Yield Prediction Models for Rice Varieties Using UAV Multispectral Imagery in the Amazon Lowlands of Peru
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description
2.2. Chlorophyll Content Determination
2.3. Yield Determination
2.4. Flight Plan and Indices Vegetation Estimation
2.5. Data Analysis and Model Development
Indices | Equation | Source |
---|---|---|
Normalized Difference Vegetation Index (NDVI) | [29] | |
Green Normalized Difference Vegetation Index (GNDVI) | [30] | |
Red Edge Chlorophyll Index (ReCL) | [31] | |
ChlorophyII Index Green (CIgreen) | [31] | |
Modified Chlorophyll Absorption in Reflectance Index (MCARI) | [32] | |
Soil Adjusted Vegetation Index (SAVI) | [33] | |
ChlorophyII Vegetation Index (CVI) | [34] | |
Leaf Chlorophyll Index (LCI) | [35] | |
Enhanced Vegetation Index (EVI) | [36] |
3. Results
3.1. Yield for Different Rice Varieties
3.2. Chlorophyll Content
3.3. Vegetation Indices Estimation
3.4. Prediction Model to Determine Crop Yields
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cantrell, R.P.; Reeves, T.G. The Cereal of the World’s Poor Takes Center Stage. Science 2002, 296, 53. [Google Scholar] [CrossRef]
- Zhou, X.; Zheng, H.B.; Xu, X.Q.; He, J.Y.; Ge, X.K.; Yao, X.; Cheng, T.; Zhu, Y.; Cao, W.X.; Tian, Y.C. Predicting Grain Yield in Rice Using Multi-Temporal Vegetation Indices from UAV-Based Multispectral and Digital Imagery. ISPRS J. Photogramm. Remote Sens. 2017, 130, 246–255. [Google Scholar] [CrossRef]
- Dingkuhn, M.; Laza, M.R.C.; Kumar, U.; Mendez, K.S.; Collard, B.; Jagadish, K.; Singh, R.K.; Padolina, T.; Malabayabas, M.; Torres, E.; et al. Improving Yield Potential of Tropical Rice: Achieved Levels and Perspectives through Improved Ideotypes. Field Crops Res. 2015, 182, 43–59. [Google Scholar] [CrossRef]
- Haboudane, D.; Miller, J.R.; Tremblay, N.; Zarco-Tejada, P.J.; Dextraze, L. Integrated Narrow-Band Vegetation Indices for Prediction of Crop Chlorophyll Content for Application to Precision Agriculture. Remote Sens. Environ. 2002, 81, 416–426. [Google Scholar] [CrossRef]
- Fu, Y.; Yang, G.; Wang, J.; Song, X.; Feng, H. Winter Wheat Biomass Estimation Based on Spectral Indices, Band Depth Analysis and Partial Least Squares Regression Using Hyperspectral Measurements. Comput. Electron. Agric. 2014, 100, 51–59. [Google Scholar] [CrossRef]
- Ji, Y.; Chen, Z.; Cheng, Q.; Liu, R.; Li, M.; Yan, X.; Li, G.; Wang, D.; Fu, L.; Ma, Y.; et al. Estimation of Plant Height and Yield Based on UAV Imagery in Faba Bean (Vicia faba L.). Plant Methods 2022, 18, 26. [Google Scholar] [CrossRef]
- Shiu, Y.-S.; Chuang, Y.-C. Yield Estimation of Paddy Rice Based on Satellite Imagery: Comparison of Global and Local Regression Models. Remote Sens. 2019, 11, 111. [Google Scholar] [CrossRef]
- Ahmad, A.; Ordoñez, J.; Cartujo, P.; Martos, V. Remotely Piloted Aircraft (RPA) in Agriculture: A Pursuit of Sustainability. Agronomy 2020, 11, 7. [Google Scholar] [CrossRef]
- Manlove, J.L.; Shew, A.M.; Obembe, O.S. Arkansas Producers Value Upload Speed More than Download Speed for Precision Agriculture Applications. Comput. Electron. Agric. 2021, 190, 106432. [Google Scholar] [CrossRef]
- Wan, L.; Cen, H.; Zhu, J.; Zhang, J.; Zhu, Y.; Sun, D.; Du, X.; Zhai, L.; Weng, H.; Li, Y.; et al. Grain Yield Prediction of Rice Using Multi-Temporal UAV-Based RGB and Multispectral Images and Model Transfer—A Case Study of Small Farmlands in the South of China. Agric. For. Meteorol. 2020, 291, 108096. [Google Scholar] [CrossRef]
- Sulik, J.J.; Long, D.S. Spectral Considerations for Modeling Yield of Canola. Remote Sens. Environ. 2016, 184, 161–174. [Google Scholar] [CrossRef]
- Yue, J.; Yang, G.; Tian, Q.; Feng, H.; Xu, K.; Zhou, C. Estimate of Winter-Wheat above-Ground Biomass Based on UAV Ultrahigh-Ground-Resolution Image Textures and Vegetation Indices. ISPRS J. Photogramm. Remote Sens. 2019, 150, 226–244. [Google Scholar] [CrossRef]
- Saravia, D.; Valqui-Valqui, L.; Salazar, W.; Quille-Mamani, J.; Barboza, E.; Porras-Jorge, R.; Injante, P.; Arbizu, C.I. Yield Prediction of Four Bean (Phaseolus vulgaris) Cultivars Using Vegetation Indices Based on Multispectral Images from UAV in an Arid Zone of Peru. Drones 2023, 7, 325. [Google Scholar] [CrossRef]
- Luo, S.; Jiang, X.; Jiao, W.; Yang, K.; Li, Y.; Fang, S. Remotely Sensed Prediction of Rice Yield at Different Growth Durations Using UAV Multispectral Imagery. Agriculture 2022, 12, 1447. [Google Scholar] [CrossRef]
- Zhang, K.; Ge, X.; Shen, P.; Li, W.; Liu, X.; Cao, Q.; Zhu, Y.; Cao, W.; Tian, Y. Predicting Rice Grain Yield Based on Dynamic Changes in Vegetation Indexes during Early to Mid-Growth Stages. Remote Sens. 2019, 11, 387. [Google Scholar] [CrossRef]
- Son, N.T.; Chen, C.F.; Chen, C.R.; Chang, L.Y.; Duc, H.N.; Nguyen, L.D. Prediction of Rice Crop Yield Using MODIS EVI−LAI Data in the Mekong Delta, Vietnam. Int. J. Remote Sens. 2013, 34, 7275–7292. [Google Scholar] [CrossRef]
- Mia, M.S.; Tanabe, R.; Habibi, L.N.; Hashimoto, N.; Homma, K.; Maki, M.; Matsui, T.; Tanaka, T.S.T. Multimodal Deep Learning for Rice Yield Prediction Using UAV-Based Multispectral Imagery and Weather Data. Remote Sens. 2023, 15, 2511. [Google Scholar] [CrossRef]
- Qiu, Z.; Ma, F.; Li, Z.; Xu, X.; Du, C. Development of Prediction Models for Estimating Key Rice Growth Variables Using Visible and NIR Images from Unmanned Aerial Systems. Remote Sens. 2022, 14, 1384. [Google Scholar] [CrossRef]
- Ge, H.; Ma, F.; Li, Z.; Du, C. Grain Yield Estimation in Rice Breeding Using Phenological Data and Vegetation Indices Derived from UAV Images. Agronomy 2021, 11, 2439. [Google Scholar] [CrossRef]
- Caribou Space, D.T. Regional and National Rice Production Forecasting in Peru (IPP Case Study). Available online: https://www.spacefordevelopment.org/library/regional-and-nationalrice-production-forecasting-in-peru-ipp-case-study/ (accessed on 9 March 2024).
- INIA Programa Nacional de Arroz. Available online: https://www.inia.gob.pe/pn-arroz/ (accessed on 3 October 2023).
- Rosero, M. Sistema de Evaluación Estandar Para Arroz; Centro Internacional de Agricultura Tropical (CIAT): Cali, Colombia, 1983. [Google Scholar]
- Hassan, M.; Yang, M.; Rasheed, A.; Jin, X.; Xia, X.; Xiao, Y.; He, Z. Time-Series Multispectral Indices from Unmanned Aerial Vehicle Imagery Reveal Senescence Rate in Bread Wheat. Remote Sens. 2018, 10, 809. [Google Scholar] [CrossRef]
- de Mendiburu, F. Agricolae: Statistical Procedures for Agricultural Research. Available online: https://cran.r-project.org/web/packages/agricolae/index.html (accessed on 10 March 2024).
- Schloerke, B.; Cook, D.; Larmarange, J.; Briatte, F.; Marbach, M.; Thoen, E.; Elberg, A.; Crowley, J. GGally: Extension to “Ggplot2”. Available online: https://cran.r-project.org/package=GGally (accessed on 3 October 2023).
- Lê, S.; Josse, J.; Husson, F. FactoMineR: An R Package for Multivariate Analysis. J. Stat. Softw. 2008, 25, 1–18. [Google Scholar] [CrossRef]
- Kassambara, A.; Mundt, F. Factoextra: Extract and Visualize the Results of Multivariate Data Analyses. Available online: https://cran.r-project.org/package=factoextra (accessed on 3 November 2023).
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2024; Available online: https://www.R-project.org/ (accessed on 3 November 2023).
- Peñuelas, J.; Gamon, J.A.; Griffin, K.L.; Field, C.B. Assessing Community Type, Plant Biomass, Pigment Composition, and Photosynthetic Efficiency of Aquatic Vegetation from Spectral Reflectance. Remote Sens. Environ. 1993, 46, 110–118. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Kaufman, Y.J.; Merzlyak, M.N. Use of a Green Channel in Remote Sensing of Global Vegetation from EOS-MODIS. Remote Sens. Environ. 1996, 58, 289–298. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Viña, A.; Ciganda, V.; Rundquist, D.C.; Arkebauer, T.J. Remote Estimation of Canopy Chlorophyll Content in Crops. Geophys. Res. Lett. 2005, 32, L08403. [Google Scholar] [CrossRef]
- Guan, L.; Liu, X.N.; Cheng, C.Q. Research on Hyperspectral Information Parameters of Chlorophyll Content of Rice Leaf in Cd-Polluted Soil Environment. Guang Pu Xue Yu Guang Pu Fen Xi/Spectrosc. Spectr. Anal. 2009, 29, 2713–2716. [Google Scholar] [CrossRef]
- Huete, A. A Soil-Adjusted Vegetation Index (SAVI). Remote Sens. Environ. 1988, 25, 295–309. [Google Scholar] [CrossRef]
- Vincini, M.; Frazzi, E.; D’Alessio, P. A Broad-Band Leaf Chlorophyll Vegetation Index at the Canopy Scale. Precis. Agric. 2008, 9, 303–319. [Google Scholar] [CrossRef]
- Datt, B. A New Reflectance Index for Remote Sensing of Chlorophyll Content in Higher Plants: Tests Using Eucalyptus Leaves. J. Plant Physiol. 1999, 154, 30–36. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Gritz, Y.; Merzlyak, M.N. Relationships between Leaf Chlorophyll Content and Spectral Reflectance and Algorithms for Non-Destructive Chlorophyll Assessment in Higher Plant Leaves. J. Plant Physiol. 2003, 160, 271–282. [Google Scholar] [CrossRef]
- Saravia, D.; Salazar, W.; Valqui-Valqui, L.; Quille-Mamani, J.; Porras-Jorge, R.; Corredor, F.-A.; Barboza, E.; Vásquez, H.; Casas Diaz, A.; Arbizu, C. Yield Predictions of Four Hybrids of Maize (Zea Mays) Using Multispectral Images Obtained from UAV in the Coast of Peru. Agronomy 2022, 12, 2630. [Google Scholar] [CrossRef]
- Alam, M.M.; Ali, M.; Ruhul Amin, A.K.; Hasanuzzaman, M. Yields Attributes Yield and Harvest Index of Three Irrigated Rice Varieties Under Different Levels of Phosphorus.Pdf. Adv. Biol. Res. 2009, 3, 132–139. [Google Scholar]
- Laenoi, S.; Rerkasem, B.; Lordkaew, S.; Prom-u-thai, C. Seasonal Variation in Grain Yield and Quality in Different Rice Varieties. Field Crops Res. 2018, 221, 350–357. [Google Scholar] [CrossRef]
- Zang, Y.; Yao, Y.; Xu, Z.; Wang, B.; Mao, Y.; Wang, W.; Zhang, W.; Zhang, H.; Liu, L.; Wang, Z.; et al. The Relationships among “STAY-GREEN” Trait, Post-Anthesis Assimilate Remobilization, and Grain Yield in Rice (Oryza sativa L.). Int. J. Mol. Sci. 2022, 23, 13668. [Google Scholar] [CrossRef]
- Kamal, N.M.; Gorafi, Y.S.A.; Abdelrahman, M.; Abdellatef, E.; Tsujimoto, H. Stay-Green Trait: A Prospective Approach for Yield Potential, and Drought and Heat Stress Adaptation in Globally Important Cereals. Int. J. Mol. Sci. 2019, 20, 5837. [Google Scholar] [CrossRef] [PubMed]
- Hour, A.; Hsieh, W.; Chang, S.; Wu, Y.; Chin, H.; Lin, Y. Genetic Diversity of Landraces and Improved Varieties of Rice (Oryza sativa L.) in Taiwan. Rice 2020, 13, 82. [Google Scholar] [CrossRef]
- Zhu, X.; Zhang, J.; Zhang, Z.; Deng, A.; Zhang, W. Dense Planting with Less Basal Nitrogen Fertilization Might Benefit Rice Cropping for High Yield with Less Environmental Impacts. Eur. J. Agron. 2016, 75, 50–59. [Google Scholar] [CrossRef]
- Tayefeh, M.; Sadeghi, S.M.; Noorhosseini, S.A.; Bacenetti, J.; Damalas, C.A. Environmental Impact of Rice Production Based on Nitrogen Fertilizer Use. Environ. Sci. Pollut. Res. 2018, 25, 15885–15895. [Google Scholar] [CrossRef]
- Guan, S.; Fukami, K.; Matsunaka, H.; Okami, M.; Tanaka, R.; Nakano, H.; Sakai, T.; Nakano, K.; Ohdan, H.; Takahashi, K. Assessing Correlation of High-Resolution NDVI with Fertilizer Application Level and Yield of Rice and Wheat Crops Using Small UAVs. Remote Sens. 2019, 11, 112. [Google Scholar] [CrossRef]
- Yang, Q.; Shi, L.; Han, J.; Zha, Y.; Zhu, P. Deep Convolutional Neural Networks for Rice Grain Yield Estimation at the Ripening Stage Using UAV-Based Remotely Sensed Images. Field Crops Res. 2019, 235, 142–153. [Google Scholar] [CrossRef]
- Duan, B.; Fang, S.; Zhu, R.; Wu, X.; Wang, S.; Gong, Y.; Peng, Y. Remote Estimation of Rice Yield With Unmanned Aerial Vehicle (UAV) Data and Spectral Mixture Analysis. Front. Plant Sci. 2019, 10, 204. [Google Scholar] [CrossRef]
- Su, X.; Wang, J.; Ding, L.; Lu, J.; Zhang, J.; Yao, X.; Cheng, T.; Zhu, Y.; Cao, W.; Tian, Y. Grain Yield Prediction Using Multi-Temporal UAV-Based Multispectral Vegetation Indices and Endmember Abundance in Rice. Field Crops Res. 2023, 299, 108992. [Google Scholar] [CrossRef]
- Hassan, M.A.; Yang, M.; Rasheed, A.; Yang, G.; Reynolds, M.; Xia, X.; Xiao, Y.; He, Z. A Rapid Monitoring of NDVI across the Wheat Growth Cycle for Grain Yield Prediction Using a Multi-Spectral UAV Platform. Plant Sci. 2019, 282, 95–103. [Google Scholar] [CrossRef]
- Stavrakoudis, D.; Katsantonis, D.; Kadoglidou, K.; Kalaitzidis, A.; Gitas, I. Estimating Rice Agronomic Traits Using Drone-Collected Multispectral Imagery. Remote Sens. 2019, 11, 545. [Google Scholar] [CrossRef]
- Bascon, M.V.; Nakata, T.; Shibata, S.; Takata, I.; Kobayashi, N.; Kato, Y.; Inoue, S.; Doi, K.; Murase, J.; Nishiuchi, S. Estimating Yield-Related Traits Using UAV-Derived Multispectral Images to Improve Rice Grain Yield Prediction. Agriculture 2022, 12, 1141. [Google Scholar] [CrossRef]
- Kanke, Y.; Tubaña, B.; Dalen, M.; Harrell, D. Evaluation of Red and Red-Edge Reflectance-Based Vegetation Indices for Rice Biomass and Grain Yield Prediction Models in Paddy Fields. Precis. Agric. 2016, 17, 507–530. [Google Scholar] [CrossRef]
- Perros, N.; Kalivas, D.; Giovos, R. Spatial Analysis of Agronomic Data and UAV Imagery for Rice Yield Estimation. Agriculture 2021, 11, 809. [Google Scholar] [CrossRef]
- Schieffer, J.; Dillon, C. The Economic and Environmental Impacts of Precision Agriculture and Interactions with Agro-Environmental Policy. Precis. Agric. 2015, 16, 46–61. [Google Scholar] [CrossRef]
- Chumbimune, S.Y.; Cardenas, G.P.; Saravia, D.; Valqui, L.; Salazar, W.; Arbizu, C.I. Methodology for avocado (persea americana mill.) Orchard evaluation using different measurement technologies. Chil. J. Agric. Anim. Sci. 2022, 38, 259–273. [Google Scholar] [CrossRef]
- Quille-Mamani, J.; Porras-Jorge, R.; Saravia-Navarro, D.; Valqui-Valqui, L.; Herrera, J.; Chávez-Galarza, J.; Arbizu, C.I. Assessment of Vegetation Índices Derived from UAV Images for Predicting Biometric Variables in Bean during Ripening Stage. Idesia 2022, 40, 39–45. [Google Scholar] [CrossRef]
- Machaca-Pillaca, R.; Pino-Vargas, E.; Ramos-Fernández, L.; Quille-Mamani, J.; Torres-Rua, A. Estimación de La Evapotranspiración Con Fines de Riego En Tiempo Real de Un Olivar a Partir de Imágenes de Un Drone En Zonas Áridas, Caso La Yarada, Tacna, Perú. Idesia 2022, 40, 55–65. [Google Scholar] [CrossRef]
- Quille-Mamani, J.A.; Ramos-Fernández, L.; Ontiveros-Capurata, R.E. Estimación de La Evapotranspiración Del Cultivo de Arroz En Perú Mediante El Algoritmo METRIC e Imágenes VANT. Rev. Teledetección 2021, 23, 13699. [Google Scholar] [CrossRef]
- Pizarro, S.; Pricope, N.G.; Figueroa, D.; Carbajal, C.; Quispe, M.; Vera, J.; Alejandro, L.; Achallma, L.; Gonzalez, I.; Salazar, W.; et al. Implementing Cloud Computing for the Digital Mapping of Agricultural Soil Properties from High Resolution UAV Multispectral Imagery. Remote Sens. 2023, 15, 3203. [Google Scholar] [CrossRef]
DAS | NDVI | CIGREEN | CVI | EVI | GNDVI | LCI | MCARI | RECL | SAVI |
---|---|---|---|---|---|---|---|---|---|
88 | 0.955 a | 11.361 a | 3.280 a | 0.754 a | 0.843 a | 0.744 a | 0.933 a | 47.045 a | 0.673 a |
103 | 0.892 b | 6.868 b | 3.316 a | 0.805 a | 0.765 b | 0.627 b | 0.826 a | 18.055 b | 0.699 a |
116 | 0.845 c | 5.477 c | 3.237 a | 0.699 b | 0.721 c | 0.563 c | 0.580 b | 12.309 c | 0.624 b |
130 | 0.705 d | 3.105 d | 2.722 b | 0.512 c | 0.593 d | 0.705 a | 0.426 c | 5.429 d | 0.485 c |
DAS | NDVI | CIGREEN | CVI | EVI | GNDVI | LCI | MCARI | RECL | SAVI |
---|---|---|---|---|---|---|---|---|---|
88 | 0.151 | 0.229 | 0.295 | 0.116 | 0.216 | 0.286 | −0.279 | 0.115 | 0.122 |
103 | 0.064 | 0.071 | 0.103 | 0.121 | 0.086 | 0.102 | 0.026 | 0.034 | 0.129 |
116 | −0.026 | −0.025 | 0.150 | −0.007 | 0.037 | −0.017 | −0.026 | −0.113 | −0.009 |
130 | 0.128 | 0.053 | −0.044 | 0.273 | 0.052 | 0.128 | 0.376 | 0.105 | 0.289 |
Variety | DAS | NDVI | CIGREEN | CVI | EVI | GNDVI | LCI | MCARI | RECL | SAVI | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Capirona | 88 | −0.116 | 0.258 | 0.789 | 0.619 | 0.313 | 0.410 | −0.129 | −0.113 | 0.599 | |||||
Capirona | 103 | 0.561 | 0.501 | 0.048 | 0.263 | 0.498 | 0.466 | 0.341 | 0.554 | 0.283 | |||||
Capirona | 116 | 0.673 | 0.673 | 0.607 | 0.691 | 0.694 | 0.697 | 0.603 | 0.672 | 0.703 | |||||
Capirona | 130 | 0.657 | 0.556 | −0.401 | 0.654 | 0.612 | 0.657 | 0.698 | 0.542 | 0.668 | |||||
Conquista Cert. | 88 | 0.200 | 0.271 | 0.395 | −0.041 | 0.258 | 0.380 | −0.772 | 0.157 | −0.027 | |||||
Conquista Cert. | 103 | 0.276 | 0.090 | −0.043 | 0.159 | 0.141 | 0.170 | 0.150 | 0.175 | 0.181 | |||||
Conquista Cert. | 116 | 0.040 | −0.009 | −0.030 | 0.236 | 0.017 | −0.074 | 0.782 | −0.016 | 0.241 | |||||
Conquista Cert. | 130 | 0.007 | −0.176 | −0.371 | 0.323 | −0.113 | 0.007 | 0.687 | −0.052 | 0.335 | |||||
Conquista Reg. | 88 | 0.036 | 0.208 | 0.516 | 0.268 | 0.261 | 0.335 | −0.154 | −0.067 | 0.295 | |||||
Conquista Reg. | 103 | −0.405 | −0.613 | −0.582 | −0.685 | −0.617 | −0.721 | −0.857 | * | −0.439 | −0.694 | ||||
Conquista Reg. | 116 | 0.558 | 0.669 | 0.815 | * | 0.615 | 0.700 | 0.630 | 0.398 | 0.547 | 0.630 | ||||
Conquista Reg. | 130 | 0.002 | −0.378 | −0.873 | * | 0.449 | −0.408 | 0.002 | 0.653 | 0.010 | 0.446 | ||||
Esperanza | 88 | 0.743 | 0.753 | 0.744 | 0.976 | *** | 0.783 | 0.820 | * | −0.572 | 0.694 | 0.971 | ** | ||
Esperanza | 103 | 0.634 | 0.654 | 0.725 | 0.835 | 0.687 | 0.735 | −0.149 | 0.600 | 0.786 | |||||
Esperanza | 116 | 0.624 | 0.618 | 0.480 | 0.612 | 0.623 | 0.654 | 0.181 | 0.596 | 0.629 | |||||
Esperanza | 130 | 0.609 | 0.624 | 0.603 | 0.561 | 0.627 | 0.609 | 0.402 | 0.600 | 0.586 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Goigochea-Pinchi, D.; Justino-Pinedo, M.; Vega-Herrera, S.S.; Sanchez-Ojanasta, M.; Lobato-Galvez, R.H.; Santillan-Gonzales, M.D.; Ganoza-Roncal, J.J.; Ore-Aquino, Z.L.; Agurto-Piñarreta, A.I. Yield Prediction Models for Rice Varieties Using UAV Multispectral Imagery in the Amazon Lowlands of Peru. AgriEngineering 2024, 6, 2955-2969. https://doi.org/10.3390/agriengineering6030170
Goigochea-Pinchi D, Justino-Pinedo M, Vega-Herrera SS, Sanchez-Ojanasta M, Lobato-Galvez RH, Santillan-Gonzales MD, Ganoza-Roncal JJ, Ore-Aquino ZL, Agurto-Piñarreta AI. Yield Prediction Models for Rice Varieties Using UAV Multispectral Imagery in the Amazon Lowlands of Peru. AgriEngineering. 2024; 6(3):2955-2969. https://doi.org/10.3390/agriengineering6030170
Chicago/Turabian StyleGoigochea-Pinchi, Diego, Maikol Justino-Pinedo, Sergio S. Vega-Herrera, Martín Sanchez-Ojanasta, Roiser H. Lobato-Galvez, Manuel D. Santillan-Gonzales, Jorge J. Ganoza-Roncal, Zoila L. Ore-Aquino, and Alex I. Agurto-Piñarreta. 2024. "Yield Prediction Models for Rice Varieties Using UAV Multispectral Imagery in the Amazon Lowlands of Peru" AgriEngineering 6, no. 3: 2955-2969. https://doi.org/10.3390/agriengineering6030170
APA StyleGoigochea-Pinchi, D., Justino-Pinedo, M., Vega-Herrera, S. S., Sanchez-Ojanasta, M., Lobato-Galvez, R. H., Santillan-Gonzales, M. D., Ganoza-Roncal, J. J., Ore-Aquino, Z. L., & Agurto-Piñarreta, A. I. (2024). Yield Prediction Models for Rice Varieties Using UAV Multispectral Imagery in the Amazon Lowlands of Peru. AgriEngineering, 6(3), 2955-2969. https://doi.org/10.3390/agriengineering6030170