Technological Upgrade of a Vicon RS-EDW Spreader: Development of a Microcontroller for Variable Rate Application
Abstract
:1. Introduction
2. Materials and Methods
2.1. Characteristics of Vicon RS-EDW Spreader
2.2. Previous VRT Control System of Vicon RS-EDW Spreader
2.3. Poposed System of Vicon RS-EDW Spreader Control as VRT
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Lu, Y.; Liu, M.; Li, C.; Liu, X.; Cao, C.; Li, X.; Kan, Z. Precision fertilization and irrigation: Progress and applications. AgriEngineering 2022, 4, 626–655. [Google Scholar] [CrossRef]
- Maleki, M.R.; Mouazen, A.M.; De Ketelaere, B.; Ramon, H.; De Baerdemaeker, J. On-the-go variable-rate phosphorus fertilisation based on a visible and near-infrared soil sensor. Biosyst. Eng. 2008, 99, 35–46. [Google Scholar] [CrossRef]
- Serrano, J.; Shahidian, S.; Marques da Silva, J.; Paixão, L.; Calado, J.; Carvalho, M. Integration of soil electrical conductivity and indices obtained through satellite imagery for differential management of pasture fertilization. AgriEngineering 2019, 4, 567–585. [Google Scholar] [CrossRef]
- Mirzakhaninafchi, H.; Singh, M.; Dixit, A.K.; Prakash, A.; Sharda, S.; Kaur, J.; Nafchi, A.M. Performance assessment of a sensor-based variable-rate real-time fertilizer applicator for rice crop. Sustainability 2022, 14, 11209. [Google Scholar] [CrossRef]
- Serrano, J.; Peça, J.; Marques da Silva, J.; Shahidian, S. Medição e mapeamento da condutividade eléctrica aparente do solo em pastagens. Rev. Cienc. Agric. 2010, 2, 5–14. (In Portuguese) [Google Scholar]
- Al-Gaadi, K.A.; Tola, E.; Alameen, A.A.; Madugundu, R.; Marey, S.A.; Zeyada, A.M.; Edrris, M.K. Control and monitoring systems used in variable rate application of solid fertilizers: A review. J. King Saud Univ. Sci. 2023, 35, 102574. [Google Scholar] [CrossRef]
- Sharipov, G.M.; Heiß, A.; Eshkabilov, S.L.; Griepentrog, H.W.; Paraforos, D.S. Variable rate application accuracy of a centrifugal disc spreader using ISO 11783 communication data and granule motion modeling. Comput. Electron. Agric. 2021, 182, 106006. [Google Scholar] [CrossRef]
- Grisso, R.B.; Alley, M.; Thomason, W.; Holshouser, D.; Roberson, G.T. Precision farming tools: Variable-rate application. In Virginia Cooperative Extension, Publication 442–505; Virginia Polytechnic Institute and State University: Petersburg, VA, USA, 2011; pp. 1–16. [Google Scholar]
- Ess, D.R.; Morgan, M.T.; Parson, S. Implementing Site-Specific Management: Map-Versus Sensor-Based Variable Rate Application; Precision Agriculture, Purdue University: Lafayette, IN, USA, 2001; SSM-2-W. [Google Scholar]
- Loon, J.V.; Speratti, A.; Govaerts, B. Precision for smallholder farmers: A small-scale-tailored variable rate fertilizer application kit. Agriculture 2018, 8, 48. [Google Scholar] [CrossRef]
- HeiB, A.; Paraforos, D.S.; Sharipov, G.M.; Griepentrog, H.W. Modeling and simulation of a multi-parametric fuzzy expert system for variable rate nitrogen application. Comput. Electron. Agric. 2021, 182, 106008. [Google Scholar]
- Mirzakhaninafchi, H.; Singh, M.; Bector, V.; Gupta, O.P.; Singh, R. Design and development of a variable rate applicator for real-time application of fertilizer. Sustainability 2021, 13, 8694. [Google Scholar] [CrossRef]
- Tola, E.; Kataoka, T.; Burce, M.; Okamoto, H.; Hata, S. Granular fertiliser application rate control system with integrated output volume measurement. Biosyst. Eng. 2008, 101, 411–416. [Google Scholar] [CrossRef]
- Meng, Z.; Zhao, C.; Liu, H.; Huang, W.; Fu, W.; Wang, X. Development and performance assessment of map-based variable rate granule application system. J. Jiangsu Univ. Nat. Sci. Ed. 2009, 30, 338–342. [Google Scholar]
- Jafari, M.; Hemmat, A.; Sadeghi, M. Development and performance assessment of a DC electric variable-rate controller for use on grain drills. Comput. Electron. Agric. 2010, 73, 56–65. [Google Scholar] [CrossRef]
- Serrano, J.M.; Peça, J.O.; Shahidian, S. Evaluation of variable rate technology for fertilizer application in permanent pastures. J. Agric. Sci. Technol. A 2011, 1, 489–499. [Google Scholar]
- Talha, Z.; Tola, E.; Al-Gaadi, K.A.; Kheiralla, A. Pneumatic system for granular fertilizer flow rate control. Middle-East J. Sci. Res. 2011, 8, 688–693. [Google Scholar]
- Forouzanmehr, E.; Loghavi, M. Design, development and field evaluation of a map-based variable rate granular fertilizer application control system. Agric. Eng. Int. CIGR J. 2012, 14, 255–261. [Google Scholar]
- Reyes, J.; Esquivel, W.; Cifuentes, D.; Ortega-Blu, R. Field testing of an automatic control system for variable rate fertilizer application. Comput. Electron. Agric. 2015, 113, 260–265. [Google Scholar] [CrossRef]
- Martínez, J.; Pérez Ruiz, M.; Castro, S.; Agüera Vega, J. Desarrollo de un prototipo universal para adaptación de equipos centrífugos de abono convencionales en equipos de aplicación variable. In Proceedings of the VIII Congreso Ibérico de Agroingeniería, Orihuela, Alicante, Spain, 1–3 June 2015; pp. 967–975. [Google Scholar]
- Chandel, N.; Mehta, C.; Tewari, V.K.; Nare, B. Digital map-based site-specific granular fertilizer application system. Curr. Sci. 2016, 111, 1208–1213. [Google Scholar] [CrossRef]
- Gurjar, B.; Sahoo, P.K.; Kumar, A. Design and development of variable rate metering system for fertilizer application. J. Agric. Eng. 2017, 54, 12–21. [Google Scholar]
- Alameen, A.A.; Al-Gaadi, K.A.; Tola, E. Development and performance evaluation of a control system for variable rate granular fertilizer application. Comput. Electron. Agric. 2019, 160, 31–39. [Google Scholar] [CrossRef]
- Song, C.; Zhou, Z.; Zang, Y.; Zhao, L.; Yang, W.; Luo, X.; Jiang, R.; Ming, R.; Zang, Y.; Zi, L.; et al. Variable-rate control system for UAV-based granular fertilizer spreader. Comput. Electron. Agric. 2021, 180, 105832. [Google Scholar] [CrossRef]
- Paraforos, D.S.; Sharipov, G.M.; Griepentrog, H.W. ISO 11783-compatible industrial sensor and control systems and related research: A review. Comput. Electron. Agric. 2019, 163, 104863. [Google Scholar] [CrossRef]
- Mahmoodpour, M.; Maleki, M.R.; Mollazade, K. A new approach for variable rate fertilization based on direct read of soil map image. Span. J. Agric. Res. 2022, 20, e0209. [Google Scholar] [CrossRef]
- Wan, C.; Yang, J.; Zhou, L.; Wang, S.; Peng, J.; Tan, Y. Fertilization control system research in orchard based on the PSO-BP-PID control algorithm. Machines 2022, 10, 982. [Google Scholar] [CrossRef]
- Yu, J.H.; Kim, Y.J.; Ryu, K.H. Development of a controller for variable-rate application of granular fertilizer. J. Biosyst. Eng. 2006, 31, 108–114. [Google Scholar] [CrossRef]
- Katz, L.; Ben-Gal, A.; Litaor, M.I.; Naor, A.; Peres, M.; Bahat, I.; Netzer, Y.; Peeters, A.; Alchanatis, V.; Cohen, Y. Spatiotemporal normalized ratio methodology to evaluate the impact of field-scale variable rate application. Precis. Agric. 2022, 23, 1125–1152. [Google Scholar] [CrossRef]
Reference | Spreader | Control Type | Controller/Microcontroller | Flow Sensors Type | Actuators Type |
---|---|---|---|---|---|
Maleki et al. [2] | Amazone ED 302 | Real-time (VIS–NIR spectrophotometer) | LabView–National Instruments | Position sensor | Electric linear (Linak) with gearbox |
Loon et al. [10] | Universal | Real-time (Greenseek N-sensors) | Microcontroller (not available) | Position sensor | Electric linear |
HeiB et al. [11] | Rauch EMC+W AXIS H | Real-time (Yara N-sensors) | Trimble EZ-pilot | Load cells | Electro-hydraulic |
Mirzakhaninafchi et al. [12] | Not available (commercial row fertilizer applicator) | Real-time (Yara N-sensors) | RaspberryPi3 BCM2837Arduino Uno | Proximity sensor | Electro-hydraulic |
Tola et al. [13] | TJEV-4LR–TABATA | Post-processing (prescription maps) | PC (not available) | Proximity, level and linear sensors | Electric motor |
Meng et al. [14] | Not available | Post-processing (prescription maps) | PC 104 CPU moduleTI 2407 DSP | Proximity sensor | Electro-hydraulic |
Jafari et al. [15] | Hassia DU100 (seeder) | Post-processing (prescription maps) | DC motor controller | Proximity sensor | Electric motor |
Serrano et al. [16] | Vicon RS-EDW | Post-processing (prescription maps) | Fieldstar and Ferticontrol | Load cells | Electric linear (Linak) |
Talha et al. [17] | ATESPAR–GIAD Company | Post-processing (prescription maps) | ATMega16L | Proximity sensor | Eletro-pneumatic |
Forouzanmehr and Loghavi [18] | Prototype | Post-processing (prescription maps) | PCAtMega16 | Proximity sensor | Electric stepper motor |
Reyes et al. [19] | Baldan SPD 2200 | Post-processing (prescription maps) | Strip-Till Granular Control Module–Ag Leader | Proximity sensor | Electro-hydraulic |
Martínez et al. [20] | SOLA model D-903 | Post-processing (prescription maps) | Trimble EZ-Boom Arduino UNO | Position sensor | Electric linear |
Chandel et al. [21] | Not available (commercial row fertilizer applicator) | Post-processing (prescription maps) | PCMC AtMega 328P | Position sensor | DC motor |
Gurjar et al. [22] | Prototype | Post-processing (prescription maps) | LCDAtMega 8A | Proximity and torque sensors | Electric stepper motor |
Alameen et al. [23] | SOLA TRISEN 294/R | Post-processing (prescription maps) | Arduino MEGA 2560 | Proximity sensor | Eletro-pneumatic |
Song et al. [24] | UAVModel R20 | Post-processing (prescription maps) | MC STM32 | Proximity sensor | Electric motor |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Serrano, J.; Amaral, A.; Shahidian, S.; Silva, J.M.d.; Moral, F.J.; Escribano, C. Technological Upgrade of a Vicon RS-EDW Spreader: Development of a Microcontroller for Variable Rate Application. AgriEngineering 2024, 6, 1436-1449. https://doi.org/10.3390/agriengineering6020082
Serrano J, Amaral A, Shahidian S, Silva JMd, Moral FJ, Escribano C. Technological Upgrade of a Vicon RS-EDW Spreader: Development of a Microcontroller for Variable Rate Application. AgriEngineering. 2024; 6(2):1436-1449. https://doi.org/10.3390/agriengineering6020082
Chicago/Turabian StyleSerrano, João, Alexandre Amaral, Shakib Shahidian, José Marques da Silva, Francisco J. Moral, and Carlos Escribano. 2024. "Technological Upgrade of a Vicon RS-EDW Spreader: Development of a Microcontroller for Variable Rate Application" AgriEngineering 6, no. 2: 1436-1449. https://doi.org/10.3390/agriengineering6020082
APA StyleSerrano, J., Amaral, A., Shahidian, S., Silva, J. M. d., Moral, F. J., & Escribano, C. (2024). Technological Upgrade of a Vicon RS-EDW Spreader: Development of a Microcontroller for Variable Rate Application. AgriEngineering, 6(2), 1436-1449. https://doi.org/10.3390/agriengineering6020082