseases in Horticultural Crops by Proximal Sensing. Agriculture 2020, 10, 276. [Google Scholar] [CrossRef]
- Asefpour Vakilian, K.; Massah, J. A Farmer-Assistant Robot for Nitrogen Fertilizing Management of Greenhouse Crops. Comput. Electron. Agric. 2017, 139, 153–163. [Google Scholar] [CrossRef]
- Bawden, O.; Kulk, J.; Russell, R.; McCool, C.; English, A.; Dayoub, F.; Lehnert, C.; Perez, T. Robot for Weed Species Plant-Specific Management. J. Field Robot 2017, 34, 1179–1199. [Google Scholar] [CrossRef]
- Cruz Ulloa, C.; Krus, A.; Barrientos, A.; del Cerro, J.; Valero, C. Robotic Fertilization in Strip Cropping Using a CNN Vegetables Detection-Characterization Method. Comput Electron. Agric. 2022, 193, 106684. [Google Scholar] [CrossRef]
- Schor, N.; Bechar, A.; Ignat, T.; Dombrovsky, A.; Elad, Y.; Berman, S. Robotic Disease Detection in Greenhouses: Combined Detection of Powdery Mildew and Tomato Spotted Wilt Virus. IEEE Robot Autom. Lett. 2016, 1, 354–360. [Google Scholar] [CrossRef]
- Schor, N.; Berman, S.; Dombrovsky, A.; Elad, Y.; Ignat, T.; Bechar, A. Development of a Robotic Detection System for Greenhouse Pepper Plant Diseases. Precis. Agric. 2017, 18, 394–409. [Google Scholar] [CrossRef]
- Silva, L.L.; Barbosa, C.; Fitas Da Cruz, V.; Sousa, A.; Silva, R.; Lourenço, P.; Marani, R.; Valero, C.; Krus, A.; Cruz Ulloa, C.; et al. Single Plant Fertilization Using a Robotic Platform in an Organic Cropping Environment. Agronomy 2022, 12, 1339. [Google Scholar] [CrossRef]
- Mirzakhaninafchi, H.; Singh, M.; Bector, V.; Gupta, O.P.; Singh, R. Design and Development of a Variable Rate Applicator for Real-Time Application of Fertilizer. Sustainability 2021, 13, 8694. [Google Scholar] [CrossRef]
- Gai, J.; Tang, L.; Steward, B.L. Automated Crop Plant Detection Based on the Fusion of Color and Depth Images for Robotic Weed Control. J. Field Robot 2020, 37, 35–52. [Google Scholar] [CrossRef]
- Lowenberg-DeBoer, J.; Huang, I.Y.; Grigoriadis, V.; Blackmore, S. Economics of Robots and Automation in Field Crop Production. Precis. Agric. 2020, 21, 278–299. [Google Scholar] [CrossRef]
- Farooque, A.A.; Hussain, N.; Schumann, A.W.; Abbas, F.; Afzaal, H.; McKenzie-Gopsill, A.; Esau, T.; Zaman, Q.; Wang, X. Field Evaluation of a Deep Learning-Based Smart Variable-Rate Sprayer for Targeted Application of Agrochemicals. Smart Agric. Technol. 2023, 3, 100073. [Google Scholar] [CrossRef]
- Ampatzidis, Y.; De Bellis, L.; Luvisi, A. IPathology: Robotic Applications and Management of Plants and Plant Diseases. Sustainability 2017, 9, 1010. [Google Scholar] [CrossRef]
- Liakos, K.G.; Busato, P.; Moshou, D.; Pearson, S.; Bochtis, D. Machine Learning in Agriculture: A Review. Sensors 2018, 18, 2674. [Google Scholar] [CrossRef] [PubMed]
- Anastasiou, E.; Balafoutis, A.; Darra, N.; Psiroukis, V.; Biniari, A.; Xanthopoulos, G.; Fountas, S. Satellite and Proximal Sensing to Estimate the Yield and Quality of Table Grapes. Agriculture 2018, 8, 94. [Google Scholar] [CrossRef]
- Shafi, U.; Mumtaz, R.; García-Nieto, J.; Hassan, S.A.; Zaidi, S.A.R.; Iqbal, N. Precision Agriculture Techniques and Practices: From Considerations to Applications. Sensors 2019, 19, 3796. [Google Scholar] [CrossRef]
- Lee, H.; Moon, A.; Moon, K.; Lee, Y. Disease and Pest Prediction IoT System in Orchard: A Preliminary Study. In Proceedings of the 2017 Ninth International Conference on Ubiquitous and Future Networks (ICUFN), Milan, Italy, 4–7 July 2017; pp. 525–527. [Google Scholar] [CrossRef]
- Stafford, J.V. Implementing Precision Agriculture in the 21st Century. J. Agric. Eng. Res. 2000, 76, 267–275. [Google Scholar] [CrossRef]
- Farber, C.; Mahnke, M.; Sanchez, L.; Kurouski, D. Advanced Spectroscopic Techniques for Plant Disease Diagnostics. A Review. TrAC Trends Anal. Chem. 2019, 118, 43–49. [Google Scholar] [CrossRef]
- Sankaran, S.; Mishra, A.; Ehsani, R.; Davis, C. A Review of Advanced Techniques for Detecting Plant Diseases. Comput. Electron. Agric. 2010, 72, 1–13. [Google Scholar] [CrossRef]
- Zahir, S.A.D.M.; Omar, A.F.; Jamlos, M.F.; Azmi, M.A.M.; Muncan, J. A Review of Visible and Near-Infrared (Vis-NIR) Spectroscopy Application in Plant Stress Detection. Sens. Actuators A Phys. 2022, 338, 113468. [Google Scholar] [CrossRef]
- Oerke, E.C.; Steiner, U.; Dehne, H.W.; Lindenthal, M. Thermal Imaging of Cucumber Leaves Affected by Downy Mildew and Environmental Conditions. J. Exp. Bot. 2006, 57, 2121–2132. [Google Scholar] [CrossRef]
- Sanaeifar, A.; Yang, C.; de la Guardia, M.; Zhang, W.; Li, X.; He, Y. Proximal Hyperspectral Sensing of Abiotic Stresses in Plants. Sci. Total Environ. 2023, 861, 160652. [Google Scholar] [CrossRef]
- Sanaeifar, A.; Zhang, W.; Chen, H.; Zhang, D.; Li, X.; He, Y. Study on Effects of Airborne Pb Pollution on Quality Indicators and Accumulation in Tea Plants Using Vis-NIR Spectroscopy Coupled with Radial Basis Function Neural Network. Ecotoxicol. Environ. Saf. 2022, 229, 113056. [Google Scholar] [CrossRef] [PubMed]
- Khaled, A.Y.; Abd Aziz, S.; Bejo, S.K.; Nawi, N.M.; Seman, I.A.; Onwude, D.I. Early Detection of Diseases in Plant Tissue Using Spectroscopy—Applications and Limitations. Appl. Spectrosc. Rev. 2018, 53, 36–64. [Google Scholar] [CrossRef]
- Bijay-Singh; Ali, A.M. Using Hand-Held Chlorophyll Meters and Canopy Reflectance Sensors for Fertilizer Nitrogen Management in Cereals in Small Farms in Developing Countries. Sensors 2020, 20, 1127. [Google Scholar] [CrossRef]
- Kokaly, R.F.; Clark, R.N. Spectroscopic Determination of Leaf Biochemistry Using Band-Depth Analysis of Absorption Features and Stepwise Multiple Linear Regression. Remote Sens. Environ. 1999, 67, 267–287. [Google Scholar] [CrossRef]
- Feret, J.B.; François, C.; Asner, G.P.; Gitelson, A.A.; Martin, R.E.; Bidel, L.P.R.; Ustin, S.L.; le Maire, G.; Jacquemoud, S. PROSPECT-4 and 5: Advances in the Leaf Optical Properties Model Separating Photosynthetic Pigments. Remote Sens. Environ. 2008, 112, 3030–3043. [Google Scholar] [CrossRef]
- Carter, G.A. Responses of leaf spectral reflectance to plant stress. Am. J. Bot. 1993, 80, 239–243. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Merzlyak, M.N.; Chivkunova, O.B. Optical Properties and Nondestructive Estimation of Anthocyanin Content in Plant Leaves. Photochem. Photobiol. 2001, 74, 38. [Google Scholar] [CrossRef]
- Atkinson, N.J.; Urwin, P.E. The Interaction of Plant Biotic and Abiotic Stresses: From Genes to the Field. J. Exp. Bot. 2012, 63, 3523–3544. [Google Scholar] [CrossRef]
- Carter, G.A. Primary and Secondary Effects of Water Content on the Spectral Reflectance of Leaves. Am. J. Bot. 1991, 78, 916–924. [Google Scholar] [CrossRef]
- Mahlein, A.K.; Steiner, U.; Dehne, H.W.; Oerke, E.C. Spectral Signatures of Sugar Beet Leaves for the Detection and Differentiation of Diseases. Precis. Agric. 2010, 11, 413–431. [Google Scholar] [CrossRef]
- Rumpf, T.; Mahlein, A.K.; Steiner, U.; Oerke, E.C.; Dehne, H.W.; Plümer, L. Early Detection and Classification of Plant Diseases with Support Vector Machines Based on Hyperspectral Reflectance. Comput. Electron. Agric. 2010, 74, 91–99. [Google Scholar] [CrossRef]
- Barbedo, J.G.A. Detection of Nutrition Deficiencies in Plants Using Proximal Images and Machine Learning: A Review. Comput. Electron. Agric. 2019, 162, 482–492. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Gritz, Y.; Merzlyak, M.N. Relationships between Leaf Chlorophyll Content and Spectral Reflectance and Algorithms for Non-Destructive Chlorophyll Assessment in Higher Plant Leaves. J. Plant Physiol. 2003, 160, 271–282. [Google Scholar] [CrossRef]
- Padilla, F.M.; Gallardo, M.; Peña-Fleitas, M.T.; De Souza, R.; Thompson, R.B. Proximal Optical Sensors for Nitrogen Management of Vegetable Crops: A Review. Sensors 2018, 18, 2083. [Google Scholar] [CrossRef] [PubMed]
- Parry, C.; Blonquist, J.M.; Bugbee, B. In Situ Measurement of Leaf Chlorophyll Concentration: Analysis of the Optical/Absolute Relationship. Plant Cell Environ. 2014, 37, 2508–2520. [Google Scholar] [CrossRef]
- Monje, O.; Bugbee, B. Inherent Limitations of Nondestructive Chlorophyll Meters: A Comparison of Two Types of Meters. HortScience 1992, 27, 69–71. [Google Scholar] [CrossRef]
- Peng, S.; Garcia, F.V.; Laza, R.C.; Sanico, A.L.; Visperas, R.M.; Cassman, K.G. Increased N-Use Efficiency Using a Chlorophyll Meter on High-Yielding Irrigated Rice. Field Crops Res. 1996, 47, 243–252. [Google Scholar] [CrossRef]
- Wu, C.; Niu, Z.; Tang, Q.; Huang, W. Estimating Chlorophyll Content from Hyperspectral Vegetation Indices: Modeling and Validation. Agric. Meteorol. 2008, 148, 1230–1241. [Google Scholar] [CrossRef]
- Berger, K.; Verrelst, J.; Féret, J.B.; Wang, Z.; Wocher, M.; Strathmann, M.; Danner, M.; Mauser, W.; Hank, T. Crop Nitrogen Monitoring: Recent Progress and Principal Developments in the Context of Imaging Spectroscopy Missions. Remote Sens. Environ. 2020, 242, 111758. [Google Scholar] [CrossRef]
- Holland, K.; Schepers, J.S.; Shanahan, J.F.; Horst, G.L. Plant Canopy Sensor with Modulated Polychromatic Light Source. In Proceedings of the 7th International Conference on Precision Agriculture, Minneapolis, MN, USA, 25–28 July 2004. [Google Scholar]
- Raun, W.R.; Solie, J.B.; Johnson, G.V.; Stone, M.L.; Mutten, R.W.; Freeman, K.W.; Thomason, W.E.; Lukina, E.V. Improving Nitrogen Use Efficiency in Cereal Grain Production with Optical Sensing and Variable Rate Application. Agron. J. 2002, 94, 815–820. [Google Scholar] [CrossRef]
- Cao, Q.; Miao, Y.; Wang, H.; Huang, S.; Cheng, S.; Khosla, R.; Jiang, R. Non-Destructive Estimation of Rice Plant Nitrogen Status with Crop Circle Multispectral Active Canopy Sensor. Field Crops Res. 2013, 154, 133–144. [Google Scholar] [CrossRef]
- Cao, Q.; Miao, Y.; Li, F.; Gao, X.; Liu, B.; Lu, D.; Chen, X. Developing a New Crop Circle Active Canopy Sensor-Based Precision Nitrogen Management Strategy for Winter Wheat in North China Plain. Precis. Agric. 2017, 18, 2–18. [Google Scholar] [CrossRef]
- Wang, X.; Miao, Y.; Dong, R.; Chen, Z.; Guan, Y.; Yue, X.; Fang, Z.; Mulla, D.J. Developing Active Canopy Sensor-Based Precision Nitrogen Management Strategies for Maize in Northeast China. Sustainability 2019, 11, 706. [Google Scholar] [CrossRef]
- Padilla, F.M.; de Souza, R.; Peña-Fleitas, M.T.; Grasso, R.; Gallardo, M.; Thompson, R.B. Influence of Time of Day on Measurement with Chlorophyll Meters and Canopy Reflectance Sensors of Different Crop N Status. Precis. Agric. 2019, 20, 1087–1106. [Google Scholar] [CrossRef]
- Lu, J.; Miao, Y.; Shi, W.; Li, J.; Hu, X.; Chen, Z.; Wang, X.; Kusnierek, K. Developing a Proximal Active Canopy Sensor-Based Precision Nitrogen Management Strategy for High-Yielding Rice. Remote Sens. 2020, 12, 1440. [Google Scholar] [CrossRef]
- Huang, J.; Wei, C.; Zhang, Y.; Blackburn, G.A.; Wang, X.; Wei, C.; Wang, J. Meta-Analysis of the Detection of Plant Pigment Concentrations Using Hyperspectral Remotely Sensed Data. PLoS ONE 2015, 10, e0137029. [Google Scholar] [CrossRef]
- Li, Z.; Jin, X.; Yang, G.; Drummond, J.; Yang, H.; Clark, B.; Li, Z.; Zhao, C. Remote Sensing of Leaf and Canopy Nitrogen Status in Winter Wheat (Triticum aestivum L.) Based on N-PROSAIL Model. Remote Sens. 2018, 10, 1463. [Google Scholar] [CrossRef]
- Wang, X.; Miao, Y.; Dong, R.; Zha, H.; Xia, T.; Chen, Z.; Kusnierek, K.; Mi, G.; Sun, H.; Li, M. Machine Learning-Based in-Season Nitrogen Status Diagnosis and Side-Dress Nitrogen Recommendation for Corn. Eur. J. Agron. 2021, 123, 126193. [Google Scholar] [CrossRef]
- Gobbo, S.; De Antoni Migliorati, M.; Ferrise, R.; Morari, F.; Furlan, L.; Sartori, L. Can Crop Modelling, Proximal Sensing and Variable Rate Application Techniques Be Integrated to Support in-Season Nitrogen Fertilizer Decisions? An Application in Corn. Eur. J. Agron. 2023, 148, 126854. [Google Scholar] [CrossRef]
- Rubo, S.; Zinkernagel, J. Exploring Hyperspectral Reflectance Indices for the Estimation of Water and Nitrogen Status of Spinach. Biosyst. Eng. 2022, 214, 58–71. [Google Scholar] [CrossRef]
- Ihuoma, S.O.; Madramootoo, C.A. Narrow-Band Reflectance Indices for Mapping the Combined Effects of Water and Nitrogen Stress in Field Grown Tomato Crops. Biosyst. Eng. 2020, 192, 133–143. [Google Scholar] [CrossRef]
- Cotrozzi, L.; Couture, J.J. Hyperspectral Assessment of Plant Responses to Multi-Stress Environments: Prospects for Managing Protected Agrosystems. Plants People Planet 2020, 2, 244–258. [Google Scholar] [CrossRef]
- Singh, H.; Roy, A.; Setia, R.K.; Pateriya, B. Estimation of Nitrogen Content in Wheat from Proximal Hyperspectral Data Using Machine Learning and Explainable Artificial Intelligence (XAI) Approach. Model Earth Syst. Environ. 2022, 8, 2505–2511. [Google Scholar] [CrossRef]
- Yu, F.; Feng, S.; Du, W.; Wang, D.; Guo, Z.; Xing, S.; Jin, Z.; Cao, Y.; Xu, T. A Study of Nitrogen Deficiency Inversion in Rice Leaves Based on the Hyperspectral Reflectance Differential. Front. Plant Sci. 2020, 11, 573272. [Google Scholar] [CrossRef]
- Goyal, P.; Sharda, R.; Saini, M.; Siag, M. A Deep Learning Approach for Early Detection of Drought Stress in Maize Using Proximal Scale Digital Images. Neural Comput. Appl. 2024, 36, 1899–1913. [Google Scholar] [CrossRef]
- Qiu, Z.; Ma, F.; Li, Z.; Xu, X.; Ge, H.; Du, C. Estimation of Nitrogen Nutrition Index in Rice from UAV RGB Images Coupled with Machine Learning Algorithms. Comput. Electron. Agric. 2021, 189, 106421. [Google Scholar] [CrossRef]
- Rigon, J.P.G.; Capuani, S.; Fernandes, D.M.; Guimarães, T.M. A Novel Method for the Estimation of Soybean Chlorophyll Content Using a Smartphone and Image Analysis. Photosynthetica 2016, 54, 559–566. [Google Scholar] [CrossRef]
- Borhan, M.S.; Panigrahi, S.; Satter, M.A.; Gu, H. Evaluation of Computer Imaging Technique for Predicting the SPAD Readings in Potato Leaves. Inf. Process. Agric. 2017, 4, 275–282. [Google Scholar] [CrossRef]
- Navarro, A.; Nicastro, N.; Costa, C.; Pentangelo, A.; Cardarelli, M.; Ortenzi, L.; Pallottino, F.; Cardi, T.; Pane, C. Sorting Biotic and Abiotic Stresses on Wild Rocket by Leaf-Image Hyperspectral Data Mining with an Artificial Intelligence Model. Plant Methods 2022, 18, 45. [Google Scholar] [CrossRef]
- Bantis, F.; Fotelli, M.; Ilić, Z.S.; Koukounaras, A. Physiological and Phytochemical Responses of Spinach Baby Leaves Grown in a PFAL System with LEDs and Saline Nutrient Solution. Agriculture 2020, 10, 574. [Google Scholar] [CrossRef]
- Taneja, P.; Vasava, H.K.; Daggupati, P.; Biswas, A. Multi-Algorithm Comparison to Predict Soil Organic Matter and Soil Moisture Content from Cell Phone Images. Geoderma 2021, 385, 114863. [Google Scholar] [CrossRef]
- Swetha, R.K.; Bende, P.; Singh, K.; Gorthi, S.; Biswas, A.; Li, B.; Weindorf, D.C.; Chakraborty, S. Predicting Soil Texture from Smartphone-Captured Digital Images and an Application. Geoderma 2020, 376, 114562. [Google Scholar] [CrossRef]
- Kurtulmuş, E.; Arslan, B.; Kurtulmuş, F. Deep Learning for Proximal Soil Sensor Development towards Smart Irrigation. Expert Syst. Appl. 2022, 198, 116812. [Google Scholar] [CrossRef]
- Das, B.; Manohara, K.K.; Mahajan, G.R.; Sahoo, R.N. Spectroscopy Based Novel Spectral Indices, PCA- and PLSR-Coupled Machine Learning Models for Salinity Stress Phenotyping of Rice. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2020, 229, 117983. [Google Scholar] [CrossRef] [PubMed]
- Krishna, G.; Sahoo, R.N.; Singh, P.; Patra, H.; Bajpai, V.; Das, B.; Kumar, S.; Dhandapani, R.; Vishwakarma, C.; Pal, M.; et al. Application of Thermal Imaging and Hyperspectral Remote Sensing for Crop Water Deficit Stress Monitoring. Geocarto. Int. 2021, 36, 481–498. [Google Scholar] [CrossRef]
- Ihuoma, S.O.; Madramootoo, C.A. Sensitivity of Spectral Vegetation Indices for Monitoring Water Stress in Tomato Plants. Comput. Electron. Agric. 2019, 163, 104860. [Google Scholar] [CrossRef]
- Vennam, R.R.; Bheemanahalli, R.; Reddy, K.R.; Dhillon, J.; Zhang, X.; Adeli, A. Early-Season Maize Responses to Salt Stress: Morpho-Physiological, Leaf Reflectance, and Mineral Composition. J. Agric. Food Res. 2024, 15, 100994. [Google Scholar] [CrossRef]
- Li, L.; Zhang, Q.; Huang, D. A Review of Imaging Techniques for Plant Phenotyping. Sensors 2014, 14, 20078–20111. [Google Scholar] [CrossRef]
- Qin, J.; Monje, O.; Nugent, M.R.; Finn, J.R.; O’Rourke, A.E.; Wilson, K.D.; Fritsche, R.F.; Baek, I.; Chan, D.E.; Kim, M.S. A Hyperspectral Plant Health Monitoring System for Space Crop Production. Front. Plant. Sci. 2023, 14, 1133505. [Google Scholar] [CrossRef]
- Arya, S.; Sahoo, R.N.; Sehgal, V.K.; Bandyopadhyay, K.; Rejith, R.G.; Chinnusamy, V.; Kumar, S.; Kumar, S.; Manjaiah, K.M. High-Throughput Chlorophyll Fluorescence Image-Based Phenotyping for Water Deficit Stress Tolerance in Wheat. Plant Physiol. Rep. 2024, 29, 278–293. [Google Scholar] [CrossRef]
- Nguyen, H.D.D.; Pan, V.; Pham, C.; Valdez, R.; Doan, K.; Nansen, C. Night-Based Hyperspectral Imaging to Study Association of Horticultural Crop Leaf Reflectance and Nutrient Status. Comput. Electron. Agric. 2020, 173, 105458. [Google Scholar] [CrossRef]
- Shi, J.; Wang, Y.; Li, Z.; Huang, X.; Shen, T.; Zou, X. Characterization of Invisible Symptoms Caused by Early Phosphorus Deficiency in Cucumber Plants Using Near-Infrared Hyperspectral Imaging Technology. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2022, 267, 120540. [Google Scholar] [CrossRef]
- Sarić, R.; Nguyen, V.D.; Burge, T.; Berkowitz, O.; Trtílek, M.; Whelan, J.; Lewsey, M.G.; Čustović, E. Applications of Hyperspectral Imaging in Plant Phenotyping. Trends Plant Sci. 2022, 27, 301–315. [Google Scholar] [CrossRef]
- Mishra, P.; Asaari, M.S.M.; Herrero-Langreo, A.; Lohumi, S.; Diezma, B.; Scheunders, P. Close Range Hyperspectral Imaging of Plants: A Review. Biosyst. Eng. 2017, 164, 49–67. [Google Scholar] [CrossRef]
- Wasonga, D.O.; Yaw, A.; Kleemola, J.; Alakukku, L.; Mäkelä, P.S.A. Red-Green-Blue and Multispectral Imaging as Potential Tools for Estimating Growth and Nutritional Performance of Cassava under Deficit Irrigation and Potassium Fertigation. Remote Sens. 2021, 13, 598. [Google Scholar] [CrossRef]
- Lima, M.C.F.; Krus, A.; Valero, C.; Barrientos, A.; Del Cerro, J.; Roldán-Gómez, J.J. Monitoring Plant Status and Fertilization Strategy through Multispectral Images. Sensors 2020, 20, 435. [Google Scholar] [CrossRef]
- Stamford, J.D.; Vialet-Chabrand, S.; Cameron, I.; Lawson, T. Development of an Accurate Low Cost NDVI Imaging System for Assessing Plant Health. Plant Methods 2023, 19, 9. [Google Scholar] [CrossRef]
- Jiang, Y.; Li, C.; Robertson, J.S.; Sun, S.; Xu, R.; Paterson, A.H. GPhenoVision: A Ground Mobile System with Multi-Modal Imaging for Field-Based High Throughput Phenotyping of Cotton. Sci. Rep. 2018, 8, 1213. [Google Scholar] [CrossRef] [PubMed]
- Bai, G.; Ge, Y.; Scoby, D.; Leavitt, B.; Stoerger, V.; Kirchgessner, N.; Irmak, S.; Graef, G.; Schnable, J.; Awada, T. NU-Spidercam: A Large-Scale, Cable-Driven, Integrated Sensing and Robotic System for Advanced Phenotyping, Remote Sensing, and Agronomic Research. Comput. Electron. Agric. 2019, 160, 71–81. [Google Scholar] [CrossRef]
- Gold, K.M.; Townsend, P.A.; Chlus, A.; Herrmann, I.; Couture, J.J.; Larson, E.R.; Gevens, A.J. Hyperspectral Measurements Enable Pre-Symptomatic Detection and Differentiation of Contrasting Physiological Effects of Late Blight and Early Blight in Potato. Remote Sens. 2020, 12, 286. [Google Scholar] [CrossRef]
- Herrmann, I.; Vosberg, S.K.; Ravindran, P.; Singh, A.; Chang, H.X.; Chilvers, M.I.; Conley, S.P.; Townsend, P.A. Leaf and Canopy Level Detection of Fusarium virguliforme (Sudden Death Syndrome) in Soybean. Remote Sens. 2018, 10, 426. [Google Scholar] [CrossRef]
- Chen, T.; Zeng, R.; Guo, W.; Hou, X.; Lan, Y.; Zhang, L. Detection of Stress in Cotton (Gossypium hirsutum L.) Caused by Aphids Using Leaf Level Hyperspectral Measurements. Sensors 2018, 18, 2798. [Google Scholar] [CrossRef]
- Sankaran, S.; Ehsani, R. Comparison of Visible-near Infrared and Mid-Infrared Spectroscopy for Classification of Huanglongbing and Citrus Canker Infected Leaves. CIGR J. 2013, 15, 75–79. [Google Scholar]
- Nutter, F.W.; Van Rij, N.; Eggenberger, S.K.; Holah, N. Spatial and Temporal Dynamics of Plant Pathogens. In Precision Crop Protection—The Challenge and Use of Heterogeneity; Springer: Dordrecht, The Netherlands, 2010; pp. 27–50. ISBN 9789048192779. [Google Scholar]
- Hillnhütter, C.; Mahlein, A.K.; Sikora, R.A.; Oerke, E.C. Use of Imaging Spectroscopy to Discriminate Symptoms Caused by Heterodera Schachtii and Rhizoctonia Solani on Sugar Beet. Precis. Agric. 2012, 13, 17–32. [Google Scholar] [CrossRef]
- Berdugo, C.A.; Zito, R.; Paulus, S.; Mahlein, A.K. Fusion of Sensor Data for the Detection and Differentiation of Plant Diseases in Cucumber. Plant Pathol. 2014, 63, 1344–1356. [Google Scholar] [CrossRef]
- Huang, W.; Guan, Q.; Luo, J.; Zhang, J.; Zhao, J.; Liang, D.; Huang, L.; Zhang, D. New Optimized Spectral Indices for Identifying and Monitoring Winter Wheat Diseases. IEEE J. Sel. Top. Appl. Earth. Obs. Remote Sens. 2014, 7, 2516–2524. [Google Scholar] [CrossRef]
- Fahey, T.; Pham, H.; Gardi, A.; Sabatini, R.; Stefanelli, D.; Goodwin, I.; Lamb, D.W. Active and Passive Electro-Optical Sensors for Health Assessment in Food Crops. Sensors 2020, 21, 171. [Google Scholar] [CrossRef]
- Lu, J.; Ehsani, R.; Shi, Y.; de Castro, A.I.; Wang, S. Detection of Multi-Tomato Leaf Diseases (Late Blight, Target and Bacterial Spots) in Different Stages by Using a Spectral-Based Sensor. Sci. Rep. 2018, 8, 2793. [Google Scholar] [CrossRef]
- Pane, C.; Manganiello, G.; Nicastro, N.; Cardi, T.; Carotenuto, F. Powdery Mildew Caused by Erysiphe cruciferarum Onwild Rocket (Diplotaxis tenuifolia): Hyperspectral Imaging and Machine Learning Modeling for Non-Destructive Disease Detection. Agriculture 2021, 11, 337. [Google Scholar] [CrossRef]
- Pane, C.; Manganiello, G.; Nicastro, N.; Ortenzi, L.; Pallottino, F.; Cardi, T.; Costa, C. Machine Learning Applied to Canopy Hyperspectral Image Data to Support Biological Control of Soil-Borne Fungal Diseases in Baby Leaf Vegetables. Biol. Control 2021, 164, 104784. [Google Scholar] [CrossRef]
- Galieni, A.; Nicastro, N.; Pentangelo, A.; Platani, C.; Cardi, T.; Pane, C. Surveying Soil-Borne Disease Development on Wild Rocket Salad Crop by Proximal Sensing Based on High-Resolution Hyperspectral Features. Sci. Rep. 2022, 12, 5098. [Google Scholar] [CrossRef] [PubMed]
- Moshou, D.; Bravo, C.; Wahlen, S.; West, J.; McCartney, A.; De Baerdemaeker, J.; Ramon, H. Simultaneous Identification of Plant Stresses and Diseases in Arable Crops Using Proximal Optical Sensing and Self-Organising Maps. Precis. Agric. 2006, 7, 149–164. [Google Scholar] [CrossRef]
- Zhao, X.; Zhang, J.; Huang, Y.; Tian, Y.; Yuan, L. Detection and Discrimination of Disease and Insect Stress of Tea Plants Using Hyperspectral Imaging Combined with Wavelet Analysis. Comput. Electron. Agric. 2022, 193, 106717. [Google Scholar] [CrossRef]
- Moshou, D.; Bravo, C.; Oberti, R.; West, J.; Bodria, L.; McCartney, A.; Ramon, H. Plant Disease Detection Based on Data Fusion of Hyper-Spectral and Multi-Spectral Fluorescence Imaging Using Kohonen Maps. Real Time Imaging 2005, 11, 75–83. [Google Scholar] [CrossRef]
- Dammer, K.H.; Ehlert, D. Variable-Rate Fungicide Spraying in Cereals Using a Plant Cover Sensor. Precis. Agric. 2006, 7, 137–148. [Google Scholar] [CrossRef]
- Sankaran, S.; Maja, J.M.; Buchanon, S.; Ehsani, R. Huanglongbing (Citrus Greening) Detection Using Visible, near Infrared and Thermal Imaging Techniques. Sensors 2013, 13, 2117–2130. [Google Scholar] [CrossRef]
- Bienkowski, D.; Aitkenhead, M.J.; Lees, A.K.; Gallagher, C.; Neilson, R. Detection and Differentiation between Potato (Solanum tuberosum) Diseases Using Calibration Models Trained with Non-Imaging Spectrometry Data. Comput. Electron. Agric. 2019, 167, 105056. [Google Scholar] [CrossRef]
- Dammer, K.H.; Möller, B.; Rodemann, B.; Heppner, D. Detection of Head Blight (Fusarium ssp.) in Winter Wheat by Color and Multispectral Image Analyses. Crop Prot. 2011, 30, 420–428. [Google Scholar] [CrossRef]
- Moshou, D.; Bravo, C.; Oberti, R.; West, J.S.; Ramon, H.; Vougioukas, S.; Bochtis, D. Intelligent Multi-Sensor System for the Detection and Treatment of Fungal Diseases in Arable Crops. Biosyst. Eng. 2011, 108, 311–321. [Google Scholar] [CrossRef]
- Zhang, J.; Pu, R.; Huang, W.; Yuan, L.; Luo, J.; Wang, J. Using In-Situ Hyperspectral Data for Detecting and Discriminating Yellow Rust Disease from Nutrient Stresses. Field Crops Res. 2012, 134, 165–174. [Google Scholar] [CrossRef]
- Aasen, H.; Burkart, A.; Bolten, A.; Bareth, G. Generating 3D Hyperspectral Information with Lightweight UAV Snapshot Cameras for Vegetation Monitoring: From Camera Calibration to Quality Assurance. ISPRS J. Photogramm. Remote Sens. 2015, 108, 245–259. [Google Scholar] [CrossRef]
- Menesatti, P.; Antonucci, F.; Pallottino, F.; Giorgi, S.; Matere, A.; Nocente, F.; Pasquini, M.; D’Egidio, M.G.; Costa, C. Laboratory vs. in-Field Spectral Proximal Sensing for Early Detection of Fusarium Head Blight Infection in Durum Wheat. Biosyst. Eng. 2013, 114, 289–293. [Google Scholar] [CrossRef]
- Thomas, S.; Kuska, M.T.; Bohnenkamp, D.; Brugger, A.; Alisaac, E.; Wahabzada, M.; Behmann, J.; Mahlein, A.K. Benefits of Hyperspectral Imaging for Plant Disease Detection and Plant Protection: A Technical Perspective. J. Plant. Dis. Prot. 2018, 125, 5–20. [Google Scholar] [CrossRef]
Crop | Aim | Platform (Spatial Resolution or Distance from the Target) | Sensors | References | |
---|---|---|---|---|---|
Type | Specifications | ||||
Corn (Zea mays L.) | Disease detection (Setosphaeria turcica) | DJI Matrice 600 UAV (DJI, Shenzhen, China)) (6 m) | RGB | Sony Alpha 6000 camera | [87] |
Corn | Prediction and mapping of soil properties and corn yield | Aircraft: Digital Elevation Model (DEM) Collection (1 m); MSI data collection (0.3 m) | RGB + LiDAR | RGB (Leica ADS80 digital camera) + LiDAR | [38] |
Corn variety: DeKalb Brand-DKC67–72 | Monitoring Different Physiological Stages for Yield Prediction and Input Resource Optimization | N.S. (from 60 m to 30 m) | MSI | MicaSense RedEdge™: Blue (475 nm ± 32 nm), green (560 nm center, ± 27 nm), red (668 ± 16 nm), red-edge (717 nm ± 12 nm), and near-infrared (842 nm ± 57 nm). | [75] |
Wheat, barley, and oats | Yield Prediction | Airinov Solo 3DR (Parrot Drone SAS, Paris, France) (150 m) | 1 × 1 m/px | MSI: | SEQUOIA (Parrot Drone SAS, Paris, France): Green: 550 nm ± 40 nm Red: 660 nm ± 40 nm Red Edge: 735 ± 10 nm Near-Infrared (NIR): 790 nm ±: 20 nm. | [66] |
Soybean | Weed detection | DJI Matrice 600 pro ((DJI, Shenzhen, China)), (20 m) | MSI | SEQUOIA (Parrot Drone SAS, Paris, France): Green: 550 nm ± 40 nm Red: 660 nm ± 40 nm Red Edge: 735 ± 10 nm Near-Infrared (NIR): 790 nm ±: 20 nm. | [88] |
Cotton and sunflower | Weed detection | Quadcopter model MD4–1000 (microdrones GmhH, Siegen, Germany) (30–60 m) | CIR | Sony ILCE-6000 camera, + NIR. | [65] |
Sunflower. | Weed detection | Quadrocopter md4–1000 (microdrones GmbH, Siegen, Germany) | RGB + MSI | MSI: TetraCam mini-MCA-6 (TetraCam Inc., Chatsworth, CA, USA) (blue (B, 450 nm), green (G, 530 nm), red (R, 670 and 700 nm), Redge (740 nm) and near-infrared (NIR, 780 nm) RGB: Olympus PEN E-PM1 (Olympus Corporation, Tokyo, Japan) | [64] |
Pea and strawberry | Weed detection | DJI Spark (Multirotor) (2 m) | 0.3 cm/px | RGB | CMOS sensor (3968 × 2976 pixels) | [89] |
Lettuce | Weed detection | Multi-rotor DJI Mavic Pro (2 m) | 0.22 cm/px | MSI | SEQUOIA (Parrot Drone SAS, Paris, France): Green: 550 nm ± 40 nm Red: 660 nm ± 40 nm Red Edge: 735 ± 10 nm Near-Infrared (NIR): 790 nm ±: 20 nm. | [61] |
Olive tree | Pest detection (Xylella fastidiosa subsp. pauca (Xfp)) | Multi-rotor DJI Mavic Pro (70 m) | 6.6 cm/px | MSI | SEQUOIA (Parrot Drone SAS, Paris, France): Green: 550 nm ± 40 nm Red: 660 nm ± 40 nm Red Edge: 735 ± 10 nm Near-Infrared (NIR): 790 nm ± 20 nm. | [76] |
Wheat (cv). ‘Mingxian 169’ | Diseases detection (Yellow rust) | Six-rotor electric UAV system (DJI Innovations, Shenzhen, China) (30 m) | 1.2 cm/px | HyS | UHD 185 (Cubert GmbH, Ulm, Baden-Württemberg, Germany): 450–950 nm ±: 4 nm. | [77] |
Tomato | Diseases detection (Tomato Yellow Leaf Cur)–TYLC; Target Spot ((Corynespora cassiicola)–TS; Bacterial Spot (Xanthomonas perforans)–BS) | (Matrice 600 Pro Hexacopter, DJI, Shenzhen, China) (30 m) | 1.03 cm/px | HyS | Pika L 2.4 hyperspectral camera (Resonon, Bozeman, MT, USA): 380 to 1020 nm. | [78] |
Potato | Disease detection (late blight) | UAV (N.S.) (80 m) | 4–5 m/px | HyS | Rikola Ltd., (Oulu, Finland): 600–800 nm | [79] |
Maize | Weed detection/spraying |
| CIR/MSI | CIR: Modified Canon S110 camera (Red (660 nm), green (520 nm), blue (450 nm), and near-infrared (NIR; 850 nm)). 2015: MSI: Agrosensor multispectral camera by AIRINOV (Channels: Green (550 nm), red (660 nm), red edge (735 nm), NIR (790 nm)). | [70] |
Vineyard | Spraying | Hexacopter (model: DroneHEXA, Dronetools SL, Sevilla, Spain) (95 m) | MSI | MicaSense RedEdge: Red:668 nm ±5 nm, Green: 560 nm ± 10 nm, Blue: 475 nm ± 10 nm, RedEdge: 717 nm ± 5 nm, Near Infrared (NIR): 840 nm ± 20 nm; | [11,90] |
Vineyard | Diseases detection downy mildew (Plasmopara viticola/spraying | Hexacopter (model: CondorBeta, Dronetools SL, Sevilla, Spain) (95 m) | MSI | MicaSense RedEdge: Red:668 nm ±5 nm, Green: 560 nm ± 10 nm, Blue: 475 nm ± 10 nm, RedEdge: 717 nm ± 5 nm, Near Infrared (NIR): 840 nm ± 20 nm; | [67] |
Barley (H. vulgare L). | Phenotyping response of barley to different nitrogen fertilization treatments | Mikrokopter Oktokopter 6S12 XL eight rotor UAV (HiSystems GmbH, Moomerland, Germany) (50 m) | RGB (10 mm/px); THERMAL CAMERA (54 mm/px) | RGB, Thermal and MSI cameras | RGB: Panasonic GX7 digital camera (Panasonic Corporation, Osaka, Japan); MSI:Tetracam (Tetracam, Inc., Gainesville, FL, USA) mini MCA (Multiple Camera Array): 450 ± 40 nm, 550 ± 10 nm, 570 ± 10 nm, 670 ± 10 nm, 700 ± 10 nm, 720 ± 10 nm, 780 ± 10 nm, 840 ± 10 nm, 860 ± 10 nm, 900 ± 20 nm, 950 ± 40 nm; TH: FLIR Tau2 640 (FLIR Systems, Nashua, NH, USA). | [73] |
Wheat | Water stress | DJI Matrice 100 quadcopter (DJI, Shenzhen, China) (35 m) | 2.43/px | MSI | MicaSense RedEdge: Blue: 475 nm, Green: 560 nm, Red: 668 nm, Red Edge: 717 nm, Near-Infrared: 840 nm. | [84] |
Vineyard | Disease detection (Mildew disease) | Quadcopter drone (25 m) | 1 cm2/px | CIR | two camera sensors MAPIR Survey2(RGB + NIR) | [80] |
Winter oilseed rape (Brassica napus L.) | Nitrogen stress | Matrice 600 UAV (DJI, Shenzhen, China) (20 m) | 1.86 cm/px | RGB | Nikon D800 (Nikon, Inc., Tokyo, Japan) | [83] |
Vineyard cv. –Vermentino’, ‘Cagnulari’, and ‘Cabernet Sauvignon’ grapevines | Discriminate several water stress condition |
| Thermal camera and Thermal imaging camera | Thermal camera: (FLIR TAU II 320, FLIR Systems, Inc., Wilsonville, OR, USA); Thermal imaging camera: (InfRec R500Pro, Nippon Avionics Co. Ltd., Tokyo, Japan) with a resolution of 640 × 480 pixels, operating in the 8–14 µm waveband range, and equipped with a red, green, and blue (RGB) | [85] |
Rice | Nitrogen accumulation estimation | Mikrokopter OktoXL: RGB (50 m) | 13 mm/px; CIR: (100 m) | 36 mm/px; MSI: (100 m) | 56 mm/px. | RGB, CIR, and MSI | RGB: Canon 5D Mark III (Canon Inc., Tokyo, Japan); CIR: Canon PowerShot SX260 + NIR; MSI: Tetracam mini-MCA6 (Tetracam Inc., Chatsworth, CA, USA: B (490 nm ± 10 nm), Green (550 nm ± 10 nm), Red (680 nm ± 10 nm), Red Edge (720 nm ± 10 nm), NIR1 (800 nm ± 10 nm) and NIR2 (900 nm ± 10 nm). | [82] |
Maize | Crop grow status evaluation based on canopy chlorophyll content | DJI M600 Pro (DJI, Shenzhen, China) UAV 30 m) | MSI | Red Edge–MX: Blue: 475 nm ± 32 nm); Green: 560 nm ± 27 nm) Red: 668 nm ± 14 nm) Red Edge (RE): 717 nm ± 12 nm) Near-Infrared (NIR): 840 nm ±57 nm). | [81] |
Wheat (cv. Yangmai 23, Zhenmai 12, and Ningmai 13); Rice (cv. Nanjing 9108, Yongyou 2640, and Wuyunjing 32) | Investigated the effects of different nitrogen (N) fertilizer rates, | eBee fixed-wing UAV (SenseFly, Cheseaux-sur-Lausanne, Switzerland) (70 m) | MSI | SEQUOIA (Parrot Drone SAS, Paris, France): Green: 550 nm ± 40 nm Red: 660 nm ± 40 nm Red Edge: 735 ± 10 nm Near-Infrared (NIR): 790 nm ±: 20 nm. | [72] |
Wheat (Triticum aestivum) | Investigated the effects of different nitrogen (N) fertilizer rates | eBee fixed-wing UAV (SenseFly, Cheseaux-sur-Lausanne, Switzerland) | MSI | SEQUOIA (Parrot Drone SAS, Paris, France): Green: 550 nm ± 40 nm Red: 660 nm ± 40 nm Red Edge: 735 ± 10 nm Near-Infrared (NIR): 790 nm ±: 20 nm. | [71] |
Winter wheat | Water stres | DJI M300 Pro UAV (Shenzhen DJI Sciences and Technologies Ltd., Shenzhen, China): MSI: (50 m) | 3.5 cm/px; Thermal Camera: (50 m) | 4.5 cm/px | MSI and Thermal camera | MSI: RedEdge-MX (MicaSense AgEagle, Wichita, KS, USA): Blue (465–485 nm), Green (550–570 nm), Red (663–673 nm), Red Edge (712–722 nm), and Near-Infrared (820–860 nm); Therma camera: Zenmuse H20T. | [86] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Laveglia, S.; Altieri, G.; Genovese, F.; Matera, A.; Di Renzo, G.C. Advances in Sustainable Crop Management: Integrating Precision Agriculture and Proximal Sensing. AgriEngineering 2024, 6, 3084-3120. https://doi.org/10.3390/agriengineering6030177
Laveglia S, Altieri G, Genovese F, Matera A, Di Renzo GC. Advances in Sustainable Crop Management: Integrating Precision Agriculture and Proximal Sensing. AgriEngineering. 2024; 6(3):3084-3120. https://doi.org/10.3390/agriengineering6030177
Chicago/Turabian StyleLaveglia, Sabina, Giuseppe Altieri, Francesco Genovese, Attilio Matera, and Giovanni Carlo Di Renzo. 2024. "Advances in Sustainable Crop Management: Integrating Precision Agriculture and Proximal Sensing" AgriEngineering 6, no. 3: 3084-3120. https://doi.org/10.3390/agriengineering6030177
APA StyleLaveglia, S., Altieri, G., Genovese, F., Matera, A., & Di Renzo, G. C. (2024). Advances in Sustainable Crop Management: Integrating Precision Agriculture and Proximal Sensing. AgriEngineering, 6(3), 3084-3120. https://doi.org/10.3390/agriengineering6030177