Testing the Efficacy of a Prototype That Combines Ultrasound and Pulsed Electric Field for Extracting Valuable Compounds from Mitragyna speciosa Leaves
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material and Preparation
2.2. Pulsed Electric Field and Ultrasonic (PEF-US) Apparatus
2.3. Kratom Extraction Procedures
2.3.1. PEF Extraction
2.3.2. US Extraction
2.3.3. PEF + US Extraction
2.3.4. US + PEF Extraction
2.3.5. Maceration Extraction
2.4. Liquid Chromatography Analysis of Kratom Extracts
2.5. Extraction Efficiency
- M0 = mitragynine content of control or PEF/US alone (mg/L);
- Mt = mitragynine content of sample using PEF-US apparatus mode (mg/L).
2.6. Energy Consumption Determination
2.7. Scanning Electron Microscopy
2.8. Fourier-Transform Infrared Spectroscopy
2.9. Statistical Analysis
3. Results and Discussion
3.1. Validation of UHPLC Measurement
3.2. Mitragynine Content
3.3. Energy Consumption
3.4. Change in Surface Structure
3.5. Fourier-Transform Infrared Spectroscopy Analysis
3.6. LC-MS/MS Profiles
4. Conclusions
5. Patents
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Trakulsrichai, S.; Sathirakul, K.; Auparakkitanon, S.; Krongvorakul, J.; Sueajai, J.; Noumjad, N.; Sukasem, C.; Wananukul, W. Pharmacokinetics of mitragynine in man. Drug Des. Devel. Ther. 2015, 9, 2421–2429. [Google Scholar] [CrossRef] [PubMed]
- Eastlack, S.C.; Cornett, E.M.; Kaye, A.D. Kratom—Pharmacology, clinical implications, and outlook: A comprehensive review. Pain. Ther. 2020, 9, 55–69. [Google Scholar] [CrossRef] [PubMed]
- Fluyau, D.; Revadigar, N. Biochemical Benefits, Diagnosis, and Clinical Risks Evaluation of Kratom. Front. Psychiatry 2017, 8, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Orio, L.; Alexandru, L.; Cravotto, G.; Mantegna, S.; Barge, A. UAE, MAE, SFE-CO2 and classical methods for the extraction of Mitragyna speciosa leaves. Ultrason. Sonochem. 2012, 19, 591–595. [Google Scholar] [CrossRef] [PubMed]
- Zakaria, F.; Tan, J.-K.; Mohd Faudzi, S.M.; Abdul Rahman, M.B.; Ashari, S.E. Ultrasound-assisted extraction conditions optimisation using response surface methodology from Mitragyna speciosa (Korth.) Havil leaves. Ultrason. Sonochem. 2021, 81, 105851. [Google Scholar] [CrossRef]
- Karunakaran, T.; Goh, Y.S.; Santhanam, R.; Murugaiyah, V.; Abu Bakar, M.H.; Ramanathan, S. RP-HPLC-DAD analysis of mitragynine content in Mitragyna speciosa Korth. (Ketum) leaf extracts prepared using ultrasound assisted extraction technique and their cytotoxicity. Separations 2022, 9, 345. [Google Scholar] [CrossRef]
- Limcharoen, T.; Pouyfung, P.; Ngamdokmai, N.; Prasopthum, A.; Ahmad, A.R.; Wisdawati, W.; Prugsakij, W.; Warinhomhoun, S. Inhibition of alpha-glucosidase and pancreatic lipase properties of Mitragyna speciosa (Korth.) Havil. (Kratom) leaves. Nutrients 2022, 14, 3909. [Google Scholar] [CrossRef]
- Goh, Y.S.; Karunakaran, T.; Murugaiyah, V.; Santhanam, R.; Abu Bakar, M.H.; Ramanathan, S. Accelerated solvent extractions (ASE) of Mitragyna speciosa Korth. (Kratom) leaves: Evaluation of its cytotoxicity and antinociceptive activity. Molecules 2021, 26, 3704. [Google Scholar] [CrossRef]
- Soquetta, M.B.; Terra, L.d.M.; Bastos, C.P. Green technologies for the extraction of bioactive compounds in fruits and vegetables. CyTA J. Food 2018, 16, 400–412. [Google Scholar] [CrossRef]
- Bocker, R.; Silva, E.K. Pulsed electric field assisted extraction of natural food pigments and colorings from plant matrices. Food Chem. X 2022, 15, 100398. [Google Scholar] [CrossRef]
- Toepfl, S.; Mathys, A.; Heinz, V.; Knorr, D. Potential of high hydrostatic pressure and pulsed electric fields for energy efficient and environmentally friendly food processing. Food Rev. Int. 2006, 22, 405–423. [Google Scholar] [CrossRef]
- Toepfl, S.; Heinz, V.; Knorr, D. High intensity pulsed electric fields applied for food preservation. Chem. Eng. Process. Process Intensif. 2007, 46, 537–546. [Google Scholar] [CrossRef]
- Ranjha, M.M.A.N.; Kanwal, R.; Shafique, B.; Arshad, R.N.; Irfan, S.; Kieliszek, M.; Kowalczewski, P.Ł.; Irfan, M.; Khalid, M.Z.; Roobab, U.; et al. A Critical Review on pulsed electric field: A novel technology for the extraction of phytoconstituents. Molecules 2021, 26, 4893. [Google Scholar] [CrossRef] [PubMed]
- Lal, A.M.N.; Prince, M.V.; Kothakota, A.; Pandiselvam, R.; Thirumdas, R.; Mahanti, N.K.; Sreeja, R. Pulsed electric field combined with microwave-assisted extraction of pectin polysaccharide from jackfruit waste. Innov. Food Sci. Emerg. Technol. 2021, 74, 102844. [Google Scholar] [CrossRef]
- Grillo, G.; Boffa, L.; Calcio Gaudino, E.; Binello, A.; Rego, D.; Pereira, M.; Martínez, M.; Cravotto, G. Combined ultrasound and pulsed electric fields in continuous-flow industrial olive-oil production. Foods 2022, 11, 3419. [Google Scholar] [CrossRef] [PubMed]
- Nowosad, K.; Sujka, M.; Pankiewicz, U.; Kowalski, R. The application of PEF technology in food processing and human nutrition. J. Food Sci. Technol. 2021, 58, 397–411. [Google Scholar] [CrossRef]
- Tzima, K.; Brunton, N.P.; Lyng, J.G.; Frontuto, D.; Rai, D.K. The effect of pulsed electric field as a pre-treatment step in ultrasound assisted extraction of phenolic compounds from fresh rosemary and thyme by-products. Innov. Food Sci. Emerg. Technol. 2021, 69, 102644. [Google Scholar] [CrossRef]
- Shiekh, K.A.; Olatunde, O.O.; Zhang, B.; Huda, N.; Benjakul, S. Pulsed electric field assisted process for extraction of bioactive compounds from custard apple (Annona squamosa) leaves. Food Chem. 2021, 359, 129976. [Google Scholar] [CrossRef] [PubMed]
- Avula, B.; Sagi, S.; Wang, Y.-H.; Wang, M.; Ali, Z.; Smillie, T.J.; Zweigenbaum, J.; Khan, I.A. Identification and characterization of indole and oxindole alkaloids from leaves of Mitragyna speciosa Korth using liquid chromatography–accurate QToF mass spectrometry. J. AOAC Int. 2015, 98, 13–21. [Google Scholar] [CrossRef]
- Qin, S.; Timoshkin, I.V.; Maclean, M.; Wilson, M.P.; MacGregor, S.J.; Given, M.J.; Anderson, J.G.; Wang, T. Pulsed electric field treatment of microalgae: Inactivation tendencies and energy consumption. IEEE Trans. Plasma Sci. 2014, 42, 3191–3196. [Google Scholar] [CrossRef]
- Parniakov, O.; Barba, F.J.; Grimi, N.; Marchal, L.; Jubeau, S.; Lebovka, N.; Vorobiev, E. Pulsed electric field assisted extraction of nutritionally valuable compounds from microalgae Nannochloropsis spp. using the binary mixture of organic solvents and water. Innov. Food Sci. Emer. Technol. 2015, 27, 79–85. [Google Scholar] [CrossRef]
- Parniakov, O.; Apicella, E.; Koubaa, M.; Barba, F.J.; Grimi, N.; Lebovka, N.; Pataro, G.; Ferrari, G.; Vorobiev, E. Ultrasound-assisted green solvent extraction of high-added value compounds from microalgae Nannochloropsis spp. Bioresour. Technol. 2015, 198, 262–267. [Google Scholar] [CrossRef]
- Kumari, B.; Tiwari, B.K.; Hossain, M.B.; Brunton, N.P.; Rai, D.K. Recent advances on application of ultrasound and pulsed electric field technologies in the extraction of bioactives from agro-industrial by-products. Food Bioproc. Tech. 2018, 11, 223–241. [Google Scholar] [CrossRef]
- Balasa, A.; Janositz, A.; Knorr, D. Electric field stress on plant systems. Encycl. Biotechnol. Agric. Food 2011, 2, 208–211. [Google Scholar] [CrossRef]
- Lucchesi, M.E.; Chemat, F.; Smadja, J. Solvent-free microwave extraction of essential oil from aromatic herbs: Comparison with conventional hydro-distillation. J. Chromatogr. A 2004, 1043, 323–327. [Google Scholar] [CrossRef] [PubMed]
- Bousbia, N.; Vian, M.A.; Ferhat, M.A.; Petitcolas, E.; Meklati, B.Y.; Chemat, F. Comparison of two isolation methods for essential oil from rosemary leaves: Hydrodistillation and microwave hydrodiffusion and gravity. Food Chem. 2009, 114, 355–362. [Google Scholar] [CrossRef]
- Supasin, S.; Kantala, C.; Intra, P.; Rattanadecho, P. Postharvest preservation of Thai mango var. Chok-Anan by the combination of pulsed electric field and chemical pickling. Horticulturae 2022, 8, 584. [Google Scholar] [CrossRef]
- Xing, C.; Cui, W.-Q.; Zhang, Y.; Zou, X.-S.; Hao, J.-Y.; Zheng, S.-D.; Wang, T.-T.; Wang, X.-Z.; Wu, T.; Liu, Y.-Y.; et al. Ultrasound-assisted deep eutectic solvents extraction of glabridin and isoliquiritigenin from Glycyrrhiza glabra: Optimization, extraction mechanism and in vitro bioactivities. Ultrason. Sonochem. 2022, 83, 105946. [Google Scholar] [CrossRef] [PubMed]
- Manik, U.P.; Nande, A.; Raut, S.; Dhoble, S.J. Green synthesis of silver nanoparticles using plant leaf extraction of Artocarpus heterophylus and Azadirachta indica. Results Mater. 2020, 6, 100086. [Google Scholar] [CrossRef]
Apparatus Mode | Mitragynine Content 1 (mg/L) | Efficiency (%) | Energy Consumption (kJ/kg) |
---|---|---|---|
PEF | 90.00 ± 1.37 c | 23.06 ± 1.87 | 4.94 ± 0.31 |
US | 83.20 ± 0.17 d | 13.77 ± 0.47 | 1.03 ± 0.01 |
PEF + US | 106.63 ± 0.85 a | 45.81 ± 0.59 | 3.72 ± 0.13 |
US + PEF | 97.27 ± 1.33 b | 33.00 ± 1.85 | 3.64 ± 0.02 |
Control (maceration) | 73.13 ± 0.40 e | 0 | − |
Extraction Method | RT (min) | Calculated m/z [M+H]+ | Precursor Ion Experimental m/z [M+H]+ | % Error (mDa) | Chemical Formula | Major Ions (Key Fragment Ions) |
---|---|---|---|---|---|---|
Maceration | 1.22 | 399.2278 | 399.75 | +0.5222 | C23H30N2O4 | 238.80 (27%) |
227.00 (12%) | ||||||
174.97 (100%) | ||||||
110.09 (0%) | ||||||
PEF + US | 1.22 | 399.2278 | 399.78 | +0.5522 | C23H30N2O4 | 238.78 (26%) |
227.00 (14%) | ||||||
174.98 (100%) | ||||||
110.09 (0%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jintawiwat, R.; Punamorntarakul, N.; Hirunyasiri, R.; Jarupoom, P.; Pankasemsuk, T.; Supasin, S.; Kawee-ai, A. Testing the Efficacy of a Prototype That Combines Ultrasound and Pulsed Electric Field for Extracting Valuable Compounds from Mitragyna speciosa Leaves. AgriEngineering 2023, 5, 1879-1892. https://doi.org/10.3390/agriengineering5040115
Jintawiwat R, Punamorntarakul N, Hirunyasiri R, Jarupoom P, Pankasemsuk T, Supasin S, Kawee-ai A. Testing the Efficacy of a Prototype That Combines Ultrasound and Pulsed Electric Field for Extracting Valuable Compounds from Mitragyna speciosa Leaves. AgriEngineering. 2023; 5(4):1879-1892. https://doi.org/10.3390/agriengineering5040115
Chicago/Turabian StyleJintawiwat, Raweeroj, Natnakorn Punamorntarakul, Rossakornpat Hirunyasiri, Parkpoom Jarupoom, Tanachai Pankasemsuk, Supakiat Supasin, and Arthitaya Kawee-ai. 2023. "Testing the Efficacy of a Prototype That Combines Ultrasound and Pulsed Electric Field for Extracting Valuable Compounds from Mitragyna speciosa Leaves" AgriEngineering 5, no. 4: 1879-1892. https://doi.org/10.3390/agriengineering5040115
APA StyleJintawiwat, R., Punamorntarakul, N., Hirunyasiri, R., Jarupoom, P., Pankasemsuk, T., Supasin, S., & Kawee-ai, A. (2023). Testing the Efficacy of a Prototype That Combines Ultrasound and Pulsed Electric Field for Extracting Valuable Compounds from Mitragyna speciosa Leaves. AgriEngineering, 5(4), 1879-1892. https://doi.org/10.3390/agriengineering5040115