Typology of Production Units for Improving Banana Agronomic Management in Ecuador
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Data Formatting
2.2. Data Analysis
3. Results and Discussion
3.1. General Characteristics
3.2. Cluster and Principal Component Analyses Based on Banana Management
3.3. Classification of Production Units According to Cluster Analysis
3.4. Multiple Linear Regression
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Martínez Valle, L. Agribusiness, Peasant Agriculture and Labour Markets: Ecuador in Comparative Perspective. J. Agrar. Chang. 2017, 17, 680–693. [Google Scholar] [CrossRef]
- Deaconu, A.; Mercille, G.; Batal, M. The Agroecological Farmer’s Pathways from Agriculture to Nutrition: A Practice-Based Case from Ecuador’s Highlands. Ecol. Food Nutr. 2019, 58, 142–165. [Google Scholar] [CrossRef] [PubMed]
- Forio, M.A.E.; Villa-Cox, G.; Van Echelpoel, W.; Ryckebusch, H.; Lock, K.; Spanoghe, P.; Deknock, A.; De Troyer, N.; Nolivos-Alvarez, I.; Dominguez-Granda, L. Bayesian Belief Network Models as Trade-off Tools of Ecosystem Services in the Guayas River Basin in Ecuador. Ecosyst. Serv. 2020, 44, 101124. [Google Scholar] [CrossRef]
- Páez, C.F.T.; Salazar, O.V. The Water–Energy–Food Nexus: An Analysis of Food Sustainability in Ecuador. Resources 2022, 11, 90. [Google Scholar] [CrossRef]
- Giuggioli, N.R.; Ollani, S.; Zanchini, R.; Danielle, B.; Sparacino, A.; Massaglia, S.; Merlino, V.M. The Appeal of Bananas: A Qualitative Sensory Analysis and Consumers’ Insights into Tropical Fruit Consumption in Italy. J. Agric. Food Res. 2024, 16, 101110. [Google Scholar] [CrossRef]
- Villaseñor-Ortiz, D.; de Mello Prado, R.; Pereira da Silva, G.; Lata-Tenesaca, L.F. Applicability of DRIS in Bananas Based on the Accuracy of Nutritional Diagnoses for Nitrogen and Potassium. Sci. Rep. 2022, 12, 18125. [Google Scholar] [CrossRef]
- Campos, J.C.; Manrique-Silupú, J.; Dorneanu, B.; Ipanaqué, W.; Arellano-García, H. A Smart Decision Framework for the Prediction of Thrips Incidence in Organic Banana Crops. Ecol. Model. 2022, 473, 110147. [Google Scholar] [CrossRef]
- INEC Estadísticas Agropecuarias. Available online: https://www.ecuadorencifras.gob.ec/estadisticas-agropecuarias-2/ (accessed on 3 January 2023).
- INEC Censo Nacional Agropecuario. Available online: https://www.ecuadorencifras.gob.ec/censo-nacional-agropecuario/ (accessed on 3 January 2023).
- Ortiz-Ulloa, J.A.; Abril-González, M.F.; Pelaez-Samaniego, M.R.; Zalamea-Piedra, T.S. Biomass Yield and Carbon Abatement Potential of Banana Crops (Musa Spp.) in Ecuador. Environ. Sci. Pollut. Res. 2021, 28, 18741–18753. [Google Scholar] [CrossRef] [PubMed]
- Vásquez-Castillo, W.; Racines-Oliva, M.; Moncayo, P.; Viera, W.; Seraquive, M. Calidad Del Fruto y Pérdidas Poscosecha de Banano Orgánico Musa Acuminata En El Ecuador. Enfoque UTE 2019, 10, 57–66. [Google Scholar] [CrossRef]
- INEC Censo Nacional Agropecuario. Available online: https://www.ecuadorencifras.gob.ec/modulo-economico-espac/ (accessed on 3 January 2023).
- Algeet-Abarquero, N.; Marchamalo, M.; Bonatti, J.; Fernández-Moya, J.; Moussa, R. Implications of Land Use Change on Runoff Generation at the Plot Scale in the Humid Tropics of Costa Rica. Catena 2015, 135, 263–270. [Google Scholar] [CrossRef]
- Aguirre, O.; Chávez, C.; Giraud, A.; Araya, M. Frequencies and Population Densities of Plant-Parasitic Nematodes on Banana (Musa AAA) Plantations in Ecuador from 2008 to 2014. Agron. Colomb. 2016, 34, 61–73. [Google Scholar] [CrossRef]
- Riera, N.; Ramirez-Villacis, D.; Barriga-Medina, N.; Alvarez-Santana, J.; Herrera, K.; Ruales, C.; Leon-Reyes, A. First Report of Banana Anthracnose Caused by Colletotrichum gloeosporioides in Ecuador. Plant Dis. 2019, 103, 763. [Google Scholar] [CrossRef]
- Villaseñor, D.; Noblecilla-Romero, Y.; Luna-Romero, E.; Molero-Naveda, R.; Barrezueta-Unda, S.; Huarquila-Henriquez, W.; González-Porras, C.; Garzón-Montealegre, J. Optimal Economic Response of Potassic Fertilization on Productive Variables of Banana (Musa Spp.). Chil. J. Agric. Anim. Sci. Agro-Cienc. 2020, 36, 161–170. [Google Scholar] [CrossRef]
- Veneziano, A.; Vacca, G.; Arana, S.; De Simone, F.; Rastrelli, L. Determination of Carbendazim, Thiabendazole and Thiophanate-Methyl in Banana (Musa acuminata) Samples Imported to Italy. Food Chem. 2004, 87, 383–386. [Google Scholar] [CrossRef]
- Segura, R.A.; Serrano, E.; Pocasangre, L.; Acuña, O.; Bertsch, F.; Stoorvogel, J.J.; Sandoval, J.A. Chemical and Microbiological Interactions between Soils and Roots in Commercial Banana Plantations (Musa AAA, Cv. Cavendish). Sci. Hortic. 2015, 197, 66–71. [Google Scholar] [CrossRef]
- Nyombi, K. Diagnosis and Management of Nutrient Constraints in Bananas (Musa spp.). In Fruit Crops; Elsevier: Amsterdam, The Netherlands, 2020; pp. 651–659. [Google Scholar]
- Wunder, S. Ecuador Goes Bananas: Incremental Technological Change and Forest Loss. In Agricultural Technologies and Tropical Deforestation; CAB International: Wallingford, UK, 2001; pp. 167–194. [Google Scholar]
- Caicedo, O.; Balmaseda, C.; Proaño, J. Evaluación Hidráulica Del Riego Por Aspersión Subfoliar En Banano (Musa paradisiaca) En La Finca San José 2, Provincia Los Ríos, Ecuador. Rev. Cienc. Técnicas Agropecu. 2015, 24, 38–43. [Google Scholar]
- Fernández-Ledesma, C.M.; Garcés-Fiallos, F.R.; Rosso, F.; Cordero, N.; Ferraz, S.; Durigon, A.; Portalanza, D. Assessing the Risk of Fusarium oxysporum f. Sp. Cubense Tropical Race 4 Outbreaks in Ecuadorian Banana Crops Using Spatial Climatic Data. Sci. Agropecu. 2023, 14, 301–312. [Google Scholar] [CrossRef]
- Teshager Abeje, M.; Tsunekawa, A.; Adgo, E.; Haregeweyn, N.; Nigussie, Z.; Ayalew, Z.; Elias, A.; Molla, D.; Berihun, D. Exploring Drivers of Livelihood Diversification and Its Effect on Adoption of Sustainable Land Management Practices in the Upper Blue Nile Basin, Ethiopia. Sustainability 2019, 11, 2991. [Google Scholar] [CrossRef]
- Tamburini, G.; Bommarco, R.; Wanger, T.C.; Kremen, C.; Van Der Heijden, M.G.A.; Liebman, M.; Hallin, S. Agricultural Diversification Promotes Multiple Ecosystem Services without Compromising Yield. Sci. Adv. 2020, 6, eaba1715. [Google Scholar] [CrossRef] [PubMed]
- Fielke, S.; Taylor, B.; Jakku, E. Digitalisation of Agricultural Knowledge and Advice Networks: A State-of-the-Art Review. Agric. Syst. 2020, 180, 102763. [Google Scholar] [CrossRef]
- Aguilar-Rivera, N. A Framework for the Analysis of Socioeconomic and Geographic Sugarcane Agro Industry Sustainability. Socio-Econ. Plan. Sci. 2019, 66, 149–160. [Google Scholar] [CrossRef]
- Kılıç, O.; Boz, İ.; Eryılmaz, G.A. Comparison of Conventional and Good Agricultural Practices Farms: A Socio-Economic and Technical Perspective. J. Clean. Prod. 2020, 258, 120666. [Google Scholar] [CrossRef]
- Naranjo, L.; Correa-Cano, M.E.; Rey, D.; Chengot, R.; España, F.; Sactic, M.; Knox, J.W.; Yan, X.; Viteri-Salazar, O.; Foster, W. A Scenario-Specific Nexus Modelling Toolkit to Identify Trade-Offs in the Promotion of Sustainable Irrigated Agriculture in Ecuador, a Belt and Road Country. J. Clean. Prod. 2023, 413, 137350. [Google Scholar] [CrossRef]
- Ramírez-Orellana, A.; Ruiz-Palomo, D.; Rojo-Ramírez, A.; Burgos-Burgos, J.E. The Ecuadorian Banana Farms Managers’ Perceptions: Innovation as a Driver of Environmental Sustainability Practices. Agriculture 2021, 11, 213. [Google Scholar] [CrossRef]
- Stemmler, H.; Meemken, E.-M. Greenhouse Farming and Employment: Evidence from Ecuador. Food Policy 2023, 117, 102443. [Google Scholar] [CrossRef]
- Ayala, V.R.; Kunapuli, S.; Maiguashca, J. Development of Yield Prediction Models in the Maize Crop Using Spectral Data for Precision Agriculture Applications. Ecuad. Calid. Rev. Científica Ecuat. 2015, 2, 16–22. [Google Scholar]
- Farfán, F.P. Agroclimatología del Ecuador; Editorial Abya-Yala: Quito, Ecuador, 2018; ISBN 9978104925. [Google Scholar]
- Mihai, R.A.; Melo Heras, E.J.; Terán Maza, V.A.; Espinoza Caiza, I.A.; Pinto Valdiviezo, E.A.; Catana, R.D. The Panoramic View of Ecuadorian Soil Nutrients (Deficit/Toxicity) from Different Climatic Regions and Their Possible Influence on the Metabolism of Important Crops. Toxics 2023, 11, 123. [Google Scholar] [CrossRef] [PubMed]
- Bernardo, S.; Soares, A.A.; Mantovani, E.C. Manual de Irrigação; Soares, A.A., Mantovani, E.C., Eds.; Viçosa UFV: Viçosa, Brazil, 2006. [Google Scholar]
- Kassambara, A.; Mundt, F. Package ‘Factoextra’. Extr. Vis. Results Multivar. Data Anal. 2017, 76, 1–74. [Google Scholar]
- Revelle, W.; Revelle, M.W. Package ‘Psych’. Compr. R Arch. Netw. 2015, 337, 161–165. [Google Scholar]
- Maechler, M.; Rousseeuw, P.; Struyf, A.; Hubert, M.; Hornik, K.; Studer, M. Package ‘Cluster’. Dosegljivo 2013, 980, 1–84. [Google Scholar]
- de Mendiburu, F.; Yaseen, M. Agricolae: Statistical Procedures for Agricultural Research. R Package Version 1.4.0. Available online: https://myaseen208.com/agricolae/authors.html (accessed on 3 January 2023).
- Derksen, S.; Keselman, H.J. Backward, Forward and Stepwise Automated Subset Selection Algorithms: Frequency of Obtaining Authentic and Noise Variables. Br. J. Math. Stat. Psychol. 1992, 45, 265–282. [Google Scholar] [CrossRef]
- Yoo, W.; Mayberry, R.; Bae, S.; Singh, K.; He, Q.P.; Lillard Jr, J.W. A Study of Effects of Multicollinearity in the Multivariable Analysis. Int. J. Appl. Sci. Technol. 2014, 4, 9. [Google Scholar] [PubMed]
- Coral, C.; Mithöfer, D. The Backbone of Agrifood Value Chain Resilience: Innovation in the Ecuadorian Banana Value Chain from a Historical Perspective. World Dev. Perspect. 2023, 29, 100476. [Google Scholar] [CrossRef]
- Curry, G.N.; Nake, S.; Koczberski, G.; Oswald, M.; Rafflegeau, S.; Lummani, J.; Peter, E.; Nailina, R. Disruptive Innovation in Agriculture: Socio-Cultural Factors in Technology Adoption in the Developing World. J. Rural Stud. 2021, 88, 422–431. [Google Scholar] [CrossRef]
- Dadrasnia, A.; Usman, M.M.; Omar, R.; Ismail, S.; Abdullah, R. Potential Use of Bacillus Genus to Control of Bananas Diseases: Approaches toward High Yield Production and Sustainable Management. J. King Saud Univ. 2020, 32, 2336–2342. [Google Scholar] [CrossRef]
- Sonah, H.; Bastien, M.; Iquira, E.; Tardivel, A.; Légaré, G.; Boyle, B.; Normandeau, É.; Laroche, J.; Larose, S.; Jean, M. An Improved Genotyping by Sequencing (GBS) Approach Offering Increased Versatility and Efficiency of SNP Discovery and Genotyping. PLoS ONE 2013, 8, e54603. [Google Scholar] [CrossRef] [PubMed]
- Jouzi, Z.; Azadi, H.; Taheri, F.; Zarafshani, K.; Gebrehiwot, K.; Van Passel, S.; Lebailly, P. Organic Farming and Small-Scale Farmers: Main Opportunities and Challenges. Ecol. Econ. 2017, 132, 144–154. [Google Scholar] [CrossRef]
- Timsina, J. Can Organic Sources of Nutrients Increase Crop Yields to Meet Global Food Demand? Agronomy 2018, 8, 214. [Google Scholar] [CrossRef]
- Stads, G.; Nienke, M.B.; Perez, S.; Flaherty, K.; Falconi, C.A. A Cross-Country Analysis of Institutions, Investment, and Capacities, Inter-American Development Bank (IDB); International Food Policy Research Institute: Baltimore, MD, USA, 2020. [Google Scholar]
- Priegnitz, U.; Lommen, W.J.M.; Onakuse, S.; Struik, P.C. A Farm Typology for Adoption of Innovations in Potato Production in Southwestern Uganda. Front. Sustain. Food Syst. 2019, 3, 68. [Google Scholar] [CrossRef]
- Granato, D.; Santos, J.S.; Escher, G.B.; Ferreira, B.L.; Maggio, R.M. Use of Principal Component Analysis (PCA) and Hierarchical Cluster Analysis (HCA) for Multivariate Association between Bioactive Compounds and Functional Properties in Foods: A Critical Perspective. Trends Food Sci. Technol. 2018, 72, 83–90. [Google Scholar] [CrossRef]
- Zhang, A.; Hochman, Z.; Horan, H.; Navarro, J.G.; Das, B.T.; Waldner, F. Socio-Psychological and Management Drivers Explain Farm Level Wheat Yield Gaps in Australia. Agron. Sustain. Dev. 2019, 39, 10. [Google Scholar] [CrossRef]
- Santos, E.; Sánchez, E.; Villao, L. Establishing a Genome Editing Platform of Banana in Ecuador: Challenges and Regulation. In Proceedings of the XXXI International Horticultural Congress (IHC2022): International Symposium on Breeding and Effective Use of Biotechnology and 1362, Angers, France, 14–20 August 2022; pp. 43–48. [Google Scholar]
- Yang, P.; Wu, L.; Cheng, M.; Fan, J.; Li, S.; Wang, H.; Qian, L. Review on Drip Irrigation: Impact on Crop Yield, Quality, and Water Productivity in China. Water 2023, 15, 1733. [Google Scholar] [CrossRef]
Variable | Description and Units | Minimum | Maximum |
---|---|---|---|
Agronomic managements | |||
Use of fertilizer | =1 if mineral fertilizers are used. 0 if mineral fertilizers are not used. | 0 | 1 |
Use of organic inputs | =1 if organic inputs are used. 0 if organic inputs are not used. | 0 | 1 |
Use of fungicides | =1 if fungicides are used. 0 if fungicides are not used. | 0 | 1 |
Use of pesticides | =1 if pesticides are used. 0 if pesticides are not used. | 0 | 1 |
Plant density | =1 if high density is used. 0 if low density is used. | 0 | 1 |
Use of improved genotypes | =1 if improved genotypes are used. 0 if improved genotypes are not used. | 0 | 1 |
Yield | |||
Yield | Mg of banana per ha | 1.18 | 95.12 |
Access to agricultural extension and knowledge | |||
Support from the Ministry of Agriculture (MAG) | =1 if there is access to MAG support. 0 if there is no access to MAG support. | 0 | 1 |
Private support | =1 if there is access to private support. 0 if there is no access to private support. | 0 | 1 |
Years working with banana | Number of years | 0 | 60 |
Socio-economic characteristics | |||
Province | =1 for Guayas. 0 for Los Rios | 0 | 1 |
Size of the production unit | ha per production unit | 0.35 | 2658.90 |
Hired workers | Contract workers per ha | 0 | 18 |
Family workers | Family workers per ha | 0 | 8.5 |
Exportation | =1 if production is for exportation. 0 if production is for local market. | 0 | 1 |
Agronomic attributes | |||
Amount of mineral fertilizer | in l or kg per ha | 0.00 | 2500.00 |
Amount of pesticide | in l or kg per ha | 0.00 | 24.80 |
Amount of fungicide | in l or kg per ha | 0.00 | 92.00 |
Amount of organic fertilizer | in l or kg per ha | 0.00 | 5010.00 |
Waste | Mg per ha | 0.00 | 14.00 |
Irrigation efficiency | in % | 0.50 | 0.90 |
Agronomic Management | Factors | |||
---|---|---|---|---|
1 | 2 | 3 | 4 | |
Use of fertilizer | 0.57 | 0.04 | 0.08 | −0.23 |
Use of organic inputs | −0.38 | 0.53 | −0.24 | 0.35 |
Use of fungicides | 0.42 | 0.06 | −0.19 | −0.84 |
Use of pesticides | 0.59 | 0.08 | 0.04 | 0.10 |
Plant density | 0.03 | −0.65 | 0.75 | 0.11 |
Use of improved genotypes | −0.08 | −0.68 | 0.58 | −0.32 |
Eigenvalues | 2.34 | 1.31 | 1.14 | 1.03 |
Variance (%) | 39.00 | 20.04 | 14.30 | 11.84 |
Cumulative variance (%) | 39.00 | 59.07 | 73.37 | 85.21 |
Variable | Average Value | Cluster 1 (n = 27) | Cluster 2 (n = 92) | Cluster 3 (n = 185) | Cluster 4 (n = 15) | p-Value |
---|---|---|---|---|---|---|
Agronomic managements | ||||||
Use of fertilizer | 0.95 | 1.00 a | 0.97 a | 0.98 a | 0.00 b | 0.000 |
Use of organic inputs | 0.15 | 0.00 c | 0.40 b | 0.00 c | 0.73 a | 0.000 |
Use of fungicides | 0.72 | 0.81 b | 0.24 c | 1.00 a | 0.00 d | 0.000 |
Use of pesticides | 0.93 | 1.00 a | 0.91 b | 1.00 a | 0.00 c | 0.000 |
Plant density | 0.09 | 1.00 a | 0.01 c | 0.01 c | 0.07 b | 0.001 |
Use of improved genotypes | 0.49 | 0.74 a | 0.47 b | 0.45 b | 0.67 ab | 0.019 |
Number of managements adopted | 3.13 | 4.56 a | 3.03 c | 3.45 b | 1.47 d | 0.000 |
Yield | ||||||
Yield in Mg ha−1 | 49.03 | 46.68 a | 45.83 b | 51.65 a | 40.64 b | 0.001 |
Access to agricultural extension and knowledge | ||||||
Support from the Ministry of Agriculture (MAG) | 0.10 | 0.11 | 0.12 | 0.10 | 0.07 | 0.980 |
Private support | 0.31 | 0.31 | 0.27 | 0.32 | 0.43 | 0.660 |
Years working with banana | 19.63 | 16.44 | 19.62 | 20.18 | 18.73 | 0.563 |
Socio-economic characteristics | ||||||
Province | 0.53 | 0.48 ab | 0.48 ab | 0.58 a | 0.33 b | 0.041 |
Size of the production unit | 136.13 | 160.16 a | 88.72 b | 161.85 a | 66.53 b | 0.008 |
Hired workers | 6.07 | 3.52 b | 7.53 a | 5.86 ab | 4.20 ab | 0.039 |
Family workers | 1.42 | 1.00 | 1.07 | 1.69 | 1.07 | 0.812 |
Exportation | 0.91 | 0.93 ab | 0.83 b | 0.94 a | 0.93 ab | 0.025 |
Agronomic attributes | ||||||
Amount of mineral fertilizer | 874.13 | 1304.96 a | 870.66 b | 883.85 b | 0.00 c | 0.001 |
Amount of pesticide | 6.26 | 8.71 ab | 8.43 a | 5.62 b | 0.00 c | 0.000 |
Amount of fungicide | 10.10 | 0.81 b | 0.24 c | 1.00 a | 0.00 d | 0.000 |
Amount of organic inputs | 77.29 | 0.00 b | 83.79 b | 0.00 b | 1129.80 a | 0.000 |
Waste | 1.22 | 3.24 a | 0.69 c | 1.29 b | 0.04 c | 0.000 |
Irrigation efficiency | 0.84 | 0.83 | 0.84 | 0.83 | 0.83 | 0.743 |
Cluster 1 | Cluster 2 | Cluster 3 | |
---|---|---|---|
Adjusted R2 | 0.52 | 0.26 | 0.15 |
Probability | *** | *** | ** |
N | 27 | 92 | 185 |
Access to agricultural extension and knowledge | |||
Support from the Ministry of Agriculture (MAG) | ns | ns | ns |
Private support | ns | ns | ns |
Years working with banana | ns | ns | ns |
Socio-economic characteristics | |||
Province | ns | (+) *** | ns |
Size of the production unit | (−) * | (−) * | ns |
Hired workers | ns | ns | ns |
Family workers | ns | (+) * | ns |
Exportation | ns | ns | (+) *** |
Agronomic attributes | |||
Amount of mineral fertilizer | ns | ns | ns |
Amount of pesticide | ns | ns | ns |
Amount of fungicide | ns | ns | (+) * |
Amount of organic inputs | ns | ns | ns |
Waste | (+) *** | (+) *** | (+) *** |
Irrigation efficiency | ns | (+) * | ns |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Quiloango-Chimarro, C.A.; Gioia, H.R.; de Oliveira Costa, J. Typology of Production Units for Improving Banana Agronomic Management in Ecuador. AgriEngineering 2024, 6, 2811-2823. https://doi.org/10.3390/agriengineering6030163
Quiloango-Chimarro CA, Gioia HR, de Oliveira Costa J. Typology of Production Units for Improving Banana Agronomic Management in Ecuador. AgriEngineering. 2024; 6(3):2811-2823. https://doi.org/10.3390/agriengineering6030163
Chicago/Turabian StyleQuiloango-Chimarro, Carlos Alberto, Henrique Raymundo Gioia, and Jéfferson de Oliveira Costa. 2024. "Typology of Production Units for Improving Banana Agronomic Management in Ecuador" AgriEngineering 6, no. 3: 2811-2823. https://doi.org/10.3390/agriengineering6030163
APA StyleQuiloango-Chimarro, C. A., Gioia, H. R., & de Oliveira Costa, J. (2024). Typology of Production Units for Improving Banana Agronomic Management in Ecuador. AgriEngineering, 6(3), 2811-2823. https://doi.org/10.3390/agriengineering6030163