Classifier’s Performance for Detecting the Pecking Pattern of Broilers during Feeding
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Setup and Data Collection
2.2. Data Mining Approach
- B_1 (light pecking) from 540 samples in the force range [−∞, …, 1.89 (gf)];
- B_2 (medium pecking) from 36 samples in the force range [1.89, …, 3.70 (gf)];
- B_3 (strong peck) from 7 samples in the force range [3.70, …, ∞].
2.2.1. Classifiers
2.2.2. Application of Classifiers
2.2.3. Attribute Selection
2.3. Classifier Performance Evaluation Metrics
3. Results and Discussion
3.1. Dataset 1
3.2. Dataset 2
3.3. Comparison of Attribute Selection Methods
3.4. Selection of Attributes
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ANN | Artificial Neural Network |
CEUA | Ethics Committee on the Use of Animals |
CFS | Correlation Feature Selection |
CNN | Convolutional Neural Network |
FN | False Negative |
FP | False Positive |
IoT | Internet of things |
KNN | K-Nearest Neighbor |
LED | Ligth Emiting Diode |
N | Total negative classification |
NDVI | Normalized Difference Vegetation Index |
P | Total positive classification |
PCA | Principal Component Analysis |
RF | Random Forest |
RFID | Radio Frequency Identification |
SQL | Structured Query Language |
SVM | Support Vector Machine |
TN | Truly Negative |
TP | Truly Positive |
References
- Hogan, J.A. Pecking and feeding in chicks. Learn. Motiv. 1984, 15, 360–376. [Google Scholar] [CrossRef]
- Yo, T.; Vilarino, M.; Faure, J.M.; Picard, M. Feed pecking in young chickens: New techniques of evaluation. Physiol. Behav. 1997, 61, 803–810. [Google Scholar] [CrossRef]
- Neves, D.P.; Mehdizadeh, S.A.; Tscharke, M.; de Alencar Nääs, I.; Banhazi, T.M. Detection of flock movement and behaviour of broiler chickens at different feeders using image analysis. Inf. Process. Agric. 2015, 2, 177–182. [Google Scholar] [CrossRef]
- Cook, R.N.; Xin, H.; Nettleton, D. Effects of cage stocking density on feeding behaviors of group-housed laying hens. Trans. ASABE 2006, 49, 187–192. [Google Scholar] [CrossRef]
- Gates, R.S.; Xin, H. Comparative analysis of measurement techniques of feeding and drinking behaviour of individual poultry subjected to warm environmental condition. In Proceedings of the ASABE International Meeting, Sacramento, CA, USA, 29 July–1 August 2001. ASAE Paper no. 014033. [Google Scholar]
- Gates, R.S.; Xin, H. Extracting poultry behavior from time-series weigh scale records. Comput. Electron. Agric. 2008, 62, 8–14. [Google Scholar] [CrossRef]
- Youssef, A.; Exadaktylos, V.; Berckmans, D.A. Towards real-time control of chicken activity in a ventilated chamber. Biosyst. Eng. 2015, 135, 31–43. [Google Scholar] [CrossRef]
- Li, G.; Zhao, Y.; Purswell, J.L.; Du, Q.; Chesser, G.D., Jr.; Lowe, J.W. Analysis of feeding and drinking behaviors of group-reared broilers via image processing. Comput. Electron. Agric. 2020, 175, 105596. [Google Scholar] [CrossRef]
- Tu, X.; Du, S.; Tang, L.; Xin, H.; Wood, B. A real-time automated system for monitoring individual feed intake and body weight of group housed turkeys. Comput. Electron. Agric. 2011, 75, 313–320. [Google Scholar] [CrossRef]
- Aydin, A.; Berckmans, D. Using sound technology to automatically detect the short-term feeding behaviours of broiler chickens. Comput. Electron. Agric. 2016, 121, 25–31. [Google Scholar] [CrossRef]
- Faysal, M.A.H.; Ahmed, M.R.; Rahaman, M.M.; Ahmed, F. A Review of groundbreaking changes in the poultry industry in Bangladesh using the internet of things (IoT) and computer vision technology. In Proceedings of the International Conference on Automation, Control and Mechatronics for Industry 4.0, Rajshahi, Bangladesh, 8–9 July 2021; pp. 1–6. [Google Scholar]
- Yang, X.; Zhao, Y.; Street, G.M.; Huang, Y.; To, S.F.; Purswell, J.L. Classification of broiler behaviours using triaxial accelerometer and machine learning. Animals 2021, 15, 100269. [Google Scholar] [CrossRef]
- You, J.; Lou, E.; Afrouziyeh, M.; Zukiwsky, N.M.; Zuidhof, M.J. A supervised machine learning method to detect anomalous real-time broiler breeder body weight data recorded by a precision feeding system. Comput. Electron. Agric. 2021, 185, 106171. [Google Scholar] [CrossRef]
- Yang, X.; Zheng, C.; Zou, C.; Gan, H.; Li, S.; Huang, S.; Xue, Y. A CNN-based posture change detection for lactating sow in untrimmed depth videos. Comput. Electron. Agric. 2021, 185, 106139. [Google Scholar] [CrossRef]
- Seber, R.T.; Moura, D.J.D.; Lima, N.D.D.S.; Nääs, I.D.A. Smart Feeding Unit for Measuring the Pecking Force in Farmed Broilers. Animals 2021, 11, 864. [Google Scholar] [CrossRef] [PubMed]
- Aha, D.W.; Kibler, D.; Albert, M.K. Instance-based learning algorithms. Mach. Learn. 1991, 6, 37–66. [Google Scholar] [CrossRef]
- Cortes, C.; Vapnik, V. Support-vector networks. Mach. Learn. 1995, 20, 273–297. [Google Scholar] [CrossRef]
- Hearst, M.A.; Dumais, S.T.; Osuna, E.; Platt, J.; Scholkopf, B. Support vector machines. IEEE Intell. Syst. Appl. 1998, 13, 18–28. [Google Scholar] [CrossRef]
- Platt, J.C. Sequential Minimal Optimization: A Fast Algorithm for Training Suppor Vector Machines. In Advances in Kernel Methods-Support Vector Learning; Scholkopf, B., Burges, C.J.C., Smola, A.J., Eds.; M.I.T. Press: Cambridge, MA, USA, 1999; pp. 185–208. [Google Scholar]
- Burges, C.J.C. A Tutorial on Support Vector Machines for Pattern Recognition. Data Min. Knowl. Discov. 1998, 2, 121–167. [Google Scholar] [CrossRef]
- Vapnik, V. Statistical Learning Theory; Wiley: New York, NY, USA, 1998. [Google Scholar]
- Kaul, A.; Raina, S. Support vector machine versus convolutional neural network for hyperspectral image classification: A systematic review. Concurr. Comput. 2022, 34, e6945. [Google Scholar] [CrossRef]
- Haykin, S.; Lippmann, R. Neural networks, a comprehensive foundation. Int. J. Neural Syst. 1994, 5, 363–364. [Google Scholar]
- Abiodun, O.I.; Jantan, A.; Omolara, A.E.; Dada, K.V.; Umar, A.M.; Linus, O.U.; Arshad, H.; Kazaure, A.A.; Gana, U.; Kiru, M.U. Comprehensive Review of Artificial Neural Network Applications to Pattern Recognition. IEEE Access 2019, 7, 158820–158846. [Google Scholar] [CrossRef]
- Han, J.; Kamber, M.; Pei, J. Data Mining: Concepts and Techniques, 3rd ed.; Elsevier: Waltham, MA, USA, 2012; pp. 364–368. [Google Scholar]
- Chicco, D.; Jurman, G. The advantages of the Matthews correlation coefficient (MCC) over F1 score and accuracy in binary classification evaluation. BMC Genom. 2020, 21, 1–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saifullah, S.; Suryotomo, A.P. Identification of chicken egg fertility using SVM classifier based on first-order statistical feature extraction. arXiv 2022, arXiv:2201.04063. [Google Scholar]
- Fadchar, N.A.; Dela Cruz, J.C. Prediction Model for Chicken Egg Fertility Using Artificial Neural Network. In Proceedings of the IEEE 7th International Conference on Industrial Engineering and Applications (ICIEA), Bankok, Thailand, 16–21 April 2020; pp. 916–920. [Google Scholar] [CrossRef]
- Jolliffe, I.T. Discarding variables in a principal component analysis. I: Artificial data. J. R. Stat. Soc. Ser. C Appl. Stat. 1972, 21, 160–173. [Google Scholar] [CrossRef]
- Akbarzadeh, S.; Paap, A.; Ahderom, S.; Apopei, B.; Alameh, K. Plant discrimination by Support Vector Machine classifier based on spectral reflectance. Comput. Electron. Agric. 2018, 148, 250–258. [Google Scholar] [CrossRef]
- Venkatesan, C.; Karthigaikumar, P.; Paul, A.; Satheeskumaran, S.; Kumar, R. ECG signal preprocessing and SVM classifier-based abnormality detection in remote healthcare applications. IEEE Access 2018, 6, 9767–9773. [Google Scholar] [CrossRef]
- Kumar, S.D.; Esakkirajan, S.; Bama, S.; Keerthiveena, B. A microcontroller based machine vision approach for tomato grading and sorting using SVM classifier. Microprocess. Microsyst. 2020, 76, 103090. [Google Scholar] [CrossRef]
Feature Number | Feature Name | Unit |
---|---|---|
1 | Minimum value | - |
2 | Maximum value | - |
3 | Average value | - |
4 | Standard error | - |
5 | Variance | - |
6 | Standard deviation | - |
7 | Median | - |
8 | 25° percentile | - |
9 | 75° percentile | - |
10 | Skewness | - |
11 | Kurtosis | - |
12 | Coefficient of variation | - |
13 | Signal entropy | - |
14 | First frequency of the signal spectrum | Hertz |
15 | The amplitude of the first frequency of the signal spectrum | dB |
16 | Second frequency of the signal spectrum | Hertz |
17 | The amplitude of the second frequency of the signal spectrum | dB |
Peck detection | Classes | |
Non-pecking | B_0 | |
Pecking | B_1 |
Feature Number | Attribute | Unit |
---|---|---|
1 | Minimum value | - |
2 | Maximum value | - |
3 | Average value | - |
4 | Standard error | - |
5 | Variance | - |
6 | Standard deviation | - |
7 | Median | - |
8 | 25th percentile | - |
9 | 75th percentile | - |
10 | Skewness | - |
11 | Kurtosis | - |
12 | Coefficient of variation | - |
13 | Signal entropy | Hertz |
14 | First frequency of the signal spectrum | dB |
15 | The amplitude of the first frequency of the signal spectrum | Hertz |
16 | Second frequency of the signal spectrum | dB |
Peck detection | Classes * | |
Non-pecking | B_0 | |
Light peck | B_1 | |
Medium peck | B_2 | |
Strong peck | B_3 |
Predicted | Total | ||
---|---|---|---|
True | TP | FP | P |
FN | TN | N | |
Total | Total | Total | P + N |
Evaluation Metrics | Equation | |
---|---|---|
Accuracy, % (match rate) | (1) | |
Errors in classification, % (1—Accuracy) | (2) | |
Kappa statistics | (3) | |
Sensitivity, rate of true positives (TP Rate ⬄ Sensitivity ⬄ Recall) | (4) | |
Specificity, rate of true negatives | (5) | |
False positive rate (FP Rate ⬄ 1—Specificity) | (6) | |
Precision | (7) | |
F-Measure | (8) | |
MCC | (9) |
Algorithm | Accuracy (%) | Classification Error (%) | Kappa | Mean Absolute Error | Root Mean Square Error | Relative Absolute Error (%) | Root Relative Square Error (%) |
---|---|---|---|---|---|---|---|
KNN | 99.59 | 0.40 | 0.99 | 0.006 | 0.06 | 1.43 | 14.48 |
SVM | 99.46 | 0.54 | 0.98 | 0.005 | 0.07 | 1.40 | 16.74 |
ANN | 99.73 | 0.27 | 0.99 | 0.005 | 0.05 | 1.35 | 12.60 |
Algorithm | TP Rate | FP Rate | Precision | Recall | F-Measure | MCC | ROC Area | Class |
---|---|---|---|---|---|---|---|---|
KNN | 1.00 | 0.02 | 0.99 | 1.00 | 0.99 | 0.99 | 0.99 | B |
0.98 | 0.00 | 1.00 | 0.98 | 0.99 | 0.99 | 0.99 | NB | |
SVM | 1.00 | 0.02 | 0.99 | 1.00 | 0.99 | 0.98 | 0.99 | B |
0.98 | 0.00 | 1.00 | 0.98 | 0.99 | 0.98 | 0.99 | NB | |
ANN | 1.00 | 0.01 | 0.99 | 1.00 | 0.99 | 0.99 | 0.99 | B |
0.99 | 0.00 | 1.00 | 0.99 | 0.99 | 0.99 | 0.99 | NB |
Algorithm | Method | Accuracy (%) | Classification Error (%) | Kappa | Mean Absolute Error | Root Mean Square Error | Relative Absolute Error (%) | Root Relative Square Error (%) |
---|---|---|---|---|---|---|---|---|
KNN | No selection * | 98.65 | 1.35 | 0.97 | 0.01 | 0.09 | 5.49 | 25.78 |
PCA | 93.38 | 6.62 | 0.86 | 0.03 | 0.18 | 15.04 | 53.17 | |
χ2 | 98.65 | 1.35 | 0.97 | 0.01 | 0.09 | 5.49 | 25.78 | |
Wrapper | 99.46 | 0.54 | 0.99 | 0.05 | 0.05 | 2.10 | 5.21 | |
CFS | 98.51 | 1.49 | 0.97 | 0.001 | 0.09 | 4.12 | 25.20 | |
InfoGain | 98.38 | 1.62 | 0.96 | 0.01 | 0.09 | 4.41 | 26.32 | |
GainRatio | 98.38 | 1.62 | 0.96 | 0.01 | 0.09 | 4.41 | 26.32 | |
SVM | No selection * | 97.84 | 2.16 | 0.95 | 0.25 | 0.31 | 107.80 | 92.27 |
PCA | 90.81 | 9.19 | 0.79 | 0.26 | 0.32 | 110.50 | 95.16 | |
χ2 | 97.84 | 2.16 | 0.95 | 0.25 | 0.31 | 107.80 | 92.27 | |
Wrapper | 97.97 | 2.03 | 0.96 | 0.25 | 0.31 | 107.75 | 92.21 | |
CFS | 95.68 | 4.32 | 0.90 | 0.25 | 0.32 | 108.67 | 93.22 | |
InfoGain | 97.57 | 2.43 | 0.95 | 0.25 | 0.31 | 107.95 | 92.42 | |
GainRatio | 97.30 | 2.70 | 0.94 | 0.25 | 0.32 | 108.04 | 92.51 | |
ANN | No selection * | 98.38 | 1.62 | 0.96 | 0.01 | 0.08 | 4.56 | 24.84 |
PCA | 92.84 | 7.16 | 0.84 | 0.05 | 0.17 | 19.55 | 48.86 | |
χ2 | 97.84 | 2.16 | 0.95 | 0.25 | 0.31 | 107.80 | 92.27 | |
Wrapper | 98.92 | 1.08 | 0.98 | 0.01 | 0.07 | 4.52 | 20.04 | |
CFS | 99.05 | 0.95 | 0.98 | 0.01 | 0.07 | 5.73 | 20.78 | |
InfoGain | 98.78 | 1.22 | 0.97 | 0.01 | 0.07 | 3.99 | 20.57 | |
GainRatio | 98.51 | 1.49 | 0.97 | 0.01 | 0.08 | 4.74 | 24.52 |
KNN | SVM | RNN | ||||
---|---|---|---|---|---|---|
Method | Accuracy (%) | Kappa | Accuracy (%) | Kappa | Accuracy (%) | Kappa |
No selection * | 97.84 | 0.95 | 97.84 | 0.95 | 98.38 | 0.96 |
PCA | 93.38 | 0.86 | 90.81 | 0.79 | 92.84 | 0.84 |
χ2 | 97.84 | 0.95 | 97.84 | 0.95 | 98.38 | 0.96 |
Wrapper/KNN | 99.46 | 0.99 | - | - | - | - |
Wrapper/SVM | - | - | 97.97 | 0.96 | - | - |
Wrapper/ANN | - | - | - | - | 98.92 | 0.98 |
CFS | 98.51 | 0.97 | 95.68 | 0.90 | 99.05 | 0.98 |
InfoGain | 98.38 | 0.96 | 97.57 | 0.95 | 98.78 | 0.97 |
GainRatio | 98.11 | 0.96 | 97.30 | 0.94 | 98.51 | 0.97 |
Methods | Selected Attributes * |
---|---|
No selection | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16 |
PCA | 1, 3, 9, 10, 11, 13, 15 |
χ2 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16 |
Wrapper/KNN | 2, 3, 8, 9, 12 |
Wrapper/SVM | 2, 3, 4, 5, 8, 9, 12, 16 |
Wrapper/ANN | 1, 3, 4, 9, 12 |
CFS | 4, 9, 12 |
InfoGain | 1, 3, 4, 5, 8, 9, 10, 11, 12, 16 |
GainRatio | 1, 3, 4, 5, 8, 9, 10, 12, 15, 16 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Seber, R.T.; de Alencar Nääs, I.; de Moura, D.J.; da Silva Lima, N.D. Classifier’s Performance for Detecting the Pecking Pattern of Broilers during Feeding. AgriEngineering 2022, 4, 789-800. https://doi.org/10.3390/agriengineering4030051
Seber RT, de Alencar Nääs I, de Moura DJ, da Silva Lima ND. Classifier’s Performance for Detecting the Pecking Pattern of Broilers during Feeding. AgriEngineering. 2022; 4(3):789-800. https://doi.org/10.3390/agriengineering4030051
Chicago/Turabian StyleSeber, Rogério Torres, Irenilza de Alencar Nääs, Daniella Jorge de Moura, and Nilsa Duarte da Silva Lima. 2022. "Classifier’s Performance for Detecting the Pecking Pattern of Broilers during Feeding" AgriEngineering 4, no. 3: 789-800. https://doi.org/10.3390/agriengineering4030051
APA StyleSeber, R. T., de Alencar Nääs, I., de Moura, D. J., & da Silva Lima, N. D. (2022). Classifier’s Performance for Detecting the Pecking Pattern of Broilers during Feeding. AgriEngineering, 4(3), 789-800. https://doi.org/10.3390/agriengineering4030051