Automated Systems for Estrous and Calving Detection in Dairy Cattle
Abstract
:1. Introduction
2. Estrous Detection Systems
2.1. Pedometers and Accelerometers
2.2. Radiotelemetry Pressure Detectors
2.3. Alteration of Body Temperature
2.4. Imaging
3. Calving Detection Systems
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ruviaro, C.F.; de Leis, C.M.; Florindo, T.J.; de Medeiros Florindo, G.I.B.; da Costa, J.S.; Tang, W.Z.; Pinto, A.T.; Soares, S.R. Life Cycle Cost Analysis of Dairy Production Systems in Southern Brazil. Sci. Total Environ. 2020, 741, 140273. [Google Scholar] [CrossRef] [PubMed]
- Ceballos, M.C.; Sant’Anna, A.C.; Boivin, X.; de Costa, F.O.; de Carvalhal, M.V.L.; da Paranhos Costa, M.J.R. Impact of Good Practices of Handling Training on Beef Cattle Welfare and Stockpeople Attitudes and Behaviors. Livest. Sci. 2018, 216, 24–31. [Google Scholar] [CrossRef]
- Mihai, R.; Marginean, G.; Monica, M.; Hassan, A.; Marin, I.; Fintineru, G.; Vidu, L.; Al-Janabi, A. Impact Of Precision Livestock Farming On Welfare And Milk Production In Montbeliarde Dairy Cows. Sci. Pap. Ser. Anim. Sci. 2020, 63, 308–313. [Google Scholar]
- Sewalem, A.; Miglior, F.; Kistemaker, G.J.; Sullivan, P.; Van Doormaal, B.J. Relationship between Reproduction Traits and Functional Longevity in Canadian Dairy Cattle. J. Dairy Sci. 2008, 91, 1660–1668. [Google Scholar] [CrossRef] [PubMed]
- Giordano, J.O.; Kalantari, A.S.; Fricke, P.M.; Wiltbank, M.C.; Cabrera, V.E. A Daily Herd Markov-Chain Model to Study the Reproductive and Economic Impact of Reproductive Programs Combining Timed Artificial Insemination and Estrus Detection. J. Dairy Sci. 2012, 95, 5442–5460. [Google Scholar] [CrossRef]
- Perez Marquez, H.J.; Ambrose, D.J.; Schaefer, A.L.; Cook, N.J.; Bench, C.J. Evaluation of Infrared Thermography Combined with Behavioral Biometrics for Estrus Detection in Naturally Cycling Dairy Cows. Animal 2021, 15, 100205. [Google Scholar] [CrossRef]
- Schweinzer, V.; Gusterer, E.; Kanz, P.; Krieger, S.; Süss, D.; Lidauer, L.; Berger, A.; Kickinger, F.; Öhlschuster, M.; Auer, W.; et al. Comparison of Behavioral Patterns of Dairy Cows with Natural Estrus and Induced Ovulation Detected by an Ear-Tag Based Accelerometer. Theriogenology 2020, 157, 33–41. [Google Scholar] [CrossRef]
- Palmer, M.A.; Olmos, G.; Boyle, L.A.; Mee, J.F. Estrus Detection and Estrus Characteristics in Housed and Pastured Holstein-Friesian Cows. Theriogenology 2010, 74, 255–264. [Google Scholar] [CrossRef]
- Patterson, D.J.; Perry, R.C.; Kiracofe, G.H.; Bellows, R.A.; Staigmiller, R.B.; Corah, L.R. Management Considerations in Heifer Development and Puberty. J. Anim. Sci. 1992, 70, 4018–4035. [Google Scholar] [CrossRef]
- Roelofs, J.B.; van Eerdenburg, F.J.C.M.; Soede, N.M.; Kemp, B. Various Behavioral Signs of Estrous and Their Relationship with Time of Ovulation in Dairy Cattle. Theriogenology 2005, 63, 1366–1377. [Google Scholar] [CrossRef]
- Maatje, K.; Loeffler, S.H.; Engel, B. Predicting Optimal Time of Insemination in Cows That Show Visual Signs of Estrus by Estimating Onset of Estrus with Pedometers. J. Dairy Sci. 1997, 80, 1098–1105. [Google Scholar] [CrossRef]
- Wangler, A.; Meyer, A.; Rehbock, F.; Sanftleben, P. Wie effizient ist die Aktivitätsmessung als ein Hilfsmittel in der Brunsterkennung bei Milchrindern? Züchtungskunde 2005, 77, 110–127. [Google Scholar]
- Röttgen, V.; Becker, F.; Tuchscherer, A.; Wrenzycki, C.; Düpjan, S.; Schön, P.C.; Puppe, B. Vocalization as an Indicator of Estrus Climax in Holstein Heifers during Natural Estrus and Superovulation. J. Dairy Sci. 2018, 101, 2383–2394. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roelofs, J.; López-Gatius, F.; Hunter, R.H.F.; van Eerdenburg, F.J.C.M.; Hanzen, C. When Is a Cow in Estrus? Clinical and Practical Aspects. Theriogenology 2010, 74, 327–344. [Google Scholar] [CrossRef]
- Diskin, M.G.; Sreenan, J.M. Expression and Detection of Oestrus in Cattle. Reprod. Nutr. Dev. 2000, 40, 481–491. [Google Scholar] [CrossRef] [Green Version]
- Gwazdauskas, F.C.; Lineweaver, J.A.; McGilliard, M.L. Environmental and Management Factors Affecting Estrous Activity in Dairy Cattle. J. Dairy Sci. 1983, 66, 1510–1514. [Google Scholar] [CrossRef]
- Silper, B.F.; Madureira, A.M.L.; Kaur, M.; Burnett, T.A.; Cerri, R.L.A. Short Communication: Comparison of Estrus Characteristics in Holstein Heifers by 2 Activity Monitoring Systems. J. Dairy Sci. 2015, 98, 3158–3165. [Google Scholar] [CrossRef]
- Brzozowski, M.; Piwczyński, D.; Sitkowska, B.; Kolenda, M. The Impact of Installation of Automatic Milking System on Production and Reproduction Traits of Dairy Cows. Reprod. Domest. Anim. Zuchthyg. 2018, 53, 1123–1129. [Google Scholar] [CrossRef]
- Sartori, R.; Sartor-Bergfelt, R.; Mertens, S.A.; Guenther, J.N.; Parrish, J.J.; Wiltbank, M.C. Fertilization and Early Embryonic Development in Heifers and Lactating Cows in Summer and Lactating and Dry Cows in Winter. J. Dairy Sci. 2002, 85, 2803–2812. [Google Scholar] [CrossRef]
- Bruyère, P.; Hétreau, T.; Ponsart, C.; Gatien, J.; Buff, S.; Disenhaus, C.; Giroud, O.; Guérin, P. Can Video Cameras Replace Visual Estrus Detection in Dairy Cows? Theriogenology 2012, 77, 525–530. [Google Scholar] [CrossRef]
- Giordano, J.O.; Fricke, P.M.; Wiltbank, M.C.; Cabrera, V.E. An Economic Decision-Making Support System for Selection of Reproductive Management Programs on Dairy Farms. J. Dairy Sci. 2011, 94, 6216–6232. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Skenandore, C.S.; Cardoso, F.C. The Effect of Tail Paint Formulation and Heifer Behavior on Estrus Detection. Int. J. Vet. Sci. Med. 2017, 5, 113–120. [Google Scholar] [CrossRef] [PubMed]
- Nebel, R.L.; Dransfield, M.G.; Jobst, S.M.; Bame, J.H. Automated Electronic Systems for the Detection of Oestrus and Timing of AI in Cattle. Anim. Reprod. Sci. 2000, 60–61, 713–723. [Google Scholar] [CrossRef]
- Walker, W.L.; Nebel, R.L.; McGilliard, M.L. Time of Ovulation Relative to Mounting Activity in Dairy Cattle. J. Dairy Sci. 1996, 79, 1555–1561. [Google Scholar] [CrossRef]
- Sá Filho, M.F.; Ayres, H.; Ferreira, R.M.; Nichi, M.; Fosado, M.; Campos Filho, E.P.; Baruselli, P.S. Strategies to Improve Pregnancy per Insemination Using Sex-Sorted Semen in Dairy Heifers Detected in Estrus. Theriogenology 2010, 74, 1636–1642. [Google Scholar] [CrossRef]
- Tsai, D.-M.; Huang, C.-Y. A Motion and Image Analysis Method for Automatic Detection of Estrus and Mating Behavior in Cattle. Comput. Electron. Agric. 2014, 104, 25–31. [Google Scholar] [CrossRef]
- Cairo, F.C.; Pereira, L.G.R.; Campos, M.M.; Tomich, T.R.; Coelho, S.G.; Lage, C.F.A.; Fonseca, A.P.; Borges, A.M.; Alves, B.R.C.; Dorea, J.R.R. Applying Machine Learning Techniques on Feeding Behavior Data for Early Estrus Detection in Dairy Heifers. Comput. Electron. Agric. 2020, 179, 105855. [Google Scholar] [CrossRef]
- Larson, L.L.; Ball, P.J.H. Regulation of Estrous Cycles in Dairy Cattle: A Review. Theriogenology 1992, 38, 255–267. [Google Scholar] [CrossRef]
- Reith, S.; Hoy, S. Review: Behavioral Signs of Estrus and the Potential of Fully Automated Systems for Detection of Estrus in Dairy Cattle. Anim. Int. J. Anim. Biosci. 2018, 12, 398–407. [Google Scholar] [CrossRef] [Green Version]
- Schweinzer, V.; Gusterer, E.; Kanz, P.; Krieger, S.; Süss, D.; Lidauer, L.; Berger, A.; Kickinger, F.; Öhlschuster, M.; Auer, W.; et al. Evaluation of an Ear-Attached Accelerometer for Detecting Estrus Events in Indoor Housed Dairy Cows. Theriogenology 2019, 130, 19–25. [Google Scholar] [CrossRef]
- Saint-Dizier, M.; Chastant-Maillard, S. Potential of Connected Devices to Optimize Cattle Reproduction. Theriogenology 2018, 112, 53–62. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vicentini, R.R.; Oliveira, A.P.; Veroneze, R.; Montanholi, Y.R.; Lima, M.L.P.; Ujita, A.; Alves, S.F.; de Lima, A.C.N.; El-Faro, L. Reticulo-Rumen Temperature as a Predictor of Estrus in Dairy Gir Heifers. ICAR Tech. Ser. 2018, 245–249. [Google Scholar]
- Mayo, L.M.; Silvia, W.J.; Ray, D.L.; Jones, B.W.; Stone, A.E.; Tsai, I.C.; Clark, J.D.; Bewley, J.M.; Heersche, G. Automated Estrous Detection Using Multiple Commercial Precision Dairy Monitoring Technologies in Synchronized Dairy Cows. J. Dairy Sci. 2019, 102, 2645–2656. [Google Scholar] [CrossRef] [PubMed]
- Hirata, T.; Zin, T.T.; Kobayashi, I.; Hama, H. A Study on Estrus Detection of Cattle Combining Video Image and Sensor Information. In Big Data Analysis and Deep Learning Applications; Zin, T.T., Lin, J.C.-W., Eds.; Advances in Intelligent Systems and Computing; Springer: Singapore, 2019; Volume 744, pp. 267–273. ISBN 9789811308680. [Google Scholar]
- Yang, C.-J.; Lin, Y.-H.; Peng, S.-Y. Develop a Video Monitoring System for Dairy Estrus Detection at Night. In Proceedings of the 2017 International Conference on Applied System Innovation (ICASI), Sapporo, Japan, 13–17 May 2017; pp. 1900–1903. [Google Scholar]
- Guo, Y.; Zhang, Z.; He, D.; Niu, J.; Tan, Y. Detection of Cow Mounting Behavior Using Region Geometry and Optical Flow Characteristics. Comput. Electron. Agric. 2019, 163, 104828. [Google Scholar] [CrossRef]
- Arago, N.M.; Alvarez, C.I.; Mabale, A.G.; Legista, C.G.; Repiso, N.E.; Robles, R.R.A.; Amado, T.M.; Jorda, R.J.L.; Thio-ac, A.C.; Velasco, J.S.; et al. Automated Estrus Detection for Dairy Cattle through Neural Networks and Bounding Box Corner Analysis. Int. J. Adv. Comput. Sci. Appl. IJACSA 2020, 11, 303–311. [Google Scholar] [CrossRef]
- Talukder, S.; Kerrisk, K.L.; Ingenhoff, L.; Thomson, P.C.; Garcia, S.C.; Celi, P. Infrared Technology for Estrus Detection and as a Predictor of Time of Ovulation in Dairy Cows in a Pasture-Based System. Theriogenology 2014, 81, 925–935. [Google Scholar] [CrossRef]
- Mottram, T. Animal Board Invited Review: Precision Livestock Farming for Dairy Cows with a Focus on Oestrus Detection. Anim. Int. J. Anim. Biosci. 2016, 10, 1575–1584. [Google Scholar] [CrossRef] [Green Version]
- Arbel, R.; Bigun, Y.; Ezra, E.; Sturman, H.; Hojman, D. The Effect of Extended Calving Intervals in High Lactating Cows on Milk Production and Profitability. J. Dairy Sci. 2001, 84, 600–608. [Google Scholar] [CrossRef]
- Szenci, O. Importance of Monitoring Calving to Decrease Stillbirth Rate in Holstein-Friesian Dairy Farms. Lucr. Științifice-Univ. Științe Agric. Și Med. Vet. Ser. Zooteh. 2017, 68, 3–11. [Google Scholar]
- Bicalho, R.C.; Galvão, K.N.; Cheong, S.H.; Gilbert, R.O.; Warnick, L.D.; Guard, C.L. Effect of Stillbirths on Dam Survival and Reproduction Performance in Holstein Dairy Cows. J. Dairy Sci. 2007, 90, 2797–2803. [Google Scholar] [CrossRef]
- Schuenemann, G.M.; Nieto, I.; Bas, S.; Galvão, K.N.; Workman, J. Assessment of Calving Progress and Reference Times for Obstetric Intervention during Dystocia in Holstein Dairy Cows. J. Dairy Sci. 2011, 94, 5494–5501. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Palombi, C.; Paolucci, M.; Stradaioli, G.; Corubolo, M.; Pascolo, P.B.; Monaci, M. Evaluation of Remote Monitoring of Parturition in Dairy Cattle as a New Tool for Calving Management. BMC Vet. Res. 2013, 9, 191. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kovács, L.; Kézér, F.L.; Szenci, O. Effect of Calving Process on the Outcomes of Delivery and Postpartum Health of Dairy Cows with Unassisted and Assisted Calvings. J. Dairy Sci. 2016, 99, 7568–7573. [Google Scholar] [CrossRef] [PubMed]
- Matamala, F.; Strappini, A.; Sepúlveda-Varas, P. Dairy Cow Behaviour around Calving: Its Relationship with Management Practices and Environmental Conditions. Austral. J. Vet. Sci. 2021, 53, 9–22. [Google Scholar] [CrossRef]
- Borchers, M.R.; Chang, Y.M.; Proudfoot, K.L.; Wadsworth, B.A.; Stone, A.E.; Bewley, J.M. Machine-Learning-Based Calving Prediction from Activity, Lying, and Ruminating Behaviors in Dairy Cattle. J. Dairy Sci. 2017, 100, 5664–5674. [Google Scholar] [CrossRef]
- Sumi, K.; Zin, T.T.; Kobayashi, I.; Horii, Y. Framework of Cow Calving Monitoring System Using a Single Depth Camera. In Proceedings of the 2018 International Conference on Image and Vision Computing New Zealand (IVCNZ), Auckland, New Zealand, 19–21 November 2018; pp. 1–7. [Google Scholar]
- Zehner, N.; Niederhauser, J.J.; Schick, M.; Umstatter, C. Development and Validation of a Predictive Model for Calving Time Based on Sensor Measurements of Ingestive Behavior in Dairy Cows. Comput. Electron. Agric. 2019, 161, 62–71. [Google Scholar] [CrossRef]
- Benaissa, S.; Tuyttens, F.A.M.; Plets, D.; Trogh, J.; Martens, L.; Vandaele, L.; Joseph, W.; Sonck, B. Calving and Estrus Detection in Dairy Cattle Using a Combination of Indoor Localization and Accelerometer Sensors. Comput. Electron. Agric. 2020, 168, 105153. [Google Scholar] [CrossRef]
- Horváth, A.; Lénárt, L.; Csepreghy, A.; Madar, M.; Pálffy, M.; Szenci, O. A Field Study Using Different Technologies to Detect Calving at a Large-Scale Hungarian Dairy Farm. Reprod. Domest. Anim. Zuchthyg. 2021, 56, 673–679. [Google Scholar] [CrossRef]
- Jensen, M.B. Behaviour around the Time of Calving in Dairy Cows. Appl. Anim. Behav. Sci. 2012, 139, 195–202. [Google Scholar] [CrossRef]
- Cangar, Ö.; Leroy, T.; Guarino, M.; Vranken, E.; Fallon, R.; Lenehan, J.; Mee, J.; Berckmans, D. Automatic Real-Time Monitoring of Locomotion and Posture Behaviour of Pregnant Cows Prior to Calving Using Online Image Analysis. Comput. Electron. Agric. 2008, 64, 53–60. [Google Scholar] [CrossRef]
Location | Technology/ Trade Name | Parameters | Link |
---|---|---|---|
Lower member | AfiAct Pedometer Plus® (Afimilk, Kibutz, afikim, Israel); Nedap Realtime Leg ® (Nedap Livestock, Management, The Netherlands, Marketed as CowScout S leg, GEA farm, Technologies GmbH, Bönen, Germany); Track a Cow® (ENGS Systems Innovative Dairy Solutions, Rosh Pina, Israel); Ice Qube® (IceRobotics Ltd., Edinburgh, UK) | Activity (steps) Lying time (min) | https://www.afimilk.com accessed on 5 February 2021 https://www.gea.com accessed on 5 February 2021 http://www.trackacow.co.uk accessed on 5 March 2021 https://www.icerobotics.com/cowalert accessed on 5 March 2021 |
Ear | Cow Manager SensoOr (Agis Automatisering, Harmelen, The Netherlands) | Ruminating time (min) Active time (min) Time not active (min) | https://www.cowmanager.com accessed on 5 June 2021 |
Ear | SmartBow® (smatbow GmbH, Jutogasse, Austria) | Animal Activity | https://www.smartbow.com/ accessed on 5 June 2021 |
Sacral region | Kamar® (Kamar Inc., Zionsville, IN, USA) | Pression | http://www.kamarinc.com/ accessed on 5 June 2021 |
Sacral region | Estrotec® (RockwayInc., Spring Valley, WI, USA) | Friction | https://estrotect.com/ accessed on 5 June 2021 |
Sacral region (eletronic) | Heat-Watch® (DDx Inc., Denver, CO, USA) | Pression | https://www.cowchips.net/ accessed on 5 July 2021 |
Neck | HR Tag® (SCR Engineers Ltd., Netanya, Israel) | Neck movement | https://www.nmr.co.uk accessed on 5 July 2021 |
Reticulum Rumen | SmaXtec® (SmaXtec animal care GmbH, Austria) | Rumen Movement | https://smaxtec.com/en/ accessed on 5 July 2021 |
Author | Tsai et al. (2014) [26] | Yang et al. (2017) [35] | Guo et al. (2019) [36] | Arago et al. (2020) [37] |
---|---|---|---|---|
Breed | Holstein | Holstein | Holstein | Holstein, Sahiwal |
Camera | IP DOME | Infrared | Fixed IP | PTZ |
Algorithm | Motion detector; Region targeting; Foreground targeting; BLOB analysis. | Motion detector; Region targeting; Foreground targeting. | BSCF; SVM; Geometric and Optical flow. | FR-CNN,;Tracking SSD |
Object detection accuracy | - | - | 98.3% | 94% SSD 50% FR-CNN |
Estrous detection accuracy 1 | 100% (TP) 0.33% (FP) | - | 90.9% (TP) 4.2% (FP) | 50% |
Limitation | Only during the day | Shadows of the cows | Individual identification | Not suitable for cattle without identification |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Santos, C.A.d.; Landim, N.M.D.; Araújo, H.X.d.; Paim, T.d.P. Automated Systems for Estrous and Calving Detection in Dairy Cattle. AgriEngineering 2022, 4, 475-482. https://doi.org/10.3390/agriengineering4020031
Santos CAd, Landim NMD, Araújo HXd, Paim TdP. Automated Systems for Estrous and Calving Detection in Dairy Cattle. AgriEngineering. 2022; 4(2):475-482. https://doi.org/10.3390/agriengineering4020031
Chicago/Turabian StyleSantos, Camila Alves dos, Nailson Martins Dantas Landim, Humberto Xavier de Araújo, and Tiago do Prado Paim. 2022. "Automated Systems for Estrous and Calving Detection in Dairy Cattle" AgriEngineering 4, no. 2: 475-482. https://doi.org/10.3390/agriengineering4020031
APA StyleSantos, C. A. d., Landim, N. M. D., Araújo, H. X. d., & Paim, T. d. P. (2022). Automated Systems for Estrous and Calving Detection in Dairy Cattle. AgriEngineering, 4(2), 475-482. https://doi.org/10.3390/agriengineering4020031