Health and Thermal Comfort of Dairy Cattle in Compost-Bedded Pack Barns and Other Types of Housing: A Comparative Systematic Review
Abstract
:1. Introduction
2. Materials and Methods
2.1. Search Strategy
2.2. Inclusion and Exclusion Criteria for Studies
- ▪
- First stage: Meta-data assessment, excluding studies that were not published in English, review articles, dissertations, theses, conference proceedings, and book chapters;
- ▪
- Second stage: Assessment of study titles and abstracts, identifying and excluding studies that did not evaluate CBP systems compared to other intensive housing systems for dairy cattle (FS, LH, and/or TS), or that did not evaluate and/or characterize indicators of animal health and/or thermal comfort in the aforementioned systems;
- ▪
- Third stage: Qualitative assessment of the filtered studies, using the domains 1 (study eligibility criteria), 2 (study identification and selection), and 3 (data collection and assessment) of the Risk of Bias in Systematic Reviews (ROBIS) tool, in accordance with Whiting et al. [30];
- ▪
- Fourth stage: Finally, the remaining studies were read in detail, with the aim of assessing whether all of them referred to experimental studies that assessed/characterized the health and/or thermal comfort of dairy cattle housed in CBP systems, compared to FS, TS, and/or LH systems.
2.3. Data Extraction
3. Results and Discussion
3.1. Overview of Included Studies
Study Details | |||||
---|---|---|---|---|---|
Reference | Local | Facilities Type | Animals/EU | Breed | Objective |
Lobeck et al. [20] | Minnesota and South Dakota (USA) | 6 CBP 1 6 FS-NV 1 6 FS-CV 2 | 78.8 ± 32.4 126.7 ± 79.6 139.6 ± 63.4 | Holstein and Jersey–Holstein crossbreds | To describe animal welfare in CBP and FS-CV facilities, compared to FS-NV facilities, using outcome-based measures (locomotion, body condition, hygiene, foot lesions, respiratory rates, slaughter, mortality, and prevalence of mastitis infection) |
Lobeck et al. [34] 3 | Minnesota and South Dakota (USA) | 6 CBP 1 6 FS-NV 1 6 FS-CV 2 | 78.8 ± 32.4 126.7 ± 79.6 139.6 ± 63.4 | Holstein and Jersey–Holstein crossbreds | To describe different housing systems for dairy cattle (CBP, FS-CV, and FS-NV), and to evaluate air temperature, relative humidity, air velocity, and air quality (ammonia and hydrogen sulfide), as well as light intensity |
Astiz et al. [35] | SP 4 | 1 CBP 1 1 LH 1 | 180 5 110 5 | Holstein | To analyze the potential effects of using CBP systems, compared to LH systems, during the dry period on the health (udder and uterus), reproductive performance, and productive performance during the following lactation of cows with more than 2 calfs |
Eckelkamp et al. [36] | Kentucky (USA) | 8 CBP 1 7 FS 1 | 178 ± 108 84 ± 37 | NS | To evaluate the differences between CBP and FS systems for mastitis indicators (clinical mastitis, SCC, high SCC, and SCC in bulk tanks), locomotion, hygiene, and foot scores |
Burgstaller et al. [37] | AT 6 | 5 CBP 1 5 FS 1 | 20–41 20–39 | Fleckvieh and Holstein | To evaluate the prevalence of lameness and the prevalence and type of foot lesions in cows kept in CBP systems, and to compare these results with data from cows kept in other conventional housing systems (FS) |
Costa et al. [38] 7 | Paraná (BR) | 12 CBP 1 23 FS 1 | 56–173 207–376 | Holstein | To compare the prevalence of lameness and lesions in the hocks and knees of confined dairy cattle in CBP, FS, or a combination of these two systems, in southern Brazil |
Leso et al. [39] | Mantua and Cremona (IT) | 10 CBP 1 10 FS-M 1,8 10 FS-S 1,9 | 112.0 ± 56.6 147.0 ± 102.3 143.0 ± 83.9 | Holstein | To evaluate and compare the performance of dairy cows housed in CBP and FS systems, with a primary focus on herd longevity |
Bran et al. [40] | Paraná (BR) | 12 CBP 1 38 FS 1 | 104.3 ± 62.9 327.7 ± 201.0 | Holstein and others | To study the factors at the cow, barn, and herd levels associated with lameness in lactating dairy cows housed in CBP and FS systems in southern Brazil |
Biasato et al. [41] | Cuneo (IT) | 1 CBP 1 1 FS 1 | 11 11 | Fleckvieh | To develop and describe a CBP system for dairy cattle housing, evaluate and compare the health and welfare of cows housed in CBP versus those kept in a conventional system (FS), and characterize the quality of milk and three local traditional products from northwestern Italy |
Fernández et al. [42] | Catalonia (SP) | 2 CBP 1 2 FS 1 2 LH 1 | 73–105 10 95–96 10 88–9 10 | Holstein | To examine the comfort and behavior of lactating dairy cows housed in three different types of housing systems on the same farm: CBP, FS, and LH |
Kogima et al. [43] 11 | Santa Catarina (BR) | 17 CBP 1 17 FS 1 | 52.2 ± 23.5 82.0 ± 57.0 | NS | To evaluate the impact of different dairy cattle production systems (CBP, FS, and grazing) on animal welfare using the Welfare Quality® protocol |
Witkowska and Ponieważ [9] | PL 6 | 1 CBP 1 1 FS-SR 1,12 1 FS-SC 1,13 1 TS 1 | 120 (in each system) | Polish Holstein-Friesian | To evaluate the impact of different housing systems (CBP, FS-SR, FS-SC, and TS) on the prevalence of diseases and productive life of dairy cows |
Emanuelson et al. [44] | AT, DE, IT, NL, SI and SE | 16 CBP 1,14 16 FS 1,14 | 14–175 15 28–156 15 | Holstein and others | To evaluate the health of dairy cattle housed in CBP and FS systems based on health indicators (CCS, high CCS, elevated CCS, ketosis risk, prolonged calving intervals, dystocia, and stillbirths) and other characteristics (lifespan, productive life, parity at herd exit, first-calving risk, calf mortality) |
3.2. Animal Health
Reference | Indicator | Result Achieved 1 | Effect 2 | |||||
---|---|---|---|---|---|---|---|---|
CBP | FS | LH | TS | CBP × FS | CBP × LH | CBP × TS | ||
Lobeck et al. [20] | Respiration rate (RR, in breaths min−1) 3 | 58.4 | 59.3 (NV) and 57.5 (CV) | = | ||||
Prevalence of clinical lameness (PLClin., in %) 4,5 | 4.4 | 15.9 (NV) and 13.1 (CV) | + | |||||
Prevalence of severe lameness (PLSev., in %) 4,6 | 0.8 | 1.4 (NV) and 1.0 (CV) | = | |||||
Prevalence of hock lesion (PHL, in %) 7,8 | 3.8 | 23.9 (NV) and 31.2 (CV) | + | |||||
Prevalence of severe hock lesion (PHL-Sev., in %) 7,9 | 1.0 | 6.3 (NV) and 6.5 (CV) | + | |||||
Prevalence of mastitis infection (PMI, in %) 10 | 33.4 | 26.8 (NV) and 26.8 (CV) | = | |||||
Prevalence of mortality (PMo, in %) | 5.1 | 5.0 (NV) and 5.8 (CV) | = | |||||
Hygiene score (HS, in scores from 0 to 5) 11 | 3.2 | 2.8 (NV) and 2.8 (CV) | – | |||||
Body condition score (BCS, in scores from 1 to 5) 12 | 2.9 | 3.0 (NV) and 3.0 (CV) | = | |||||
Lobeck et al. [34] | Dry-bulb air temperature in winter (tdb-Winter, in °C) | –3.7 | –1.4 (NV) and 3.9 (CV) | =/– | ||||
Dry-bulb air temperature in spring (tdb-Spring, in °C) | 11.8 | 12.2 (NV) and 12.2 (CV) | = | |||||
Dry-bulb air temperature in summer (tdb-Summer, in °C) | 20.7 | 20.8 (NV) and 19.6 (CV) | = | |||||
Dry-bulb air temperature in fall (tdb-Fall, in °C) | 5.0 | 6.4 (NV) and 8.2 (CV) | =/– | |||||
Temperature and humidity index in summer (THISummer) 13 | 68.0 | 68.4 (NV) and 65.9 (CV) | =/– | |||||
Astiz et al. [35] | Prevalence of mastitis infection (PMI, in %) 10,14 | 22.1 | 35.0 | + | ||||
Prevalence of purulent vaginal discharge (PPVD, in %) | 7.2 | 10.0 | + | |||||
Prevalence of cytological endometritis (PCE, in %) | 27.2 | 26.9 | + | |||||
Prevalence of mortality (PMo, in %) | 3.9 | 5.0 | + | |||||
Somatic cell count (SCC, in ×1000 cells mL−1) | 96.1 | 139.5 | + | |||||
Eckelkamp et al. [36] | Bedding surface temperature (tB-Sur., in °C) | 17.8 | 16.1 | = | ||||
Prevalence of hock lesion (PHL, in %) 7,8 | 0.0 | 0.0 | = | |||||
Prevalence of mild lameness (PLMildly, in %) 4,15 | 33.3 | 30.4 | = | |||||
Prevalence of clinical lameness (PLClin., in %) 4,5 | 39.2 | 40.8 | = | |||||
Prevalence of severe lameness (PLSev., in %) 4,6 | 10.7 | 13.3 | = | |||||
Prevalence of mastitis infection (PMI, in %) 10 | 22.0 | 19.0 | = | |||||
Prevalence of clinical mastitis (PM-Clin., in %) 16 | 1.2 | 1.2 | = | |||||
Hygiene score (HS, in scores from 0 to 5) 11 | 2.2 | 2.3 | = | |||||
Somatic cell count (SCC, in ×1000 cells mL−1) | 242 | 229 | – | |||||
Burgstaller et al. [37] | Prevalence of mild lameness (PLMildly, in %) 4,15 | 13.7 | 9.9 | = | ||||
Prevalence of clinical lameness (PLClin., in %) 4,5 | 3.9 | 4.7 | = | |||||
Prevalence of severe lameness (PLSev., in %) 4,6 | 1.1 | 0.3 | = | |||||
Prevalence of heel horn erosion (PHHE, in %) | 26.9 | 59.5 | + | |||||
Burgstaller et al. [37] | Prevalence of white line disease (PWLD, in %) | 20.4 | 46.6 | + | ||||
Prevalence of interdigital hyperplasia (PIH, in %) | 0.2 | 3.1 | + | |||||
Prevalence of chronic laminitis (PCL, in %) 17 | 6.5 | 15.9 | + | |||||
Costa et al. [38] | Prevalence of clinical lameness (PLClin., in %) 4,5 | 31.9 | 43.2 | + | ||||
Prevalence of severe lameness (PLSev., in %) 4,6 | 14.2 | 22.2 | + | |||||
Prevalence of hock lesion (PHL, in %) 7,8 | 0.5 | 9.9 | + | |||||
Prevalence of knee lesion (PKL, in %) 18 | <1.0 19 | 7.4 | + | |||||
Hygiene score (HS, in scores from 0 to 3) 20 | NS 21 | NS 21 | = | |||||
Body condition score (BCS, in scores from 1 to 5) 12 | NS 22 | NS 22 | = | |||||
Leso et al. [39] 23 | Prevalence of mastitis infection (PMI, in %) 10 | 32.8 | 23.2 (M) and 29.6 (S) | –/= | ||||
Somatic cell count (SCC, in ×1000 cells mL−1) | 354 | 259 (M) and 310 (S) | –/= | |||||
Bran et al. [40] | Prevalence of clinical lameness (PLClin., in %) 4,5 | 32.2 | 44.0 | + | ||||
Prevalence of severe lameness (PLSev., in %) 4,6 | 14.3 | 23.0 | + | |||||
Biasato et al. [41] 24 | Prevalence of hock lesion (PHL, in %) 7,8 | 0.0 | 25.0 | + | ||||
Prevalence of hoof lesions (PHoof-L, in %) | 0.0 | 5.0 | + | |||||
Prevalence of nasal discharge (PND, in %) | 66.0 | 16.0 | – | |||||
Prevalence of ocular discharge (POD, in %) | 20.0 | 32.0 | + | |||||
Prevalence of skin alopecia (PSA, in %) | 7.0 | 16.0 | + | |||||
Hygiene score (HS, in scores from 0 to 5) 11 | 2.0 | 2.2 | + | |||||
Body condition score (BCS, in scores from 1 to 5) 12 | 3.0 | 3.0 | = | |||||
Locomotion score (LS, in scores from 1 to 5) 4 | 1.0 | 1.1 | = | |||||
Fecal score (FaS, in scores from 1 to 5) 25 | 1.4 | 1.4 | = | |||||
Fernández et al. [42] 26 | Prevalence of clinical lameness (PLClin., in %) 27,28 | 13.2 | 15.4 | 8.4 | = | – | ||
Prevalence of severe lameness (PLSev., in %) 27,29 | 4.2 | 0.7 | 3.4 | – | = | |||
Prevalence of inflamed coronary bands (PICB, in %) | 19.1 | 15.2 | 16.0 | – | = | |||
Kogima et al. [43] | Prevalence of clinical lameness (PLClin., in %) 4,5 | 3.3 | 8.6 | + | ||||
Prevalence of severe lameness (PLSev., in %) 4,6 | 3.3 | 6.7 | + | |||||
Prevalence of coughing (PC, in %) | <0.1 19 | <0.1 19 | = | |||||
Prevalence of nasal discharge (PND, in %) | 46.7 | 51.9 | = | |||||
Prevalence of ocular discharge (POD, in %) | 6.7 | 6.7 | = | |||||
Prevalence of purulent vaginal discharge (PPVD, in %) | 0.0 | 2.7 | + | |||||
Prevalence of hampered respiration (PHR, in %) | 0.0 | 0.0 | = | |||||
Kogima et al. [43] | Prevalence of diarrhea (PDiar., in %) | 6.7 | 20.0 | + | ||||
Prevalence of downer cows (PDC, in %) | 3.9 | 4.2 | = | |||||
Prevalence of mortality (PMo, in %) | 6.5 | 9.7 | + | |||||
Prevalence of dystocia (PDys., in %) | 2.2 | 3.7 | = | |||||
Witkowska and Ponieważ [9] | Prevalence of clinical lameness (PLClin., in %) 4,5 | 32.0 | 41.0 (SR) and 43.0 (SC) | 45.0 | + | + | ||
Prevalence of limb contusion (PLimb-C, in %) | 29.0 | 42.0 (SR) and 42.0 (SC) | 40.0 | + | + | |||
Prevalence of sprained limb (PSL, in %) | 8.0 | 21.0 (SR) and 28.0 (SC) | 9.3 | + | = | |||
Prevalence of footrot (PFootrot, in %) | 30.0 | 32.0 (SR) and 32.0 (SC) | 26.0 | = | – | |||
Prevalence of sole ulcers (PSU, in %) | 29.0 | 28.0 (SR) and 29.0 (SC) | 27.0 | = | = | |||
Prevalence of interdigital hyperplasia (PIH, in %) | 1.0 | 2.0 (SR) and 2.0 (SC) | 1.0 | = | = | |||
Prevalence of white line disease (PWLD, in %) | 4.0 | 5.0 (SR) and 5.0 (SC) | 6.0 | = | + | |||
Prevalence of heel horn erosion (PHHE, in %) | 3.0 | 3.0 (SR) and 4.0 (SC) | 3.0 | = | = | |||
Prevalence of chronic laminitis (PCL, in %) | 3.0 | 1.0 (SR) and 2.0 (SC) | 2.0 | –/= | = | |||
Prevalence of mastitis infection (PMI, in %) 10 | 17.0 | 15.0 (SR) and 18.0 (SC) | 12.0 | = | – | |||
Prevalence of teat infection (PTI, in %) | 8.0 | 7.0 (SR) and 9.0 (SC) | 9.0 | = | = | |||
Prevalence of retained placenta (PRP, in %) | 32.0 | 36.0 (SR) and 35.0 (SC) | 38.0 | = | + | |||
Prevalence of parturient paresis (PPP, in %) | 13.0 | 15.0 (SR) and 16.0 (SC) | 17.0 | = | + | |||
Prevalence of miscarriage (PMisc., in %) | 10.0 | 9.0 (SR) and 11.0 (SC) | 8.0 | = | – | |||
Prevalence of conjunctivitis (PConj., in %) | 3.0 | 2.0 (SR) and 1.0 (SC) | 0.0 | =/– | – | |||
Prevalence of pneumonia (PPneu., in %) | 31.0 | 40.0 (SR) and 34.0 (SC) | 28.0 | + | – | |||
Prevalence of displaced abomasum (PDA, in %) | 13.0 | 13.0 (SR) and 12.0 (SC) | 15.0 | = | = | |||
Productive lifespan (PL, in months) | 65.2 | 63.5 (SR) and 56.8 (SC) | 57.1 | + | + | |||
Emanuelson et al. [44] | Prevalence of mastitis infection (PMI, in %) 30 | 18.9 | 12.9 | – | ||||
Prevalence of new high SCC (PNH-SCC, in %) 31 | 12.2 | 8.2 | – | |||||
Prevalence of ketosis risk (PKR, in %) | 9.8 | 10.3 | = | |||||
Prevalence of prolonged calving intervals (PPCI, in %) | 34.7 | 39.8 | + | |||||
Prevalence of dystocia (PDys., in %) | 2.7 | 3.3 | = | |||||
Prevalence of stillbirth (PStill., in %) | 3.9 | 2.5 | – | |||||
Prevalence of first calving risk (PFCR, in %) | 26.9 | 29.8 | + | |||||
Prevalence of calf mortality (PCM, in %) | 0.1 | 0.1 | = | |||||
Length of life (LL, in months) | 68.4 | 67.8 | = | |||||
Productive lifespan (PL, in months) | 33.7 | 33.7 | = | |||||
Emanuelson et al. [44] | Parity at exit from the herd (PEFH, in parity number) | 3.5 | 3.6 | = | ||||
Somatic cell count (SCC, in ×1000 cells mL−1) | 86.9 | 67.7 | – |
3.3. Thermal Comfort
3.4. Limitations and Future Directions
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Symeonaki, E.; Arvanitis, K.G.; Piromalis, D.; Tseles, D.; Balafoutis, A.T. Ontology-Based IoT Middleware Approach for Smart Vivestock Farming toward Agriculture 4.0: A Case Study for Controlling Thermal Environment in a Pig Facility. Agronomy 2022, 12, 750. [Google Scholar] [CrossRef]
- Britt, J.H.; Cushman, R.A.; Dechow, C.D.; Dobson, H.; Humblot, P.; Hutjens, M.F.; Jones, G.A.; Mitloehner, F.M.; Ruegg, P.L.; Sheldon, I.M.; et al. Review: Perspective on High-Performing Dairy Cows and Herds. Animal 2021, 15, 100298. [Google Scholar] [CrossRef] [PubMed]
- Arshad, J.; Rehman, A.U.; Othman, M.T.B.; Ahmad, M.; Tariq, H.B.; Khalid, M.A.; Moosa, M.A.R.; Shafiq, M.; Hamam, H. Deployment of Wireless Sensor Network and IoT Platform to Implement an Intelligent Animal Monitoring System. Sustainability 2022, 14, 6249. [Google Scholar] [CrossRef]
- Nogalski, Z.; Momot, M. The Housing System Contributes to Udder Health and Milk Composition. Appl. Sci. 2023, 13, 9717. [Google Scholar] [CrossRef]
- von Keyserlingk, M.A.G.; Barrientos, A.; Ito, K.; Galo, E.; Weary, D.M. Benchmarking Cow Comfort on North American Freestall Dairies: Lameness, Leg Injuries, Lying Time, Facility Design, and Management for High-Producing Holstein Dairy Cows. J. Dairy Sci. 2012, 95, 7399–7408. [Google Scholar] [CrossRef] [PubMed]
- Robichaud, M.V.; Rushen, J.; De-Passillé, A.M.; Vasseur, E.; Haley, D.; Pellerin, D. Associations between On-Farm Cow Welfare Indicators and Productivity and Profitability on Canadian Dairies: II. On Tiestall Farms. J. Dairy Sci. 2019, 102, 4352–4363. [Google Scholar] [CrossRef]
- Heinrichs, A.J.; Heinrichs, B.S.; Cavallini, D.; Fustini, M.; Formigoni, A. Limiting Total Mixed Ration Availability Alters Eating and Rumination Patterns of Lactating Dairy Cows. JDS Commun. 2021, 2, 186–190. [Google Scholar] [CrossRef] [PubMed]
- Bewley, J.M.; Robertson, L.M.; Eckelkamp, E.A. A 100-Year Review: Lactating Dairy Cattle Housing Management. J. Dairy Sci. 2017, 100, 10418–10431. [Google Scholar] [CrossRef] [PubMed]
- Witkowska, D.; Ponieważ, A. The Effect of Housing System on Disease Prevalence and Productive Sifespan of Dairy Herds: A Case Study. Animals 2022, 12, 1610. [Google Scholar] [CrossRef]
- Leliveld, L.M.C.; Brandolese, C.; Grotto, M.; Marinucci, A.; Fossati, N.; Lovarelli, D.; Riva, E.; Provolo, G. Real-Time Automatic Integrated Monitoring of Barn Environment and Dairy Cattle Behaviour: Technical Implementation and Evaluation on Three Commercial Farms. Comput. Electron. Agric. 2024, 216, 108499. [Google Scholar] [CrossRef]
- Andrade, R.R.; Souza, C.F.; Baêta, F.C. Instalações Para Bovinocultura Leiteira—Free Stall, Tie Stall, Louse Housing e Compost Barn. Rev. Bras. Buiat. 2022, 3, 26–40. [Google Scholar] [CrossRef]
- Beaver, A.; Weary, D.M.; von-Keyserlingk, M.A.G. Invited Review: The Welfare of Dairy Cattle Housed in Tiestalls Compared to Less-Restrictive Housing Types: A Systematic Review. J. Dairy Sci. 2021, 104, 9383–9417. [Google Scholar] [CrossRef]
- de Vries, M.; Bokkers, E.A.M.; van Reenen, C.G.; Engel, B.; van Schaik, G.; Dijkstra, T.; de Boer, I.J.M. Housing and Management Factors Associated with Indicators of Dairy Cattle Welfare. Prev. Vet. Med. 2015, 118, 80–92. [Google Scholar] [CrossRef]
- Albino, R.L.; Taraba, J.L.; Marcondes, M.I.; Eckelkamp, E.A.; Bewley, J.M. Comparison of Bacterial Populations in Bedding Material, on Teat Ends, and in Milk of Cows Housed in Compost Bedded Pack Barns. Anim. Prod. Sci. 2017, 58, 1686–1691. [Google Scholar] [CrossRef]
- Freu, G.; Garcia, B.L.N.; Tomazi, T.; di Leo, G.S.; Gheller, L.S.; Bronzo, V.; Moroni, P.; Santos, M.V. Association between Mastitis Occurrence in Dairy Cows and Bedding Characteristics of Compost-Bedded Pack Barns. Pathogens 2023, 12, 583. [Google Scholar] [CrossRef]
- Leso, L.; Barbari, M.; Lopes, M.A.; Damasceno, F.A.; Galama, P.; Taraba, J.L.; Kuipers, A. Invited Review: Compost-Bedded Pack Barns for Dairy Cows. J. Dairy Sci. 2020, 103, 1072–1099. [Google Scholar] [CrossRef]
- Llonch, L.; Gordo, C.; López, M.; Castillejos, L.; Ferret, A.; Balanyà, T. Agronomic Characteristics of the Compost-Bedded Pack Made with Forest Biomass or Sawdust. Processes 2021, 9, 546. [Google Scholar] [CrossRef]
- Black, R.A.; Taraba, J.L.; Day, G.B.; Damasceno, F.A.; Bewley, J.M. Compost Bedded Pack Dairy Barn Management, Performance, and Producer Satisfaction. J. Dairy Sci. 2013, 96, 8060–8074. [Google Scholar] [CrossRef] [PubMed]
- Damasceno, F.A.; Barbari, M.; Leso, L.; Monge, J.L. Instalações Compost Barn. In Compost Barn Como Uma Alternativa Para a Pecuária Leiteira; Adelante: Divinópolis, Brazil, 2020; pp. 33–51. [Google Scholar]
- Lobeck, K.M.; Endres, M.I.; Shane, E.M.; Godden, S.M.; Fetrow, J. Animal Welfare in Cross-Ventilated, Compost-Bedded Pack, and Naturally Ventilated Dairy Barns in the Upper Midwest. J. Dairy Sci. 2011, 94, 5469–5479. [Google Scholar] [CrossRef] [PubMed]
- Silva, G.R.O.; Lopes, M.A.; Lima, A.L.R.; Costa, G.M.; Damasceno, F.A.; Barros, V.P.; Barbari, M. Profitability Analysis of Compost Barn and Free Stall Milk-Production Systems: A Comparison. Semin. Ciências Agrárias 2019, 40, 1165–1184. [Google Scholar] [CrossRef]
- Shepley, E.; Vasseur, E. Graduate Student Literature Review: The Effect of Housing Systems on Movement Opportunity of Dairy Cows and the Implications on Cow Health and Comfort. J. Dairy Sci. 2021, 104, 7315–7322. [Google Scholar] [CrossRef] [PubMed]
- Shepley, E.; Lensink, J.; Vasseur, E. Cow in Motion: A Review of the Impact of Housing Systems on Movement Opportunity of Dairy Cows and Implications on Locomotor Activity. Appl. Anim. Behav. Sci. 2020, 230, 105026. [Google Scholar] [CrossRef]
- Santos, C.M.C.; Pimenta, C.A.M.; Nobre, M.R.C. The PICO Strategy for the Research Question Construction and Evidence Search. Rev. Lat. Am. Enfermagem 2007, 15, 508–511. [Google Scholar] [CrossRef] [PubMed]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G. Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. Int. J. Surg. 2010, 8, 336–341. [Google Scholar] [CrossRef] [PubMed]
- Deniz, M.; Sousa, K.T.; Vieira, F.M.C.; Vale, M.M.; Dittrich, J.R.; Daros, R.R.; Hötzel, M.J. A Systematic Review of the Effects of Silvopastoral System on Thermal Environment and Dairy Cows’ Behavioral and Physiological Responses. Int. J. Biometeorol. 2023, 67, 409–422. [Google Scholar] [CrossRef] [PubMed]
- Silva, G.G.B.S.; Ferraz, P.F.P.; Damasceno, F.A.; Zotti, M.L.A.N.; Barbari, M. Compost Barns: A Bibliometric Analysis. Animals 2022, 12, 2492. [Google Scholar] [CrossRef] [PubMed]
- Vitorino Filho, V.A.; Goi, M.Y.O. Supply Chain Management 4.0: Content Analysis in the Most Relevant Articles from Scopus and Web of Science Databases. Braz. J. Dev. 2021, 7, 117868–117889. [Google Scholar] [CrossRef]
- Frigeri, K.D.M.; Deniz, M.; Damasceno, F.A.; Barbari, M.; Herbut, P.; Vieira, F.M.C. Effect of Heat Stress on the Behavior of Lactating Cows Housed in Compost Barns: A Systematic Review. Appl. Sci. 2023, 13, 2044. [Google Scholar] [CrossRef]
- Whiting, P.; Savović, J.; Higgins, J.P.T.; Caldwell, D.M.; Reeves, B.C.; Shea, B.; Davies, P.; Kleijnen, J.; Churchill, R. ROBIS: A New Tool to Assess Risk of Bias in Systematic Reviews Was Developed. J. Clin. Epidemiol. 2016, 69, 225–234. [Google Scholar] [CrossRef] [PubMed]
- Aria, M.; Cuccurullo, C. Bibliometrix: An R-Tool for Comprehensive Science Mapping Analysis. J. Informetr. 2017, 11, 959–975. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2023. [Google Scholar]
- Cobo, M.J.; López-Herrera, A.G.; Herrera-Viedma, E.; Herrera, F. An Approach for Detecting, Quantifying, and Visualizing the Evolution of a Research Field: A Practical Application to the Fuzzy Sets Theory Field. J. Informetr. 2011, 5, 146–166. [Google Scholar] [CrossRef]
- Lobeck, K.M.; Endres, M.I.; Janni, K.A.; Godden, S.M.; Fetrow, J. Environmental Characteristics and Bacterial Counts in Bedding and Milk Bulk Tank of Low Profile Cross-Ventilated, Naturally Ventilated, and Compost Bedded Pack Dairy Barns. Appl. Eng. Agric. 2012, 28, 117–128. [Google Scholar] [CrossRef]
- Astiz, S.; Sebastian, F.; Fargas, O.; Fernández, M.; Calvet, E. Enhanced Udder Health and Milk Yield of Dairy Cattle on Compost Bedding Systems during the Dry Period: A Comparative Study. Livest. Sci. 2014, 159, 161–164. [Google Scholar] [CrossRef]
- Eckelkamp, E.A.; Taraba, J.L.; Akers, K.A.; Harmon, R.J.; Bewley, J.M. Sand Bedded Freestall and Compost Bedded Pack Effects on Cow Hygiene, Locomotion, and Mastitis Indicators. Livest. Sci. 2016, 190, 48–57. [Google Scholar] [CrossRef]
- Burgstaller, J.; Raith, J.; Kuchling, S.; Mandl, V.; Hund, A.; Kofler, J. Claw Health and Prevalence of Lameness in Cows from Compost Bedded and Cubicle Freestall Dairy Barns in Austria. Vet. J. 2016, 216, 81–86. [Google Scholar] [CrossRef] [PubMed]
- Costa, J.H.C.; Burnett, T.A.; von-Keyserlingk, M.A.G.; Hötzel, M.J. Prevalence of Lameness and Leg Lesions of Lactating Dairy Cows Housed in Southern Brazil: Effects of Housing Systems. J. Dairy Sci. 2018, 101, 2395–2405. [Google Scholar] [CrossRef]
- Leso, L.; Pellegrini, P.; Barbari, M. Effect of Two Housing Systems on Performance and Longevity of Dairy Cows in Northern Italy. Agron. Res. 2019, 17, 574–581. [Google Scholar] [CrossRef]
- Bran, J.A.; Costa, J.H.C.; von-Keyserlingk, M.A.G.; Hötzel, M.J. Factors Associated with Lameness Prevalence in Lactating Cows Housed in Freestall and Compost-Bedded Pack Dairy Farms in Southern Brazil. Prev. Vet. Med. 2019, 172, 104773. [Google Scholar] [CrossRef]
- Biasato, I.; D’Angelo, A.; Bertone, I.; Odore, R.; Bellino, C. Compost Bedded-Pack Barn as an Alternative Housing System for Dairy Cattle in Italy: Effects on Animal Health and Welfare and Milk and Milk Product Quality. Ital. J. Anim. Sci. 2019, 18, 1142–1153. [Google Scholar] [CrossRef]
- Fernández, A.; Mainau, E.; Manteca, X.; Siurana, A.; Castillejos, L. Impacts of Compost Bedded Pack Barns on the Welfare and Comfort of Dairy Cows. Animals 2020, 10, 431. [Google Scholar] [CrossRef]
- Kogima, P.A.; Diesel, T.A.; Vieira, F.M.C.; Schogor, A.L.B.; Volpini, A.A.; Veloso, G.J.; Ferraz, P.F.P.; Zotti, M.L.A.N. The Welfare of Dairy Cows in Pasture, Free Stall, and Compost Barn Management Systems in a Brazilian Subtropical Region. Animals 2022, 12, 2215. [Google Scholar] [CrossRef]
- Emanuelson, U.; Brügemann, K.; Klopčič, M.; Leso, L.; Ouweltjes, W.; Zentner, A.; Blanco-Penedo, I. Animal Health in Compost-Bedded Pack and Cubicle Dairy Barns in Six European Countries. Animals 2022, 12, 396. [Google Scholar] [CrossRef] [PubMed]
- Green, L.E.; Huxley, J.N.; Banks, C.; Green, M.J. Temporal Associations between Low Body Condition, Lameness and Milk Yield in a UK Dairy Herd. Prev. Vet. Med. 2014, 113, 63–71. [Google Scholar] [CrossRef]
- Tremetsberger, L.; Winckler, C. Effectiveness of Animal Health and Welfare Planning in Dairy Herds: A Review. Anim. Welf. 2015, 24, 55–67. [Google Scholar] [CrossRef]
- Huxley, J.N. Impact of Lameness and Claw Lesions in Cows on Health and Production. Livest. Sci. 2013, 156, 64–70. [Google Scholar] [CrossRef]
- Keil, N.M.; Wiederkehr, T.U.; Friedli, K.; Wechsler, B. Effects of Frequency and Duration of Outdoor Exercise on the Prevalence of Hock Lesions in Tied Swiss Dairy Cows. Prev. Vet. Med. 2006, 74, 142–153. [Google Scholar] [CrossRef] [PubMed]
- Krpálková, L.; Cabrera, V.E.; Zavadilová, L.; Štípková, M. The Importance of Hoof Health in Dairy Production. Czech J. Anim. Sci. 2019, 64, 107–117. [Google Scholar] [CrossRef]
- Sprecher, D.J.; Hostetler, D.E.; Kaneene, J.B. A Lameness Scoring System That Uses Posture and Gait to Predict Dairy Cattle Reproductive Performance. Theriogenology 1997, 47, 1179–1187. [Google Scholar] [CrossRef]
- Flower, F.C.; Weary, D.M. Effect of Hoof Pathologies on Subjective Assessments of Dairy Cow Gait. J. Dairy Sci. 2006, 89, 139–146. [Google Scholar] [CrossRef]
- Reneau, J.K.; Seykora, A.J.; Heins, B.J.; Endres, M.I.; Farnsworth, R.J.; Bey, R.F. Association between Hygiene Scores and Somatic Cell Scores in Dairy Cattle. J. Am. Vet. Med. Assoc. 2005, 227, 1297–1301. [Google Scholar] [CrossRef]
- Ferguson, J.D.; Galligan, D.T.; Thomsen, N. Principal Descriptors of Body Condition Score in Holstein Cows. J. Dairy Sci. 1994, 77, 2695–2703. [Google Scholar] [CrossRef] [PubMed]
- West, J.W.; Mullinix, B.G.; Bernard, J.K. Effects of Hot, Humid Weather on Milk Temperature, Dry Matter Intake, and Milk Yield of Lactating Dairy Cows. J. Dairy Sci. 2003, 86, 232–242. [Google Scholar] [CrossRef] [PubMed]
- Lombard, J.E.; Tucker, C.B.; von Keyserlingk, M.A.G.; Kopral, C.A.; Weary, D.M. Associations between Cow Hygiene, Hock Injuries, and Free Stall Usage on US Dairy Farms. J. Dairy Sci. 2010, 93, 4668–4676. [Google Scholar] [CrossRef]
- Larson, L.L.; Owen, F.G.; Albright, J.L.; Appleman, R.D.; Lamb, R.C.; Muller, L.D. Guidelines toward More Uniformity in Measuring and Reporting Calf Experimental Data. J. Dairy Sci. 1977, 60, 989–991. [Google Scholar] [CrossRef]
- Roche, J.R.; Friggens, N.C.; Kay, J.K.; Fisher, M.W.; Stafford, K.J.; Berry, D.P. Invited Review: Body Condition Score and Its Association with Dairy Cow Productivity, Health, and Welfare. J. Dairy Sci. 2009, 92, 5769–5801. [Google Scholar] [CrossRef] [PubMed]
- Bradley, A.; Green, M. Use and Interpretation of Somatic Cell Count Data in Dairy Cows. Practice 2005, 27, 310–315. [Google Scholar] [CrossRef]
- Blanco-Penedo, I.; Ouweltjes, W.; Ofner-Schröck, E.; Brügemann, K.; Emanuelson, U. Symposium Review: Animal Welfare in Free-Walk Systems in Europe. J. Dairy Sci. 2020, 103, 5773–5782. [Google Scholar] [CrossRef] [PubMed]
- Fávero, S.; Portilho, F.V.R.; Oliveira, A.C.R.; Langoni, H.; Pantoja, J.C.F. Factors Associated with Mastitis Epidemiologic Indexes, Animal Hygiene, and Bulk Milk Bacterial Concentrations in Dairy Herds Housed on Compost Bedding. Livest. Sci. 2015, 181, 220–230. [Google Scholar] [CrossRef]
- Silva, S.R.; Araujo, J.P.; Guedes, C.; Silva, F.; Almeida, M.; Cerqueira, J.L. Precision Technologies to Address Dairy Cattle Welfare: Focus on Lameness, Mastitis and Body Condition. Animals 2021, 11, 2253. [Google Scholar] [CrossRef]
- Ortenzi, L.; Violino, S.; Costa, C.; Figorilli, S.; Vasta, S.; Tocci, F.; Moscovini, L.; Basiricò, L.; Evangelista, C.; Pallottino, F.; et al. An Innovative Technique for Faecal Score Classification Based on RGB Images and Artificial Intelligence Algorithms. J. Agric. Sci. 2023, 161, 291–296. [Google Scholar] [CrossRef]
- Chen, J.M.; Stull, C.L.; Ledgerwood, D.N.; Tucker, C.B. Muddy Conditions Reduce Hygiene and Lying Time in Dairy Cattle and Increase Time Spent on Concrete. J. Dairy Sci. 2017, 100, 2090–2103. [Google Scholar] [CrossRef] [PubMed]
- Mee, J.F.; Boyle, L.A. Assessing Whether Dairy Cow Welfare Is “Better” in Pasture-Based than in Confinement-Based Management Systems. N. Z. Vet. J. 2020, 68, 168–177. [Google Scholar] [CrossRef] [PubMed]
- Janni, K.A.; Endres, M.I.; Reneau, J.K.; Schoper, W.W. Compost Dairy Barn Layout and Management Recommendations. Appl. Eng. Agric. 2007, 23, 97–102. [Google Scholar] [CrossRef]
- Witkowska, D.; Korczyński, M.; Koziel, J.A.; Sowińska, J.; Chojnowski, B. The Effect of Dairy Cattle Housing Systems on the Concentrations and Emissions of Gaseous Mixtures in Barns Determined by Fourier-Transform Infrared Spectroscopy. Ann. Anim. Sci. 2020, 20, 1487–1507. [Google Scholar] [CrossRef]
- Cook, N.B.; Mentink, R.L.; Bennett, T.B.; Burgi, K. The Effect of Heat Stress and Lameness on Time Budgets of Lactating Dairy Cows. J. Dairy Sci. 2007, 90, 1674–1682. [Google Scholar] [CrossRef] [PubMed]
- Vitali, A.; Segnalini, M.; Bertocchi, L.; Bernabucci, U.; Nardone, A.; Lacetera, N. Seasonal Pattern of Mortality and Relationships between Mortality and Temperature-Humidity Index in Dairy Cows. J. Dairy Sci. 2009, 92, 3781–3790. [Google Scholar] [CrossRef] [PubMed]
- Arias, R.A.; Mader, T.L. Evaluation of Four Thermal Comfort Indices and Their Relationship with Physiological Variables in Feedlot Cattle. Animals 2023, 13, 1169. [Google Scholar] [CrossRef] [PubMed]
- Ji, B.; Banhazi, T.; Ghahramani, A.; Bowtell, L.; Wang, C.; Li, B. Modelling of Heat Stress in a Robotic Dairy Farm. Part 1: Thermal Comfort Indices as the Indicators of Production Loss. Biosyst. Eng. 2020, 199, 27–42. [Google Scholar] [CrossRef]
- Mrema, G.C.; Gumbe, L.O.; Chapete, H.J.; Agullo, J.O. Rural Structures in the Tropics: Design and Development, 1st ed.; FAO: Roma, Italy, 2011; ISBN 9789251070475. [Google Scholar]
- Baêta, F.C.; Souza, C.F. Ambiência Em Edificações Rurais: Conforto Animal, 2nd ed.; Editora UFV: Viçosa, Brazil, 2010. [Google Scholar]
- Andrade, R.R.; Tinôco, I.F.F.; Damasceno, F.A.; Ferraz, G.A.S.; Freitas, L.C.S.R.; Ferreira, C.F.S.; Barbari, M.; Teles Junior, C.G.S. Spatial Analysis of Microclimatic Variables in Compost-Bedded Pack Barn with Evaporative Tunnel Cooling. An. Acad. Bras. Cienc. 2022, 94, e20210226. [Google Scholar] [CrossRef]
- Llonch, L.; Castillejos, L.; Mainau, E.; Manteca, X.; Ferret, A. Effect of Forest Biomass as Bedding Material on Compost-Bedded Pack Performance, Microbial Content, and Behavior of Nonlactating Dairy Cows. J. Dairy Sci. 2020, 103, 10676–10688. [Google Scholar] [CrossRef]
- Oliveira, C.E.A.; Damasceno, F.A.; Ferraz, G.A.S.; Nascimento, J.A.C.; Vega, F.A.O.; Titôco, I.F.F.; Andrade, R.R. Assessment of Spatial Variability of Bedding Variables in Compost Bedded Pack Barns with Climate Control System. An. Acad. Bras. Cienc. 2021, 93, 20200384. [Google Scholar] [CrossRef] [PubMed]
- Minnesota Department of Natural Resources 1981–2010 Normals Map Tool. Available online: https://www.dnr.state.mn.us/climate/summaries_and_publications/normalsportal.html (accessed on 7 December 2023).
- National Weather Service Past Weather—Climate Monitoring. Available online: https://www.weather.gov/wrh/climate (accessed on 7 December 2023).
- Arcidiacono, C. Engineered Solutions for Animal Heat Stress Abatement in Livestock Buildings. Agric. Eng. Int. CIGR J. 2018. Special Issue, 1–22. Available online: https://cigrjournal.org/index.php/Ejounral/article/view/4705 (accessed on 7 December 2023).
- Galama, P.J.; Ouweltjes, W.; Endres, M.I.; Sprecher, J.R.; Leso, L.; Kuipers, A.; Klopčič, M. Symposium Review: Future of Housing for Dairy Cattle. J. Dairy Sci. 2020, 103, 5759–5772. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, C.E.A.; Tinôco, I.F.F.; Damasceno, F.A.; Oliveira, V.C.; Rodrigues, P.H.M.; Ferraz, G.A.S.; Sousa, F.C.; Andrade, R.R.; Nascimento, J.A.C.; Silva, L.F. Air Velocity Spatial Variability in Open Compost-Bedded Pack Barn System with Positive Pressure Ventilation. An. Acad. Bras. Cienc. 2023, 95, e20220415. [Google Scholar] [CrossRef]
- Stone, A.E.; Jones, B.W.; Becker, C.A.; Bewley, J.M. Influence of Breed, Milk Yield, and Temperature-Humidity Index on Dairy Cow Lying Time, Neck Activity, Reticulorumen Temperature, and Rumination Behavior. J. Dairy Sci. 2017, 100, 2395–2403. [Google Scholar] [CrossRef] [PubMed]
Acronym | Search Sequence |
---|---|
Population | (cattle OR cow* OR calves OR heifers) AND (dairy OR lactating OR milking) |
Intervention | (“compost barn*” OR “compost bedded*” OR “compost-bedded pack*” OR “compost-bedded barn*” OR “compost-bedded pack barn*” OR “compost-bedding*” OR “open pack barn*” OR “free-stall*” OR “free stall*” OR freestall* OR “tie-stall*” OR “tie stall*” OR tiestall* OR “loose housing*” OR “loose-housing*”) |
Comparison | (“compost barn*” OR “compost bedded*” OR “compost-bedded pack*” OR “compost-bedded barn*” OR “compost-bedded pack barn*” OR “compost-bedding*” OR “open pack barn*”) AND ((“free-stall*” OR “free stall*” OR freestall*) OR (“tie-stall*” OR “tie stall*” OR tiestall*) OR (“loose housing*” OR “loose-housing*”)) |
Outcome | (health OR disease* OR pathology* OR incidence* OR prevalence* OR sanity OR score* OR dirtiness) OR (comfort OR environment OR “heat stress” OR microclimate OR “thermal comfort” OR “thermal environment” OR “thermal stress” OR welfare) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oliveira, C.E.A.; Tinôco, I.d.F.F.; Sousa, F.C.d.; Baêta, F.d.C.; Vieira, F.M.C.; Barbari, M. Health and Thermal Comfort of Dairy Cattle in Compost-Bedded Pack Barns and Other Types of Housing: A Comparative Systematic Review. AgriEngineering 2024, 6, 1395-1416. https://doi.org/10.3390/agriengineering6020080
Oliveira CEA, Tinôco IdFF, Sousa FCd, Baêta FdC, Vieira FMC, Barbari M. Health and Thermal Comfort of Dairy Cattle in Compost-Bedded Pack Barns and Other Types of Housing: A Comparative Systematic Review. AgriEngineering. 2024; 6(2):1395-1416. https://doi.org/10.3390/agriengineering6020080
Chicago/Turabian StyleOliveira, Carlos Eduardo Alves, Ilda de Fátima Ferreira Tinôco, Fernanda Campos de Sousa, Fernando da Costa Baêta, Frederico Márcio Côrrea Vieira, and Matteo Barbari. 2024. "Health and Thermal Comfort of Dairy Cattle in Compost-Bedded Pack Barns and Other Types of Housing: A Comparative Systematic Review" AgriEngineering 6, no. 2: 1395-1416. https://doi.org/10.3390/agriengineering6020080
APA StyleOliveira, C. E. A., Tinôco, I. d. F. F., Sousa, F. C. d., Baêta, F. d. C., Vieira, F. M. C., & Barbari, M. (2024). Health and Thermal Comfort of Dairy Cattle in Compost-Bedded Pack Barns and Other Types of Housing: A Comparative Systematic Review. AgriEngineering, 6(2), 1395-1416. https://doi.org/10.3390/agriengineering6020080