Classification of Pear Leaf Diseases Based on Ensemble Convolutional Neural Networks
Abstract
:1. Introduction
2. Material and Methods
2.1. Dataset
2.2. Experimental Approach
2.3. Convolutional Neural Network Architecture
2.4. Transfer Learning
2.5. Data Augmentation
2.6. Proposed Ensemble Convolutional Neural Network
Algorithm 1: The detailed illustration of the algorithm. |
Input : Leaf Images using dataset D Output: Class prediction 1 Step 1: D is divided into training set () (60%), validation set ()(20%), test set () (20%) 2 Step 2: Pre-processing: 3 The input images are resized to 224 × 224 × 3 4 The input images are normalized 5 The data augmentation techniques are applied 6 Step 3: Training 7 foreach 8 l = 0.001 9 for epochs = 1 to 100 do 10 Update the parameters of the model n 11 foreach mini batch () ∈ () do 12 if the test accuracy is not improving for 10 epochs then 13 l = l × 0.2 14 end 15 end 16 end 17 end 18 Step 4: 19 foreach do 20 ensemble the output of all networks 21 end |
2.7. Evaluation Metrics
- Accuracy is defined as ;
- Precision is defined as ;
- Recall is defined as ;
- F1 score is defined as ;
3. Experimental Setup
4. Results and Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
AI | Artificial Intelligence |
ML | Machine Learning |
DL | Deep Learning |
ANN | Artificial Neural Network |
DSS | Decision Support System |
SVM | Support Vector Machine |
ECNN | Ensemble convolutional neural network |
RF | Random Forest |
CNN | Convolutional Neural Network |
References
- Fenu, G.; Malloci, F.M. Using Multi-Output Learning to Diagnose Plant Disease and Stress Severity. Complexity 2021, 2021, 18. [Google Scholar] [CrossRef]
- Fenu, G.; Malloci, F.M. Forecasting Plant and Crop Disease: An Explorative Study on Current Algorithms. Big Data Cogn. Comput. 2021, 5, 2. [Google Scholar] [CrossRef]
- Lu, J.; Tan, L.; Jiang, H. Review on convolutional neural network (CNN) applied to plant leaf disease classification. Agriculture 2021, 11, 707. [Google Scholar]
- Fenu, G.; Malloci, F.M. An Application of Machine Learning Technique in Forecasting Crop Disease. In Proceedings of the 2019 3rd International Conference on Big Data Research, Cergy-Pontoise, France, 20–22 November 2019; pp. 76–82. [Google Scholar] [CrossRef]
- Brahimi, M.; Boukhalfa, K.; Moussaoui, A. Deep learning for tomato diseases: Classification and symptoms visualization. Appl. Artif. Intell. 2017, 31, 299–315. [Google Scholar] [CrossRef]
- Kamilaris, A.; Prenafeta-Boldú, F.X. Deep learning in agriculture: A survey. Comput. Electron. Agric. 2018, 147, 70–90. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Wang, H.; Dang, L.M.; Sadeghi-Niaraki, A.; Moon, H. Crop pest recognition in natural scenes using convolutional neural networks. Comput. Electron. Agric. 2020, 169, 105174. [Google Scholar] [CrossRef]
- Bereciartua-Pérez, A.; Gómez, L.; Picón, A.; Navarra-Mestre, R.; Klukas, C.; Eggers, T. Insect counting through deep learning-based density maps estimation. Comput. Electron. Agric. 2022, 197, 106933. [Google Scholar] [CrossRef]
- Wang, A.; Zhang, W.; Wei, X. A review on weed detection using ground-based machine vision and image processing techniques. Comput. Electron. Agric. 2019, 158, 226–240. [Google Scholar] [CrossRef]
- Nevavuori, P.; Narra, N.; Lipping, T. Crop yield prediction with deep convolutional neural networks. Comput. Electron. Agric. 2019, 163, 104859. [Google Scholar] [CrossRef]
- Albarrak, K.; Gulzar, Y.; Hamid, Y.; Mehmood, A.; Soomro, A.B. A Deep Learning-Based Model for Date Fruit Classification. Sustainability 2022, 14, 6339. [Google Scholar] [CrossRef]
- Hamid, Y.; Wani, S.; Soomro, A.B.; Alwan, A.A.; Gulzar, Y. Smart Seed Classification System based on MobileNetV2 Architecture. In Proceedings of the 2022 2nd International Conference on Computing and Information Technology (ICCIT), Tabuk, Saudi Arabia, 25–27 January 2022; pp. 217–222. [Google Scholar] [CrossRef]
- Sladojevic, S.; Arsenovic, M.; Anderla, A.; Culibrk, D.; Stefanovic, D. Deep neural networks based recognition of plant diseases by leaf image classification. Comput. Intell. Neurosci. 2016, 2016, 3289801. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lu, Y.; Yi, S.; Zeng, N.; Liu, Y.; Zhang, Y. Identification of rice diseases using deep convolutional neural networks. Neurocomputing 2017, 267, 378–384. [Google Scholar] [CrossRef]
- Liu, B.; Zhang, Y.; He, D.; Li, Y. Identification of apple leaf diseases based on deep convolutional neural networks. Symmetry 2017, 10, 11. [Google Scholar] [CrossRef] [Green Version]
- Ferentinos, K.P. Deep learning models for plant disease detection and diagnosis. Comput. Electron. Agric. 2018, 145, 311–318. [Google Scholar] [CrossRef]
- Too, E.C.; Yujian, L.; Njuki, S.; Yingchun, L. A comparative study of fine-tuning deep learning models for plant disease identification. Comput. Electron. Agric. 2019, 161, 272–279. [Google Scholar] [CrossRef]
- Waheed, A.; Goyal, M.; Gupta, D.; Khanna, A.; Hassanien, A.E.; Pandey, H.M. An optimized dense convolutional neural network model for disease recognition and classification in corn leaf. Comput. Electron. Agric. 2020, 175, 105456. [Google Scholar] [CrossRef]
- Ramcharan, A.; McCloskey, P.; Baranowski, K.; Mbilinyi, N.; Mrisho, L.; Ndalahwa, M.; Legg, J.; Hughes, D.P. A mobile-based deep learning model for cassava disease diagnosis. Front. Plant Sci. 2019, 2019, 272. [Google Scholar] [CrossRef] [Green Version]
- Javierto, D.P.P.; Martin, J.D.Z.; Villaverde, J.F. Robusta Coffee Leaf Detection based on YOLOv3- MobileNetv2 model. In Proceedings of the 2021 IEEE 13th International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment, and Management (HNICEM), Manila, Philippines, 28–30 November 2021; pp. 1–6. [Google Scholar] [CrossRef]
- Hassan, S.M.; Maji, A.K.; Jasiński, M.; Leonowicz, Z.; Jasińska, E. Identification of plant-leaf diseases using CNN and transfer-learning approach. Electronics 2021, 10, 1388. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, J.; Zhang, W.; Zhan, Y.; Guo, S.; Zheng, Q.; Wang, X. A survey on deploying mobile deep learning applications: A systemic and technical perspective. Digit. Commun. Netw. 2022, 8, 1–17. [Google Scholar] [CrossRef]
- Fenu, G.; Malloci, F.M. DiaMOS plant: A dataset for diagnosis and monitoring plant disease. Agronomy 2021, 11, 2107. [Google Scholar] [CrossRef]
- Fenu, G.; Malloci, F.M. Evaluating impacts between laboratory and field-collected datasets for plant disease classification. Agronomy 2022, 12, 2359. [Google Scholar] [CrossRef]
- Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A. Going deeper with convolutions. In Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA, 7–12 June 2015. [Google Scholar] [CrossRef] [Green Version]
- Howard, A.G.; Zhu, M.; Chen, B.; Kalenichenko, D.; Wang, W.; Weyand, T.; Andreetto, M.; Adam, H. Mobilenets: Efficient convolutional neural networks for mobile vision applications. arXiv 2017, arXiv:1704.04861. [Google Scholar]
- Tan, M.; Le, Q.V. Efficientnet: Rethinking model scaling for convolutional neural networks. arXiv 2019, arXiv:1905.11946. [Google Scholar]
- Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv 2014, arXiv:1409.1556. [Google Scholar]
- Deng, J.; Dong, W.; Socher, R.; Li, L.J.; Li, K.; Fei-Fei, L. ImageNet: A large-scale hierarchical image database. In Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition, Miami, FL, USA, 20–25 June 2009. [Google Scholar] [CrossRef] [Green Version]
- Ahmad, I.; Hamid, M.; Yousaf, S.; Shah, S.T.; Ahmad, M.O. Optimizing Pretrained Convolutional Neural Networks for Tomato Leaf Disease Detection. Complexity 2020, 2020, 8812019. [Google Scholar] [CrossRef]
- Vallabhajosyula, S.; Sistla, V.; Kolli, V.K.K. Transfer learning-based deep ensemble neural network for plant leaf disease detection. J. Plant Dis. Prot. 2022, 129, 545–558. [Google Scholar] [CrossRef]
- Sutaji, D.; Yıldız, O. LEMOXINET: Lite ensemble MobileNetV2 and Xception models to predict plant disease. Ecol. Inform. 2022, 70, 101698. [Google Scholar] [CrossRef]
- Kaur, N. Plant leaf disease detection using ensemble classification and feature extraction. Turk. J. Comput. Math. Educ. (TURCOMAT) 2021, 12, 2339–2352. [Google Scholar]
- Chen, J.; Zeb, A.; Nanehkaran, Y.; Zhang, D. Stacking ensemble model of deep learning for plant disease recognition. J. Ambient. Intell. Humaniz. Comput. 2022, 1–14. [Google Scholar] [CrossRef]
DiaMOS Plant Dataset [23] | |
---|---|
Plant | Pear |
Cultivar | Septoria Piricola |
Type of data | RGB Images |
ROI (Region of Interest) captured | leaf, fruit |
Total size | 3505 images (3006 leaves images + 499 fruit images) |
Data Accessibility | https://doi.org/10.5281/zenodo.5557313 Date: 16 January 2023 |
Application | The images are suitable for different machine and |
deep learning tasks such as images detection | |
and classification. |
Smartphone Camera | DSRL Camera | |
---|---|---|
Image size | 2976 × 3968 | 3456 × 5184 |
Model device | Honor 6× | Canon EOS 60D |
Focal length | 3.83 mm | 50 mm |
Focal ratio | f/2.2 | f/4.5 |
Color space | RGB | RGB |
Leaf Disease | Size |
---|---|
Healthy | 43 |
Spot | 884 |
Curl | 54 |
Slug | 2025 |
Total | 3006 |
Accuracy (%) | ||||
---|---|---|---|---|
CNN | Optimizer | Train | Validation | Test |
EfficientNetB0 | RMSprop | 81.13 | 82.82 | 83.38 |
Adam | 89.02 | 86.33 | 86.05 | |
InceptionV3 | RMSprop | 81.96 | 79.66 | 82.72 |
Adam | 84.44 | 80.29 | 83.39 | |
MobileNetV2 | RMSprop | 85.38 | 81.12 | 83.06 |
Adam | 87.70 | 83.83 | 84.05 | |
VGG19 | RMSprop | 72.42 | 71.68 | 73.75 |
Adam | 76.66 | 76.53 | 75.75 |
CNN | Optimizer | Precision (%) | Recall (%) | F1-Score (%) |
---|---|---|---|---|
EfficientNetB0 | RMSprop | 81.14 | 83.38 | 82.23 |
Adam | 84.42 | 86.04 | 85.03 | |
InceptionV3 | RMSprop | 80.21 | 82.72 | 81.45 |
Adam | 81.14 | 83.38 | 82.23 | |
MobileNetV2 | RMSprop | 81.35 | 83.05 | 82.07 |
Adam | 82.37 | 84.05 | 83.06 | |
VGG19 | RMSprop | 70.47 | 73.75 | 71.76 |
Adam | 72.71 | 75.74 | 74.05 |
Test Accuracy—Weighted Average | ||||
---|---|---|---|---|
Ensemble CNNS | Accuracy (%) | Precision (%) | Recall (%) | F1-Score (%) |
EfficientNetB0 + InceptionV3 | 91.14 | 89.84 | 90.02 | 89.93 |
EfficientNetB0 + MobileNetV2 | 86.21 | 84.13 | 85.51 | 84.82 |
InceptionV3 + MobileNetV2 | 85.35 | 83.02 | 85.14 | 84.08 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fenu, G.; Malloci, F.M. Classification of Pear Leaf Diseases Based on Ensemble Convolutional Neural Networks. AgriEngineering 2023, 5, 141-152. https://doi.org/10.3390/agriengineering5010009
Fenu G, Malloci FM. Classification of Pear Leaf Diseases Based on Ensemble Convolutional Neural Networks. AgriEngineering. 2023; 5(1):141-152. https://doi.org/10.3390/agriengineering5010009
Chicago/Turabian StyleFenu, Gianni, and Francesca Maridina Malloci. 2023. "Classification of Pear Leaf Diseases Based on Ensemble Convolutional Neural Networks" AgriEngineering 5, no. 1: 141-152. https://doi.org/10.3390/agriengineering5010009
APA StyleFenu, G., & Malloci, F. M. (2023). Classification of Pear Leaf Diseases Based on Ensemble Convolutional Neural Networks. AgriEngineering, 5(1), 141-152. https://doi.org/10.3390/agriengineering5010009