Bedding Management for Suppressing Particulate Matter in Cage-Free Hen Houses
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethical Approval
2.2. Housing and Management
2.3. Experimental Setup
2.4. Particulate Matter Measurements
2.5. Environmental Parameters
2.6. Statistical Data Analysis
3. Results and Discussion
3.1. Litter Moisture Content Data
3.2. Thermal Environment
3.3. Litter Depth
3.4. Particulate Matter Reduction
3.4.1. PM2.5
3.4.2. PM10
3.4.3. TSP
3.5. Implications and Future Studies
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- USDA. Poultry Production Systems and Well-being: Sustainability for Tomorrow—University of California, Davis. Available online: https://portal.nifa.usda.gov/web/crisprojectpages/1013484-poultry-production-systems-and-well-being-sustainability-for-tomorrow.html (accessed on 7 August 2023).
- United Egg Producers. UEP Facts & Stats. 2022. Available online: https://unitedegg.com/facts-stats/ (accessed on 22 August 2023).
- Xin, H. Environmental challenges and opportunities with cage-free hen housing systems. In Proceedings of the XXV World’s Poultry Congress, Beijing, China, 5–9 September 2016; pp. 5–9. [Google Scholar]
- Gates, R.S.; Ramirez, B.; Li, G.; Xiong, Y.; Burns, R.T. Evaluating Draft EPA Emissions Models for Laying Hen Facilities. United Eggs 2022, 1–44. Available online: https://unitedegg.com/wp-content/uploads/2022/06/EIC-Evaluation-of-Draft-EPA-Emissions-Models-for-Layers-06-09-2022.pdf (accessed on 8 July 2022).
- Shanker, D.; Pollard, A. Many Hens Are Still Stuck in Cages Despite Cage-Free Egg Pledges, Group Says. Bloomberg 2021. Available online: https://www.bloomberg.com/news/articles/2021-11-17/many-hens-stuck-in-cages-despite-company-pledges-group-says (accessed on 8 July 2023).
- Shepherd, T.A.; Zhao, Y.; Li, H.; Stinn, J.P.; Hayes, M.D.; Xin, H. Environmental assessment of three egg production systems—Part II. Ammonia, greenhouse gas, and particulate matter emissions. Poult. Sci. 2015, 94, 534–543. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Shepherd, T.A.; Li, H.; Xin, H. Environmental assessment of three egg production systems–Part I: Monitoring system and indoor air quality. Poult. Sci. 2015, 94, 518–533. [Google Scholar] [CrossRef]
- Knight, R.M.; Tong, X.; Liu, Z.; Hong, S.; Zhao, L. Spatial and seasonal variations of PM concentration and size distribution in manure-belt poultry layer houses. Trans. ASABE 2019, 62, 415–427. [Google Scholar] [CrossRef]
- Madelin, T.M.; Wathes, C. Air hygiene in a broiler house: Comparison of deep litter with raised netting floors. Br. Poult. Sci. 1989, 30, 23–37. [Google Scholar] [CrossRef] [PubMed]
- Hayes, M.; Xin, H.; Li, H.; Shepherd, T.; Zhao, Y.; Stinn, J. Ammonia, greenhouse gas, and particulate matter emissions of aviary layer houses in the Midwestern US. Trans. ASABE 2013, 56, 1921–1932. [Google Scholar] [CrossRef]
- Bist, R.B.; Chai, L. Advanced Strategies for Mitigating Particulate Matter Generations in Poultry Houses. Appl. Sci. 2022, 12, 11323. [Google Scholar] [CrossRef]
- Bist, R.B.; Subedi, S.; Chai, L.; Yang, X. Ammonia emissions, impacts, and mitigation strategies for poultry production: A critical review. J. Environ. Manag. 2023, 328, 116919. [Google Scholar] [CrossRef]
- Bist, R.B.; Yang, X.; Subedi, S.; Sharma, M.K.; Singh, A.K.; Ritz, C.W.; Kim, W.K.; Chai, L. Temporal Variations of Air Quality in Cage-Free Experimental Pullet Houses. Poultry 2023, 2, 320–333. [Google Scholar] [CrossRef]
- Bauer, S.E.; Tsigaridis, K.; Miller, R. Significant atmospheric aerosol pollution caused by world food cultivation. Geophys. Res. Lett. 2016, 43, 5394–5400. [Google Scholar] [CrossRef]
- Knight, R.M.; Tong, X.; Zhao, L.; Manuzon, R.B.; Darr, M.J.; Heber, A.J.; Ni, J.-Q. Particulate matter concentrations and emission rates at two retrofitted manure-belt layer houses. Trans. ASABE 2021, 64, 829–841. [Google Scholar] [CrossRef]
- Harry, E. Air pollution in farm buildings and methods of control: A review. Avian Pathol. 1978, 7, 441–454. [Google Scholar] [CrossRef] [PubMed]
- Qi, R.; Manbeck, H.; Maghirang, R. Dust net generation rate in a poultry layer house. Trans. ASAE 1992, 35, 1639–1645. [Google Scholar] [CrossRef]
- Wicklin, G.; Czarick, M. Particulate emissions from poultry housing. In Proceedings of the ASAE Annual International Meeting, Minneapolis, MN, USA, 10–14 August 1997; pp. 10–14. [Google Scholar]
- Cambra-López, M.; Hermosilla, T.; Lai, H.T.; Aarnink, A.J.A.; Ogink, N. Particulate matter emitted from poultry and pig houses: Source identification and quantification. Trans. ASABE 2011, 54, 629–642. [Google Scholar] [CrossRef]
- Gustafsson, G.; Von Wachenfelt, E. Airborne dust control measures for floor housing system for laying hens. Agric. Eng. Int. CIGR J. 2006, VIII, 1–13. [Google Scholar]
- EPA. Health and Environmental Effects of Particulate Matter (PM). Available online: https://www.epa.gov/pm-pollution/health-and-environmental-effects-particulate-matter-pm (accessed on 15 June 2023).
- Bonifacio, H.F.; Maghirang, R.G.; Trabue, S.L.; McConnell, L.L.; Prueger, J.H.; Bonifacio, E.R. TSP, PM10, and PM2.5 emissions from a beef cattle feedlot using the flux-gradient technique. Atmos. Environ. 2015, 101, 49–57. [Google Scholar] [CrossRef]
- Chai, L.; Xin, H.; Wang, Y.; Oliveira, J.; Wang, K.; Zhao, Y. Mitigating Particulate Matter Generation in a Commercial Cage-Free Hen House. Trans. ASABE 2019, 62, 877–886. [Google Scholar] [CrossRef]
- Schwarze, P.; Øvrevik, J.; Låg, M.; Refsnes, M.; Nafstad, P.; Hetland, R.; Dybing, E. Particulate matter properties and health effects: Consistency of epidemiological and toxicological studies. Hum. Exp. Toxicol. 2006, 25, 559–579. [Google Scholar] [CrossRef]
- Roque, K.; Shin, K.-M.; Jo, J.-H.; Kim, H.-A.; Heo, Y. Relationship between chicken cellular immunity and endotoxin levels in dust from chicken housing environments. J. Vet. Sci. 2015, 16, 173–177. [Google Scholar] [CrossRef]
- Wang, W.; Wideman, R., Jr.; Chapman, M.; Bersi, T.; Erf, G. Effect of intravenous endotoxin on blood cell profiles of broilers housed in cages and floor litter environments. Poult. Sci. 2003, 82, 1886–1897. [Google Scholar] [CrossRef]
- Monira, K.; Islam, M.; Alam, M.; Wahid, M. Effect of litter materials on broiler performance and evaluation of manureal value of used litter in late autumn. Asian-Australas. J. Anim. Sci. 2003, 16, 555–557. [Google Scholar] [CrossRef]
- Guarino, M.; Caroli, A.; Navarotto, P. Dust concentration and mortality distribution in an enclosed laying house. Trans. ASAE 1999, 42, 1127. [Google Scholar] [CrossRef]
- Radon, K.; Weber, C.; Iversen, M.; Danuser, B.; Pedersen, S.; Nowak, D. Exposure assessment and lung function in pig and poultry farmers. Occup. Environ. Med. 2001, 58, 405–410. [Google Scholar] [CrossRef] [PubMed]
- Viegas, S.; Faísca, V.M.; Dias, H.; Clérigo, A.; Carolino, E.; Viegas, C. Occupational exposure to poultry dust and effects on the respiratory system in workers. J. Toxicol. Environ. Health A 2013, 76, 230–239. [Google Scholar] [CrossRef]
- Aarnink, A.; van Harn, J.; Van Hattum, T.; Zhao, Y.; Ogink, N. Dust reduction in broiler houses by spraying rapeseed oil. Trans. ASABE 2011, 54, 1479–1489. [Google Scholar] [CrossRef]
- Almuhanna, E.A. Dust Control in Livestock Buildings with Electrostatically-Charged Water Spray; Kansas State University: Manhattan, KS, USA, 2007; ISBN 1-109-97127-3. [Google Scholar]
- Lim, T.T.; Heber, A.J.; Ni, J.; Zhao, L.; Hanni, S.H. Effects of Electrostatic Space Charge System on Particulate Matter Emission from High-Rise Layer Barn; American Society of Agricultural and Biological Engineers: St. Joseph, MI, USA, 2008; p. 1. [Google Scholar] [CrossRef]
- Mitchell, B.W.; Baumgartner, J.W. Electrostatic Space Charge System for reducing dust in poultry production houses and the hatchery. In Proceedings of the International Conference How to Improve Air Quality, Citeseer; 2007; pp. 23–24. Available online: https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=b5467e69bce33c3b5691d6a4a4a8d065ed1a35f2 (accessed on 22 June 2022).
- Ritz, C.; Mitchell, B.; Fairchild, B.; Czarick III, M.; Worley, J. Improving in-house air quality in broiler production facilities using an electrostatic space charge system. J. Appl. Poult. Res. 2006, 15, 333–340. [Google Scholar] [CrossRef]
- Chai, L.; Ni, J.-Q.; Diehl, C.A.; Kilic, I.; Heber, A.; Chen, Y.; Cortus, E.; Bogan, B.; Lim, T.; Ramirez-Dorronsoro, J.-C. Ventilation rates in large commercial layer hen houses with two-year continuous monitoring. Br. Poult. Sci. 2012, 53, 19–31. [Google Scholar] [CrossRef] [PubMed]
- Redwine, J.S.; Lacey, R.E.; Mukhtar, S.; Carey, J. Concentration and emissions of ammonia and particulate matter in tunnel–ventilated broiler houses under summer conditions in Texas. Trans. ASAE 2002, 45, 1101. [Google Scholar] [CrossRef]
- Anderson, K.; Moore Jr, P.A.; Martin, J.; Ashworth, A.J. Effect of a new manure amendment on ammonia emissions from poultry litter. Atmosphere 2020, 11, 257. [Google Scholar] [CrossRef]
- Van Harn, J.; Aarnink, A.; Mosquera, J.; Van Riel, J.; Ogink, N. Effect of bedding material on dust and ammonia emission from broiler houses. Trans. ASABE 2012, 55, 219–226. [Google Scholar] [CrossRef]
- EU Council Directive. 1999/74/EC of 19 July 1999 Laying down Minimum Standards for the Protection of Laying Hens. Available online: https://www.legislation.gov.uk/eudr/1999/74/contents (accessed on 30 September 2022).
- Munir, M.; Belloncle, C.; Irle, M.; Federighi, M. Wood-based litter in poultry production: A review. Worlds Poult. Sci. J. 2019, 75, 5–16. [Google Scholar] [CrossRef]
- Aarnink, A.; Ellen, H. Processes and Factors Affecting Dust Emissions from Livestock Production. Improv. Air Qual. 2007. Available online: https://www.researchgate.net/profile/Andre-Aarnink/publication/40098613_Processes_and_factors_affecting_dust_emissions_from_livestock_production/links/55adff7508aed9b7dcdb09b3/Processes-and-factors-affecting-dust-emissions-from-livestock-production.pdf (accessed on 25 May 2022).
- Li, H.; Xin, H.; Burns, R.T.; Hoff, S.J.; Harmon, J.D.; Jacobson, L.D.; Noll, S.L. Effects of bird activity, ventilation rate and humidity on PM10 concentration and emission rate of a Turkey barn. In Livestock Environment VIII, 31 August–4 September 2008, Iguassu Falls, Brazil (p. 16); American Society of Agricultural and Biological Engineers: St. Joseph, MI, USA, 2009. [Google Scholar] [CrossRef]
- Gustafsson, G.; Von Wachenfelt, E. Reducing airborne dust in a loose-housing system for laying hens. J. Agric. Sci. Technol. A 2012, 2, 350. [Google Scholar]
- Farghly, M.; Mahrose, K.M.; Cooper, R.; Metwally, K.A.; Abougabal, M.S.; El-Ratel, I. Use of available crop by-products as alternative bedding materials to wheat straw for rearing broilers. Animal 2021, 15, 100260. [Google Scholar] [CrossRef] [PubMed]
- Ali, A.; Campbell, D.; Karcher, D.; Siegford, J. Nighttime roosting substrate type and height among 4 strains of laying hens in an aviary system. Poult. Sci. 2019, 98, 1935–1946. [Google Scholar] [CrossRef] [PubMed]
- Visser, M.; Fairchild, B.; Czarick, M.; Lacy, M.; Worley, J.; Thompson, S.; Kastner, J.; Ritz, C.; Naeher, L. Fine particle measurements inside and outside tunnel-ventilated broiler houses. J. Appl. Poult. Res. 2006, 15, 394–405. [Google Scholar] [CrossRef]
- Ogink, N.; van Harn, J.; van Emous, R.; Ellen, H. Top Layer Humidification of Bedding Material of Laying Hen Houses to Mitigate Dust Emissions: Effects of Water Spraying on Dust, Ammonia and Odor Emissions; American Society of Agricultural and Biological Engineers: St. Joseph, MI, USA, 2012; p. 3. [Google Scholar]
- Homidan, A.A.; Robertson, J.F.; Petchey, A.M. Review of the effect of ammonia and dust concentrations on broiler performance. Worlds Poult. Sci. J. 2003, 59, 340–349. [Google Scholar] [CrossRef]
- Benabdeljelil, K.; Ayachi, A. Evaluation of alternative litter materials for poultry. J. Appl. Poult. Res. 1996, 5, 203–209. [Google Scholar] [CrossRef]
- US Department of Commerce. Climate. Available online: https://www.weather.gov/wrh/Climate?wfo=dtx (accessed on 7 August 2023).
- Tang, Q.; Huang, K.; Liu, J.; Shen, D.; Dai, P.; Li, Y.; Li, C. Seasonal variations of microbial assemblage in fine particulate matter from a nursery pig house. Sci. Total Environ. 2020, 708, 134921. [Google Scholar] [CrossRef]
- Javed, W.; Guo, B. Effect of relative humidity on dust removal performance of electrodynamic dust shield. J. Electrost. 2020, 105, 103434. [Google Scholar] [CrossRef]
- Moesta, A.; Knierim, U.; Briese, A.; Hartung, J. The effect of litter condition and depth on the suitability of wood shavings for dustbathing behaviour. Appl. Anim. Behav. Sci. 2008, 115, 160–170. [Google Scholar] [CrossRef]
- David, B.; Mejdell, C.; Michel, V.; Lund, V.; Oppermann Moe, R. Air quality in alternative housing systems may have an impact on laying hen welfare. Part II—Ammonia. Animals 2015, 5, 886–896. [Google Scholar] [CrossRef]
- Le Bouquin, S.; Huneau-Salaün, A.; Huonnic, D.; Balaine, L.; Martin, S.; Michel, V. Aerial dust concentration in cage-housed, floor-housed, and aviary facilities for laying hens. Poult. Sci. 2013, 92, 2827–2833. [Google Scholar] [CrossRef] [PubMed]
- Lim, T.-T.; Heber, A.J.; Ni, J.-Q.; Gallien, J.; Xin, H. Air Quality Measurements at a Laying Hen House: Particulate Matter Concentrations and Emissions; American Society of Agricultural and Biological Engineers: St. Joseph, MI, USA, 2003; p. 249. [Google Scholar] [CrossRef]
- Houthuijs, D.; Breugelmans, O.; Hoek, G.; Vaskövi, E.; Miháliková, E.; Pastuszka, J.S.; Jirik, V.; Sachelarescu, S.; Lolova, D.; Meliefste, K. PM10 and PM2.5 concentrations in Central and Eastern Europe: Results from the Cesar study. Atmos. Environ. 2001, 35, 2757–2771. [Google Scholar] [CrossRef]
- Lin, X.-J.; Cortus, E.; Zhang, R.; Jiang, S.; Heber, A. Ammonia, hydrogen sulfide, carbon dioxide and particulate matter emissions from California high-rise layer houses. Atmos. Environ. 2012, 46, 81–91. [Google Scholar] [CrossRef]
- Shen, D.; Li, C. Distribution of Particulate Matter and Ammonia in a Mechanically Ventilated Layer House. Anim. Environ. Welf. 2017, 10–16. [Google Scholar]
Experiments | Room 1 (Control) | Room 2 (SFS) | Room 3 (LFS) | Room 4 (AWC) |
---|---|---|---|---|
Before start of experiment | 4.57 ± 0.55 | 4.83 ± 0.82 | 4.83 ± 0.79 | 4.57 ± 0.89 |
Estimated 20% substrate | - | 0.97 | 0.97 | 0.91 |
End of experiment | 5.33 ± 0.71 | 5.64 ± 0.92 | 5.46 ± 0.50 | 5.74 ± 0.69 |
Treatments | PM Sizes | Week 1 | Week 2 | Week 3 | Week 4 | Week 5 | Week 6 |
---|---|---|---|---|---|---|---|
PM1 | 0.80 ± 0.08 | 0.90 ± 0.28 | 0.55 ± 0.16 | 0.97 ± 0.22 | 0.66 ± 0.11 | 1.15 ± 0.03 | |
PM2.5 | 0.86 ± 0.08 | 0.98 ± 0.31 | 0.60 ± 0.17 | 1.05 ± 0.22 | 0.72 ± 0.11 | 1.24 ± 0.03 | |
Control | PM4 | 1.02 ± 0.09 | 1.19 ± 0.39 | 0.72 ± 0.19 | 1.26 ± 0.25 | 0.86 ± 0.12 | 1.48 ± 0.03 |
PM10 | 2.13 ± 0.20 | 2.41 ± 0.84 | 1.42 ± 0.38 | 2.58 ± 0.60 | 1.69 ± 0.28 | 3.06 ± 0.02 | |
TSP | 3.52 ± 0.32 | 3.79 ± 1.22 | 2.26 ± 0.68 | 4.16 ± 1.20 | 2.72 ± 0.52 | 5.04 ± 0.08 | |
PM1 | 0.50 ± 0.06 | 0.71 ± 0.08 | 0.43 ± 0.09 | 0.69 ± 0.06 | 0.64 ± 0.10 | 0.32 ± 0.05 | |
PM2.5 | 0.54 ± 0.06 | 0.78 ± 0.10 | 0.47 ± 0.09 | 0.75 ± 0.06 | 0.69 ± 0.11 | 0.35 ± 0.06 | |
AWC | PM4 | 0.64 ± 0.07 | 0.95 ± 0.13 | 0.57 ± 0.11 | 0.91 ± 0.07 | 0.82 ± 0.14 | 0.42 ± 0.07 |
PM10 | 1.32 ± 0.13 | 1.90 ± 0.21 | 1.10 ± 0.19 | 1.79 ± 0.15 | 1.62 ± 0.29 | 0.76 ± 0.11 | |
TSP | 2.20 ± 0.23 | 2.89 ± 0.20 | 1.67 ± 0.28 | 2.82 ± 0.28 | 2.59 ± 0.49 | 1.19 ± 0.13 | |
PM1 | 0.42 ± 0.10 | 0.62 ± 0.35 | 0.49 ± 0.26 | 0.64 ± 0.11 | 0.63 ± 0.08 | 0.71 ± 0.12 | |
PM2.5 | 0.46 ± 0.11 | 0.68 ± 0.38 | 0.54 ± 0.28 | 0.70 ± 0.12 | 0.68 ± 0.09 | 0.77 ± 0.14 | |
LFS | PM4 | 0.54 ± 0.13 | 0.83 ± 0.47 | 0.65 ± 0.34 | 0.84 ± 0.15 | 0.81 ± 0.09 | 0.91 ± 0.16 |
PM10 | 1.03 ± 0.24 | 1.65 ± 0.96 | 1.28 ± 0.69 | 1.65 ± 0.32 | 1.58 ± 0.17 | 1.80 ± 0.31 | |
TSP | 1.74 ± 0.42 | 2.57 ± 1.46 | 2.01 ± 1.10 | 2.61 ± 0.51 | 2.56 ± 0.41 | 2.99 ± 0.51 | |
PM1 | 0.43 ± 0.08 | 0.63 ± 0.17 | 0.45 ± 0.21 | 0.57 ± 0.05 | 0.60 ± 0.19 | 0.51 ± 0.02 | |
PM2.5 | 0.46 ± 0.08 | 0.68 ± 0.18 | 0.49 ± 0.22 | 0.62 ± 0.04 | 0.65 ± 0.20 | 0.56 ± 0.02 | |
SFS | PM4 | 0.55 ± 0.08 | 0.82 ± 0.20 | 0.59 ± 0.25 | 0.73 ± 0.04 | 0.76 ± 0.24 | 0.67 ± 0.02 |
PM10 | 1.09 ± 0.19 | 1.65 ± 0.44 | 1.10 ± 047 | 1.44 ± 0.13 | 1.47 ± 0.50 | 1.26 ± 0.08 | |
TSP | 1.80 ± 0.42 | 2.66 ± 0.84 | 1.75 ± 0.84 | 2.39 ± 0.26 | 2.53 ± 0.92 | 2.04 ± 0.14 |
Treatments | PM1 | PM2.5 | PM4 | PM10 | TSP |
---|---|---|---|---|---|
Control a | 0.84 ± 0.22 | 0.91 ± 0.23 | 1.09 ± 0.28 | 2.21 ± 0.60 | 3.58 ± 1.00 |
AWC b | 0.55 ± 0.16 | 0.59 ± 0.17 | 0.72 ± 0.21 | 1.42 ± 0.44 | 2.23 ± 0.68 |
SFS b | 0.53 ± 0.08 | 0.58 ± 0.09 | 0.68 ± 0.10 | 1.34 ± 0.22 | 2.19 ± 0.39 |
LFS b | 0.59 ± 0.11 | 0.64 ± 0.12 | 0.76 ± 0.14 | 1.50 ± 0.29 | 2.41 ± 0.46 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bist, R.B.; Regmi, P.; Karcher, D.; Guo, Y.; Singh, A.K.; Ritz, C.W.; Kim, W.K.; Jones, D.R.; Chai, L. Bedding Management for Suppressing Particulate Matter in Cage-Free Hen Houses. AgriEngineering 2023, 5, 1663-1676. https://doi.org/10.3390/agriengineering5040103
Bist RB, Regmi P, Karcher D, Guo Y, Singh AK, Ritz CW, Kim WK, Jones DR, Chai L. Bedding Management for Suppressing Particulate Matter in Cage-Free Hen Houses. AgriEngineering. 2023; 5(4):1663-1676. https://doi.org/10.3390/agriengineering5040103
Chicago/Turabian StyleBist, Ramesh Bahadur, Prafulla Regmi, Darrin Karcher, Yangyang Guo, Amit Kumar Singh, Casey W. Ritz, Woo Kyun Kim, Deana R. Jones, and Lilong Chai. 2023. "Bedding Management for Suppressing Particulate Matter in Cage-Free Hen Houses" AgriEngineering 5, no. 4: 1663-1676. https://doi.org/10.3390/agriengineering5040103
APA StyleBist, R. B., Regmi, P., Karcher, D., Guo, Y., Singh, A. K., Ritz, C. W., Kim, W. K., Jones, D. R., & Chai, L. (2023). Bedding Management for Suppressing Particulate Matter in Cage-Free Hen Houses. AgriEngineering, 5(4), 1663-1676. https://doi.org/10.3390/agriengineering5040103