Extraction of Soil Solution into a Microfluidic Chip
Abstract
:1. Introduction
2. Experimental Methods
2.1. Porous Ceramic Filter
2.2. Extraction Device Fabrication
2.3. Hardware Setup
2.4. Procedures for Soil-Sample Experiments
3. Experimental Results
3.1. Water Extraction into the Microfluidic Chip
3.2. Experiments with Different Soil Types
3.3. Analysis of Measurement Variability
4. Discussion of Experimental Results
4.1. Necessary Soil-Moisture Level
4.2. Volume of Extracted Water
4.3. Pump Choice for Field Deployment
4.4. Susceptibility to Inhomogeneities
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Forde, B.; Lorenzo, H. The nutritional control of root development. In Interactions in the Root Environment: An Integrated Approach; Springer: Dordrecht, The Netherlands, 2002; pp. 51–68. [Google Scholar] [CrossRef] [Green Version]
- Robert, P.C. Precision agriculture: A challenge for crop nutrition management. Plant Soil 2002, 247, 143–149. [Google Scholar] [CrossRef]
- Hallberg, G.R. Pesticides pollution of groundwater in the humid United States. Agric. Ecosyst. Environ. 1989, 26, 299–367. [Google Scholar] [CrossRef]
- Singh, G.; Kaur, G.; Williard, K.; Schoonover, J.; Kang, J. Monitoring of Water and Solute Transport in the Vadose Zone: A Review. Vadose Zone J. 2017, 17, 160058. [Google Scholar] [CrossRef]
- Weihermüller, L.; Siemens, J.; Deurer, M.; Knoblauch, S.; Rupp, H.; Göttlein, A.; Pütz, T. In Situ Soil Water Extraction: A Review. J. Environ. Qual. 2007, 36, 1735–1748. [Google Scholar] [CrossRef]
- Curley, E.M.; O’flynn, M.; McDonnell, K. Porous Ceramic Cups: Preparation and Installation of Samplers for Measuring Nitrate Leaching. Int. J. Soil Sci. 2009, 5, 19–25. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Tian, Y.; Wang, X.; Wei, L.; Dong, L. Miniaturized, Field-Deployable, Continuous Soil Water Potential Sensor. IEEE Sens. J. 2020, 20, 14109–14117. [Google Scholar] [CrossRef]
- Kim, D.; Goldberg, I.B.; Judy, J.W. Microfabricated electrochemical nitrate sensor using double-potential-step chronocoulometry. Sens. Actuators B Chem. 2009, 135, 618–624. [Google Scholar] [CrossRef]
- Xu, Z.; Wang, X.; Weber, R.J.; Kumar, R.; Dong, L. Nutrient Sensing Using Chip Scale Electrophoresis and In Situ Soil Solution Extraction. IEEE Sens. J. 2017, 17, 4330–4339. [Google Scholar] [CrossRef]
- Kokkinis, G.; Kriechhammer, G.; Scheidl, D.; Wilfling, B.; Smolka, M. Towards the Commercialization of a Lab-on-a-Chip Device for Soil Nutrient Measurement. In Information and Communication Technologies in Modern Agricultural Development, Proceedings of the 8th International Conference (HAICTA 2017), Chania, Greece, 21–24 September 2017; Springer: Cham, Switzerland, 2019; pp. 118–130. [Google Scholar]
- Dudala, S.; Dubey, S.K.; Goel, S. Microfluidic Soil Nutrient Detection System: Integrating Nitrite, pH, and Electrical Conductivity Detection. IEEE Sens. J. 2020, 20, 4504–4511. [Google Scholar] [CrossRef]
- Jahns, S.; Bräu, M.; Meyer, B.-O.; Karrock, T.; Gutekunst, S.B.; Blohm, L.; Selhuber-Unkel, C.; Buhmann, R.; Nazirizadeh, Y.; Gerken, M. Handheld imaging photonic crystal biosensor for multiplexed, label-free protein detection. Biomed. Opt. Express 2015, 6, 3724–3736. [Google Scholar] [CrossRef] [Green Version]
- Jahns, S.; Gutekunst, S.B.; Selhuber-Unkel, C.; Nazirizadeh, Y.; Gerken, M. Human blood microfluidic test chip for imaging, label-free biosensor. Microsyst. Technol. 2016, 22, 1513–1518. [Google Scholar] [CrossRef] [Green Version]
- Titov, I.; Kopke, M.; Schneidewind, N.C.; Buhl, J.; Murat, Y.; Gerken, M. OLED-OPD Matrix for Sensing on a Single Flexible Substrate. IEEE Sens. J. 2020, 20, 7540–7547. [Google Scholar] [CrossRef]
- Joekar-Niasar, V.; Schreyer, L.; Sedighi, M.; Icardi, M.; Huyghe, J. Coupled Processes in Charged Porous Media: From Theory to Applications. Transp. Porous Media 2019, 130, 183–214. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Giese, R.F.; Oss, C.J.; Kerch, H.M.; Burdette, H.E. Wicking Technique for Determination of Pore Size in Ceramic Materials. J. Am. Ceram. Soc. 1994, 77, 2220–2222. [Google Scholar] [CrossRef]
- Kissa, E. Wetting and Wicking. Text. Res. J. 1996, 66, 660–668. [Google Scholar] [CrossRef]
- Suits, L.D.; Sheahan, T.C.; Cui, Y.-J.; Tang, A.M.; Mantho, A.T.; De Laure, E. Monitoring Field Soil Suction Using a Miniature Tensiometer. Geotech. Test. J. 2008, 31, 95–100. [Google Scholar] [CrossRef]
- Spangenberg, A.; Cecchini, G.; Lamersdorf, N. Analysing the performance of a micro soil solution sampling device in a laboratory examination and a field experiment. Plant Soil 1997, 196, 59–70. [Google Scholar] [CrossRef]
- Göttlein, A.; Hell, U.; Blasek, R. A system for microscale tensiometry and lysimetry. Geoderma 1996, 69, 147–156. [Google Scholar] [CrossRef]
- Hädrich, F.; Stahr, K.; Zöttl, H.W. Die Eignung von Al2O3-Keramik und Ni-Sinterkerzen zur Gewinnung von Bodenlösungen für die Spurenelementanalyse. Mitteilungen der Deutschen Bodenkundlichen Gesellschaft; DBG: Bremen, Germany, 1977; No. 25-1; pp. 151–162. [Google Scholar]
- Berger, W.; Kalbe, U. “Saugsonden zur Untersuchung der Bodenwasserbeschaffenheit: Ein Überblick der Einsatzmöglichkeiten”; TerraTech 11-12; Vereinigte Fachverlage GmbH: Mainz, Germany, 2004; pp. 8–12. [Google Scholar]
- Silkworth, D.R.; Grigal, D.F. Field Comparison of Soil Solution Samplers. Soil Sci. Soc. Am. J. 1981, 45, 440–442. [Google Scholar] [CrossRef]
- Warrick, A.W. Soil Water Dynamics; Oxford University Press: Oxford, UK, 2003. [Google Scholar] [CrossRef]
- Kumar, A.; Kanwar, R.; Singh, P.; Ahuja, L. Evaluation of the root zone water quality model for predicting water and NO3–N movement in an Iowa soil. Soil Tillage Res. 1999, 50, 223–236. [Google Scholar] [CrossRef]
- Guo, W.; Hansson, J.; Van Der Wijngaart, W. Capillary pumping independent of the liquid surface energy and viscosity. Microsyst. Nanoeng. 2018, 4, 2. [Google Scholar] [CrossRef] [Green Version]
- Thurgood, P.; Baratchi, S.; Szydzik, C.; Mitchell, A.; Khoshmanesh, K. Porous PDMS structures for the storage and release of aqueous solutions into fluidic environments. Lab Chip 2017, 17, 2517–2527. [Google Scholar] [CrossRef]
- Thurgood, P.; Suarez, S.A.; Chen, S.; Gilliam, C.; Pirogova, E.; Jex, A.R.; Baratchi, S.; Khoshmanesh, K. Self-sufficient, low-cost microfluidic pumps utilising reinforced balloons. Lab Chip 2019, 19, 2885–2896. [Google Scholar] [CrossRef]
- Weihermüller, L. Comparison of Different Soil Water Extraction Systems for the Prognoses of Solute Transport at the Field Scale Using Numerical Simulations, Field and Lysimeter Experiments. Ph.D. Dissertation, Rheinische Friedrich-Wilhelms-Universität, Bonn, Germany, 2005. [Google Scholar]
- Van Der Ploeg, R.R.; Beese, F. Model Calculations for the Extraction of Soil Water by Ceramic Cups and Plates. Soil Sci. Soc. Am. J. 1977, 41, 466–470. [Google Scholar] [CrossRef]
- Webster, R. Soil Sampling and Methods of Analysis—Edited by M.R. Carter & E.G. Gregorich. Eur. J. Soil Sci. 2008, 59, 1010–1011. [Google Scholar] [CrossRef]
- Grunwald, A.; Schaarschmidt, M.; Westerkamp, C. LoRaWAN in a rural context: Use cases and opportunities for agricultural businesses. In Proceedings of the Mobile Communication—Technologies and Applications; 24. ITG-Symposium, Osnabrueck, Germany, 15–16 May 2019; pp. 134–139. [Google Scholar]
- Salam, A.; Vuran, M.C.; Irmak, S. Di-Sense: In situ real-time permittivity estimation and soil moisture sensing using wireless underground communications. Comput. Netw. 2019, 151, 31–41. [Google Scholar] [CrossRef]
- Parashar, A.; Pandey, S. Plant-in-chip: Microfluidic system for studying root growth and pathogenic interactions in Arabidopsis. Appl. Phys. Lett. 2011, 98, 263703. [Google Scholar] [CrossRef]
- Massalha, H.; Korenblum, E.; Malitsky, S.; Shapiro, O.H.; Aharoni, A. Live imaging of root–bacteria interactions in a microfluidics setup. Proc. Natl. Acad. Sci. USA 2017, 114, 4549–4554. [Google Scholar] [CrossRef] [Green Version]
- Aleklett, K.; Kiers, E.T.; Ohlsson, P.; Shimizu, T.S.; Caldas, V.E.; Hammer, E.C. Build your own soil: Exploring microfluidics to create microbial habitat structures. ISME J. 2018, 12, 312–319. [Google Scholar] [CrossRef] [Green Version]
- Stanley, C.E.; Grossmann, G.; Solvas, X.C.I.; Demello, A.J. Soil-on-a-Chip: Microfluidic platforms for environmental organismal studies. Lab Chip 2016, 16, 228–241. [Google Scholar] [CrossRef]
Sand | Garden Soil | Silt | ||||
---|---|---|---|---|---|---|
Added Water (mL) | Measured Moisture (Vol.-%) | Extracted Solution (mL) | Measured Moisture (Vol.-%) | Extracted Solution (mL) | Measured Moisture (Vol.-%) | Extracted Solution (mL) |
0 | 3 | 0 | 2 | 0 | 1 | 0 |
100 | 5 | 0 | 5 | 0 | 1 | 0 |
200 | 8 | 0.1 | 11 | 0.1 | 3 | 0 |
300 | 10 | 0.1 | 15 | 0.1 | 9 | 0 |
400 | 14 | 0.1 | 19 | 0.17 | 11 | 0 |
500 | 18 | 0.1 | 24 | 0.19 | 13 | 0.1 |
600 | 22 | 0.15 | - | - | 18 | 0.08 |
700 | 31 | 0.15 | - | - | 23 | 0.1 |
800 | - | - | - | - | 28 | 0.15 |
900 | - | - | - | - | 33 | 0.19 |
1st Iteration | 2nd Iteration | 3rd Iteration | ||||
---|---|---|---|---|---|---|
Added Water (mL) | Measured Moisture (Vol.-%) | Extracted Solution (mL) | Measured Moisture (Vol.-%) | Extracted Solution (mL) | Measured Moisture (Vol.-%) | Extracted Solution (mL) |
0 | 2 | 0 | 2 | 0 | 3 | 0 |
100 | 5 | 0 | 3 | 0 | 3 | 0 |
200 | 11 | 0.1 | 8 | 0 | 6 | 0.02 |
300 | 15 | 0.1 | 14 | 0.02 | 15 | 0.04 |
400 | 19 | 0.17 | 18 | 0.03 | 23 | 0.1 |
500 | 24 | 0.19 | 25 | 0.06 | - | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Böckmann, S.; Titov, I.; Gerken, M. Extraction of Soil Solution into a Microfluidic Chip. AgriEngineering 2021, 3, 783-796. https://doi.org/10.3390/agriengineering3040049
Böckmann S, Titov I, Gerken M. Extraction of Soil Solution into a Microfluidic Chip. AgriEngineering. 2021; 3(4):783-796. https://doi.org/10.3390/agriengineering3040049
Chicago/Turabian StyleBöckmann, Sönke, Igor Titov, and Martina Gerken. 2021. "Extraction of Soil Solution into a Microfluidic Chip" AgriEngineering 3, no. 4: 783-796. https://doi.org/10.3390/agriengineering3040049
APA StyleBöckmann, S., Titov, I., & Gerken, M. (2021). Extraction of Soil Solution into a Microfluidic Chip. AgriEngineering, 3(4), 783-796. https://doi.org/10.3390/agriengineering3040049