Unveiling Hidden Green Corridors: An Agent-Based Simulation (ABS) of Urban Green Continuity for Ecosystem Services and Climate Resilience
Abstract
Highlights
- This paper introduces a novel method to evaluate urban green infrastructure performance by combining multi-species agent simulation and space syntax analysis. Specifically, the results of the Agent-based simulation of ecological behaviors reveal hidden green networks that are not aligned with existing green space layouts. Moreover, the spatial overlaps between pollinator intensity and thermal vulnerability expose coupled ecological–climatic risks in urban areas.
- Integrating dynamic ecological behavior simulation with temporal performance monitoring enables more precise identification of priority intervention zones for green infrastructure planning.
- The dual-agent framework combining ABS and AI interpretation provides a scalable approach for diagnosing and designing urban ecological resilience.
Abstract
1. Introduction
1.1. Fragmentation Crisis and the Disruption of Urban Green Systems
1.2. Green Continuity as a Framework for Urban Resilience
1.3. The Ecological Blind Spot: Planning Inertia and the Invisibility of More-than-Human Needs
2. Theoretical Foundation and Research Landscape
2.1. Reframing Urban Green Value Through Ecosystem Services
2.2. A Review of Methods for Assessing Urban Green Space Continuity
2.3. The Potential of Agent-Based Simulation (ABS) in Urban Green Continuity Assessment
3. Methodology—Diagnosing and Reframing Urban Green Continuity Through Agent-Based Simulation
3.1. From Concept to Measurement: Operationalizing Green Continuity
- Integration analysis of agent mobility network;
- Local connectivity analysis of agent moving paths;
- Agent aggregation probability;
- Spatial overlap of thermal vulnerability.
3.2. Study Area and Data Preparation: The Urban Mosaic of Milan, Boragna, and Ispra
3.3. Agent-Based Simulation Design: Modeling Multi-Agent Ecological Interactions
3.4. Modeling Multi-Species Movement: Ground and Avian Pollinators as Agents
3.5. From Simulation to Diagnosis: Uncovering Urban Ecological–Thermal Synergies Through Spatial Cross-Mapping
3.6. AI-Augmented Diagnosis: Interpreting Spatial Agency Through the SOFIA Agentic Workflow
4. Results—Spatial Manifestations of Urban Green Continuity
4.1. Agent-Based Movement Patterns: Identifying Ecological Corridors and Spatial Accessibility
4.2. Local Structural Connectivity: Unpacking Micro-Scale Mobility from Pollinator Networks
4.3. Spatial Coverage and Aggregation Probability: Quantifying Reachability of Green Spaces
4.4. Thermal–Ecological Cross-Mapping: Diagnosing the Coupling of Green Continuity and Urban Heat
4.5. Evaluating Urban Diagnostic Interpretations: Traditional Expertise, SOFIA Agent, and General-Purpose Large Language Model
5. Conclusion: Unveiling Design Insights from Hidden Green Continuity
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AAP | Agent aggregation probability |
ABS | Agent-based simulation |
AI4S | AI for science |
CA | Class area |
CAS | Complex adaptive systems |
DOP | Design ordering principle |
ESSs | Ecosystem Services |
GIS | Geographic information systems |
IMM | Integrated modification methodology |
LCP | Least-cost path |
LPI | Largest patch index |
LSI | Landscape shape index |
LST | Land surface temperature |
NDVI | Normalized difference vegetation index |
PC | Probability of connectivity |
PD | Patch density |
RAG | Retrieval-augmented generation |
SOFIA | Systemic Options Framework for Intelligent Activation |
TEEB | The economics of ecosystems and biodiversity |
UHI | Urban heat island |
References
- Parker, J.; Simpson, G.D. Public Green Infrastructure Contributes to City Livability: A Systematic Quantitative Review. Land 2018, 7, 161. [Google Scholar] [CrossRef]
- Wilson, E.O. Biophilia and the Conservation Ethic. In Evolutionary Perspectives on Environmental Problems; Routledge: London, UK, 2017; pp. 250–258. [Google Scholar]
- Beatley, T. Biophilic Cities: Integrating Nature into Urban Design and Planning; Island Press: Washington, DC, USA, 2011; ISBN 1-59726-715-5. [Google Scholar]
- Shanahan, D.F.; Lin, B.B.; Bush, R.; Gaston, K.J.; Dean, J.H.; Barber, E.; Fuller, R.A. Toward Improved Public Health Outcomes from Urban Nature. Am. J. Public Health 2015, 105, 470–477. [Google Scholar] [CrossRef] [PubMed]
- Dong, T.; Colucci, A.; Tadi, M. Systemic Action Network for Improving Blue–Green Infrastructure Based on the Natural Capital Investigation: The Strategic Plan in Vlorë, Albania. In Blue-Green Infrastructure for Sustainable Urban Settlements; Joshi, P.K., Rao, K.S., Bhadouria, R., Tripathi, S., Singh, R., Eds.; Springer Nature: Cham, Switzerland, 2024; pp. 387–412. ISBN 978-3-031-62292-2. [Google Scholar]
- Zhou, W.; Huang, G.; Pickett, S.T.A.; Wang, J.; Cadenasso, M.L.; McPhearson, T.; Grove, J.M.; Wang, J. Urban Tree Canopy Has Greater Cooling Effects in Socially Vulnerable Communities in the US. One Earth 2021, 4, 1764–1775. [Google Scholar] [CrossRef]
- Chapman, S.; Watson, J.E.M.; Salazar, A.; Thatcher, M.; McAlpine, C.A. The Impact of Urbanization and Climate Change on Urban Temperatures: A Systematic Review. Landsc. Ecol. 2017, 32, 1921–1935. [Google Scholar] [CrossRef]
- Wanghe, K.; Guo, X.; Wang, M.; Zhuang, H.; Ahmad, S.; Khan, T.U.; Xiao, Y.; Luan, X.; Li, K. Gravity Model Toolbox: An Automated and Open-Source ArcGIS Tool to Build and Prioritize Ecological Corridors in Urban Landscapes. Glob. Ecol. Conserv. 2020, 22, e01012. [Google Scholar] [CrossRef]
- Fahrig, L. Effects of Habitat Fragmentation on Biodiversity. Annu. Rev. Ecol. Evol. Syst. 2003, 34, 487–515. [Google Scholar] [CrossRef]
- Alavi, S.A.; Esfandi, S.; Khavarian-Garmsir, A.R.; Tayebi, S.; Shamsipour, A.; Sharifi, A. Assessing the Connectivity of Urban Green Spaces for Enhanced Environmental Justice and Ecosystem Service Flow: A Study of Tehran Using Graph Theory and Least-Cost Analysis. Urban Sci. 2024, 8, 14. [Google Scholar] [CrossRef]
- Guadagnin, D.L.; Gravato, I.C.F. Value of Brazilian Environmental Legislation to Conserve Biodiversity in Suburban Areas. A Case Study in Porto Alegre, Brazil. Nat. Conserv. 2009, 7, 133–145. [Google Scholar]
- Lindborg, R.; Eriksson, O. Historical Landscape Connectivity Affects Present Plant Species Diversity. Ecology 2004, 85, 1840–1845. [Google Scholar] [CrossRef]
- Yu, Z.; Yang, G.; Zuo, S.; Jørgensen, G.; Koga, M.; Vejre, H. Critical Review on the Cooling Effect of Urban Blue-Green Space: A Threshold-Size Perspective. Urban For. Urban Green. 2020, 49, 126630. [Google Scholar] [CrossRef]
- Bowler, D.E.; Buyung-Ali, L.; Knight, T.M.; Pullin, A.S. Urban Greening to Cool Towns and Cities: A Systematic Review of the Empirical Evidence. Landsc. Urban Plan. 2010, 97, 147–155. [Google Scholar] [CrossRef]
- Xie, M.; Gao, Y.; Cao, Y.; Breuste, J.; Fu, M.; Tong, D. Dynamics and Temperature Regulation Function of Urban Green Connectivity. J. Urban Plann. Dev. 2015, 141, A5014008. [Google Scholar] [CrossRef]
- Cao, Q.; Huang, H.; Hong, Y.; Huang, X.; Wang, S.; Wang, L.; Wang, L. Modeling Intra-Urban Differences in Thermal Environments and Heat Stress Based on Local Climate Zones in Central Wuhan. Build. Environ. 2022, 225, 109625. [Google Scholar] [CrossRef]
- Urban Governance of Biodiversity and Ecosystem Services. In Urbanization, Biodiversity and Ecosystem Services: Challenges and Opportunities; Springer: Dordrecht, The Netherlands, 2013; pp. 539–587. ISBN 978-94-007-7087-4.
- Cui, L.; Wang, J.; Sun, L.; Lv, C. Construction and Optimization of Green Space Ecological Networks in Urban Fringe Areas: A Case Study with the Urban Fringe Area of Tongzhou District in Beijing. J. Clean. Prod. 2020, 276, 124266. [Google Scholar] [CrossRef]
- Wang, H.; Pei, Z. Urban Green Corridors Analysis for a Rapid Urbanization City Exemplified in Gaoyou City, Jiangsu. Forests 2020, 11, 1374. [Google Scholar] [CrossRef]
- Li, L.; Collins, A.M.; Cheshmehzangi, A.; Chan, F.K.S. Identifying Enablers and Barriers to the Implementation of the Green Infrastructure for Urban Flood Management: A Comparative Analysis of the UK and China. Urban For. Urban Green. 2020, 54, 126770. [Google Scholar] [CrossRef]
- Saura, S.; Pascual-Hortal, L. A New Habitat Availability Index to Integrate Connectivity in Landscape Conservation Planning: Comparison with Existing Indices and Application to a Case Study. Landsc. Urban Plan. 2007, 83, 91–103. [Google Scholar] [CrossRef]
- Teng, M.; Wu, C.; Zhou, Z.; Lord, E.; Zheng, Z. Multipurpose Greenway Planning for Changing Cities: A Framework Integrating Priorities and a Least-Cost Path Model. Landsc. Urban Plan. 2011, 103, 1–14. [Google Scholar] [CrossRef]
- Jingu, S. Temporal Continuities of Grasslands and Forests as Patches of Natural Land in Urban Landscapes: A Case Study of the Tsukuba Science City. Land 2020, 9, 425. [Google Scholar] [CrossRef]
- Moll, G.; Petit, J. The Urban Ecosystem: Putting Nature Back in the Picture. Urban For. 1994, 14, 8–15. [Google Scholar]
- Van der Sluis, T.; Schmidt, A.M. E-BIND Handbook (Part B): Scientific Support for Successful Implementation of the Natura 2000 Network. 2021. Available online: https://www.ecologic.eu/sites/default/files/publication/2021/B_EBind_Handbook.pdf (accessed on 6 March 2025).
- European Commission Green Infrastructure (GI)—Enhancing Europe’s Natural Capital; European Commission: Brussels, Belgium, 2013.
- Wang, Y.-C.; Shen, J.-K.; Xiang, W.-N. Ecosystem Service of Green Infrastructure for Adaptation to Urban Growth: Function and Configuration. Ecosyst. Health Sustain. 2018, 4, 132–143. [Google Scholar] [CrossRef]
- United Nations. System of Environmental-Economic Accounting: Ecosystem Accounting; Manuals & Guides; International Monetary Fund: Washington, DC, USA, 2025; ISBN 978-92-1-259183-4. [Google Scholar]
- Pollutec. Restoring Ecological Continuity: Green and Blue Infrastructure. Pollutec Learn & Connect. Available online: https://learnandconnect.pollutec.com/en/restoring-ecological-continuity-green-and-blue-infrastructure/ (accessed on 6 March 2025).
- Forman, R.T. Urban Ecology: Science of Cities; Cambridge University Press: Cambridge, UK, 2014; ISBN 1-107-00700-3. [Google Scholar]
- Wang, J.; Rienow, A.; David, M.; Albert, C. Green Infrastructure Connectivity Analysis across Spatiotemporal Scales: A Transferable Approach in the Ruhr Metropolitan Area, Germany. Sci. Total Environ. 2022, 813, 152463. [Google Scholar] [CrossRef] [PubMed]
- An, Y.; Liu, S.; Sun, Y.; Shi, F.; Beazley, R. Construction and Optimization of an Ecological Network Based on Morphological Spatial Pattern Analysis and Circuit Theory. Landsc. Ecol. 2021, 36, 2059–2076. [Google Scholar] [CrossRef]
- Baldock, K.C.R.; Goddard, M.A.; Hicks, D.M.; Kunin, W.E.; Mitschunas, N.; Morse, H.; Osgathorpe, L.M.; Potts, S.G.; Robertson, K.M.; Scott, A.V.; et al. A Systems Approach Reveals Urban Pollinator Hotspots and Conservation Opportunities. Nat. Ecol. Evol. 2019, 3, 363–373. [Google Scholar] [CrossRef] [PubMed]
- Beninde, J.; Veith, M.; Hochkirch, A. Biodiversity in Cities Needs Space: A Meta-analysis of Factors Determining Intra-urban Biodiversity Variation. Ecol. Lett. 2015, 18, 581–592. [Google Scholar] [CrossRef]
- Scholes, R.J.; Biggs, R. A Biodiversity Intactness Index. Nature 2005, 434, 45–49. [Google Scholar] [CrossRef]
- Truelove, Y.; Cornea, N. Rethinking Urban Environmental and Infrastructural Governance in the Everyday: Perspectives from and of the Global South. Environ. Plan. C Politics Space 2021, 39, 231–246. [Google Scholar] [CrossRef]
- Jiang, D. The Theory of City Form Vitality; Southeast University Press: Nanjing, China, 2007; ISBN 978-7-5641-0627-0. [Google Scholar]
- Wu, F.; He, S.; Webster, C. Path Dependency and the Neighbourhood Effect: Urban Poverty in Impoverished Neighbourhoods in Chinese Cities. Environ. Plan A 2010, 42, 134–152. [Google Scholar] [CrossRef]
- Apostolopoulou, E. Navigating Neoliberal Natures in an Era of Infrastructure Expansion and Uneven Urban Development. Investig. Reg. J. Reg. Res. 2023, 55, 113–126. [Google Scholar] [CrossRef]
- Ye, Y.; Richards, D.; Lu, Y.; Song, X.; Zhuang, Y.; Zeng, W.; Zhong, T. Measuring Daily Accessed Street Greenery: A Human-Scale Approach for Informing Better Urban Planning Practices. Landsc. Urban Plan. 2019, 191, 103434. [Google Scholar] [CrossRef]
- Randolph, G.F.; Storper, M. Is Urbanisation in the Global South Fundamentally Different? Comparative Global Urban Analysis for the 21st Century. Urban Stud. 2023, 60, 3–25. [Google Scholar] [CrossRef]
- Liu, X.; Long, Y. Automated Identification and Characterization of Parcels with OpenStreetMap and Points of Interest. Environ. Plann. B Plann. Des. 2016, 43, 341–360. [Google Scholar] [CrossRef]
- Fix, M.; Arantes, P.F. On Urban Studies in Brazil: The Favela, Uneven Urbanisation and Beyond. Urban Stud. 2022, 59, 893–916. [Google Scholar] [CrossRef]
- Watson, V. Seeing from the South: Refocusing Urban Planning on the Globe’s Central Urban Issues. Urban Stud. 2009, 46, 2259–2275. [Google Scholar] [CrossRef]
- Costanza, R.; d’Arge, R.; de Groot, R.; Farber, S.; Grasso, M.; Hannon, B.; Limburg, K.; Naeem, S.; O’Neill, R.V.; Paruelo, J.; et al. The Value of the World’s Ecosystem Services and Natural Capital. Nature 1997, 387, 253–260. [Google Scholar] [CrossRef]
- Hooper, D.U.; Chapin, F.S.; Ewel, J.J.; Hector, A.; Inchausti, P.; Lavorel, S.; Lawton, J.H.; Lodge, D.M.; Loreau, M.; Naeem, S.; et al. Effects of biodiversity on ecosystem functioning: A consensus of current knowledge. Ecol. Monogr. 2005, 75, 3–35. [Google Scholar] [CrossRef]
- UNEP (Ed.) Mainstreaming the Economics of Nature: A Synthesis of the Approach, Conclusions and Recommendations of Teeb; The Economics of Ecosystems & Biodiversity; UNEP: Geneva, Switzerland, 2010; ISBN 978-3-9813410-3-4. [Google Scholar]
- Pascual, U.; Balvanera, P.; Díaz, S.; Pataki, G.; Roth, E.; Stenseke, M.; Watson, R.T.; Başak Dessane, E.; Islar, M.; Kelemen, E.; et al. Valuing Nature’s Contributions to People: The IPBES Approach. Curr. Opin. Environ. Sustain. 2017, 26–27, 7–16. [Google Scholar] [CrossRef]
- Díaz, S.; Demissew, S.; Carabias, J.; Joly, C.; Lonsdale, M.; Ash, N.; Larigauderie, A.; Adhikari, J.R.; Arico, S.; Báldi, A.; et al. The IPBES Conceptual Framework—Connecting Nature and People. Curr. Opin. Environ. Sustain. 2015, 14, 1–16. [Google Scholar] [CrossRef]
- Zuniga-Teran, A.; Gerlak, A. A Multidisciplinary Approach to Analyzing Questions of Justice Issues in Urban Greenspace. Sustainability 2019, 11, 3055. [Google Scholar] [CrossRef]
- Faivre, N.; Fritz, M.; Freitas, T.; de Boissezon, B.; Vandewoestijne, S. Nature-Based Solutions in the EU: Innovating with Nature to Address Social, Economic and Environmental Challenges. Environ. Res. 2017, 159, 509–518. [Google Scholar] [CrossRef]
- Eggermont, H.; Balian, E.; Azevedo, J.M.N.; Beumer, V.; Brodin, T.; Claudet, J.; Fady, B.; Grube, M.; Keune, H.; Lamarque, P.; et al. Nature-Based Solutions: New Influence for Environmental Management and Research in Europe. GAIA Ecol. Perspect. Sci. Soc. 2015, 24, 243–248. [Google Scholar] [CrossRef]
- Baró, F.; Gómez-Baggethun, E. Assessing the Potential of Regulating Ecosystem Services as Nature-Based Solutions in Urban Areas. In Nature-Based Solutions to Climate Change Adaptation in Urban Areas; Kabisch, N., Korn, H., Stadler, J., Bonn, A., Eds.; Theory and Practice of Urban Sustainability Transitions; Springer International Publishing: Cham, Switzerland, 2017; pp. 139–158. ISBN 978-3-319-53750-4. [Google Scholar]
- Alberti, M. Maintaining Ecological Integrity and Sustaining Ecosystem Function in Urban Areas. Curr. Opin. Environ. Sustain. 2010, 2, 178–184. [Google Scholar] [CrossRef]
- Millennium Ecosystem Assessment (Program) (Ed.) Ecosystems and Human Well-Being: Wetlands and Water Synthesis: A Report of the Millennium Ecosystem Assessment; World Resources Institute: Washington, DC, USA, 2005; ISBN 978-1-56973-597-8. [Google Scholar]
- Wu, J. Urban Ecology and Sustainability: The State-of-the-Science and Future Directions. Landsc. Urban Plan. 2014, 125, 209–221. [Google Scholar] [CrossRef]
- Davis, M.A.; Chew, M.K.; Hobbs, R.J.; Lugo, A.E.; Ewel, J.J.; Vermeij, G.J.; Brown, J.H.; Rosenzweig, M.L.; Gardener, M.R.; Carroll, S.P.; et al. Don’t Judge Species on Their Origins. Nature 2011, 474, 153–154. [Google Scholar] [CrossRef]
- Clark, K.H.; Nicholas, K.A. Introducing Urban Food Forestry: A Multifunctional Approach to Increase Food Security and Provide Ecosystem Services. Landsc. Ecol. 2013, 28, 1649–1669. [Google Scholar] [CrossRef]
- Herreros-Cantis, P.; McPhearson, T. Mapping Supply of and Demand for Ecosystem Services to Assess Environmental Justice in New York City. Ecol. Appl. 2021, 31, e02390. [Google Scholar] [CrossRef] [PubMed]
- Wu, L.; Convertino, M. Ecological Corridor Design for Ecoclimatic Regulation: Species as Eco-Engineers. Ecol. Indic. 2025, 171, 113149. [Google Scholar] [CrossRef]
- Li, L.; Cheshmehzangi, A.; Chan, F.; Ives, C. Mapping the Research Landscape of Nature-Based Solutions in Urbanism. Sustainability 2021, 13, 3876. [Google Scholar] [CrossRef]
- Rouse, J.W., Jr.; Haas, R.H.; Schell, J.A.; Deering, D.W. Monitoring Vegetation Systems in the Great Plains with ERTS. NASA. Goddard Space Flight Center 3d ERTS-1 Symp., Vol. 1, Sect. A. 1974. Available online: https://ntrs.nasa.gov/citations/19740022614 (accessed on 6 March 2025).
- Weng, Q.; Yang, S. Managing the Adverse Thermal Effects of Urban Development in a Densely Populated Chinese City. J. Environ. Manag. 2004, 70, 145–156. [Google Scholar] [CrossRef]
- Liu, Y.; Meng, Q.; Zhang, J.; Zhang, L.; Jancso, T.; Vatseva, R. An Effective Building Neighborhood Green Index Model for Measuring Urban Green Space. Int. J. Digit. Earth 2016, 9, 387–409. [Google Scholar] [CrossRef]
- McGarigal, K.; Marks, B.J. FRAGSTATS: Spatial Pattern Analysis Program for Quantifying Landscape Structure.; U.S. Department of Agriculture, Forest Service, Pacific Northwest Research Station: Portland, OR, USA, 1995; p. PNW-GTR-351.
- Riitters, K.H.; O’Neill, R.V.; Hunsaker, C.T.; Wickham, J.D.; Yankee, D.H.; Timmins, S.P.; Jones, K.B.; Jackson, B.L. A Factor Analysis of Landscape Pattern and Structure Metrics. Landsc. Ecol. 1995, 10, 23–39. [Google Scholar] [CrossRef]
- Patton, D.R. A Diversity Index for Quantifying Habitat “Edge”. Wildl. Soc. Bull. 1975, 3, 171–173. [Google Scholar]
- Zhang, J.; Yu, Z.; Zhao, B.; Sun, R.; Vejre, H. Links between Green Space and Public Health: A Bibliometric Review of Global Research Trends and Future Prospects from 1901 to 2019. Environ. Res. Lett. 2020, 15, 063001. [Google Scholar] [CrossRef]
- Pascual-Hortal, L.; Saura, S. Integrating landscape connectivity in broad-scale forest planning through a new graph-based habitat availability methodology: Application to capercaillie (Tetrao urogallus) in Catalonia (NE Spain). Eur. J. Forest Res. 2008, 127, 23–31. [Google Scholar] [CrossRef]
- Kong, F.; Yin, H.; Nakagoshi, N.; Zong, Y. Urban Green Space Network Development for Biodiversity Conservation: Identification Based on Graph Theory and Gravity Modeling. Landsc. Urban Plan. 2010, 95, 16–27. [Google Scholar] [CrossRef]
- McRae, B.H.; Dickson, B.G.; Keitt, T.H.; Shah, V.B. Using circuit theory to model connectivity in ecology, evolution, and conservation. Ecology 2008, 89, 2712–2724. [Google Scholar] [CrossRef] [PubMed]
- Adger, W.N.; Hughes, T.P.; Folke, C.; Carpenter, S.R.; Rockstrom, J. Social-Ecological Resilience to Coastal Disasters. Science 2005, 309, 1036–1039. [Google Scholar] [CrossRef]
- Debinski, D.M.; Ray, C.; Saveraid, E.H. Species diversity and the scale of the landscape mosaic: Do scales of movement and patch size affect diversity? Biol. Conserv. 2001, 98, 179–190. [Google Scholar] [CrossRef]
- Alberti, M.; Marzluff, J.M. Ecological Resilience in Urban Ecosystems: Linking Urban Patterns to Human and Ecological Functions. Urban Ecosyst. 2004, 7, 241–265. [Google Scholar] [CrossRef]
- Ng, C.N.; Xie, Y.J.; Yu, X.J. Integrating Landscape Connectivity into the Evaluation of Ecosystem Services for Biodiversity Conservation and Its Implications for Landscape Planning. Appl. Geogr. 2013, 42, 1–12. [Google Scholar] [CrossRef]
- Graffigna, S.; González-Vaquero, R.A.; Torretta, J.P.; Marrero, H.J. Importance of Urban Green Areas’ Connectivity for the Conservation of Pollinators. Urban Ecosyst. 2024, 27, 417–426. [Google Scholar] [CrossRef]
- Hamer, A.J.; McDonnell, M.J. Amphibian Ecology and Conservation in the Urbanising World: A Review. Biol. Conserv. 2008, 141, 2432–2449. [Google Scholar] [CrossRef]
- Wang, Y.; Hao, H.; Wang, C. Preparing Urban Curbside for Increasing Mobility-on-Demand Using Data-Driven Agent-Based Simulation: Case Study of City of Gainesville, Florida. J. Manage. Eng. 2022, 38, 05022004. [Google Scholar] [CrossRef]
- Chen, X.; Zhan, F.B. Agent-Based Modelling and Simulation of Urban Evacuation: Relative Effectiveness of Simultaneous and Staged Evacuation Strategies. J. Oper. Res. Soc. 2008, 59, 25–33. [Google Scholar] [CrossRef]
- Wilson, S.; Pavlic, T.P.; Kumar, G.P.; Buffin, A.; Pratt, S.C.; Berman, S. Design of Ant-Inspired Stochastic Control Policies for Collective Transport by Robotic Swarms. Swarm. Intell. 2014, 8, 303–327. [Google Scholar] [CrossRef]
- Zhang, W.; Guhathakurta, S.; Fang, J.; Zhang, G. Exploring the Impact of Shared Autonomous Vehicles on Urban Parking Demand: An Agent-Based Simulation Approach. Sustain. Cities Soc. 2015, 19, 34–45. [Google Scholar] [CrossRef]
- Qiu, Y.; Fricker, P. Computational Design Methods for Enhancing Urban Biodiversity—The flight of the bumblebee: Improving urban green for ecosystem services. In Digital Design Reconsidered, Proceedings of the 41st Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2023), Graz, Austria, 20–22 September 2023; Graz University of Technology: Graz, Austria, 2023; pp. 801–810. [Google Scholar] [CrossRef]
- Dorin, A.; Taylor, T.; Dyer, A.G. Goldilocks’ Quarter-Hectare Urban Farm: An Agent-Based Model for Improved Pollination of Community Gardens and Small-Holder Farms. PLoS Sustain. Transform. 2022, 1, e0000021. [Google Scholar] [CrossRef]
- Convertino, M.; Wu, Y.; Dong, H. Baselining Urban Ecosystems from Sentinel Species: Fitness, Flows, and Sinks. Entropy 2025, 27, 486. [Google Scholar] [CrossRef]
- Beatley, T. Handbook of Biophilic City Planning and Design; Island Press/Center for Resource Economics: Washington, DC, USA, 2016; ISBN 978-1-61091-822-0. [Google Scholar]
- Kabisch, N.; Qureshi, S.; Haase, D. Human–Environment Interactions in Urban Green Spaces—A Systematic Review of Contemporary Issues and Prospects for Future Research. Environ. Impact Assess. Rev. 2015, 50, 25–34. [Google Scholar] [CrossRef]
- Ma, Y.; Xu, W. Physarealm—A Bio-Inspired Stigmergic Algorithm Tool for Form-Finding. In Proceedings of the 22nd International Conference of the Association for Computer-Aided Architectural Design Research in Asia (CAADRIA), Suzhou, China, 5–8 April 2017; pp. 499–508. [Google Scholar]
- Jones, J. Characteristics of Pattern Formation and Evolution in Approximations of Physarum Transport Networks. Artif. Life 2010, 16, 127–153. [Google Scholar] [CrossRef]
- Dong, T.; Tadi, M. Digital Twin-Assisted Urban Resilience: A Data-Driven Framework for Sustainable Regeneration in Paranoá, Brasilia. Urban Sci. 2025, 9, 333. [Google Scholar] [CrossRef]
- Soga, M.; Koike, S. Mapping the Potential Extinction Debt of Butterflies in a Modern City: Implications for Conservation Priorities in Urban Landscapes. Anim. Conserv. 2013, 16, 1–11. [Google Scholar] [CrossRef]
- Fenoglio, M.S.; Videla, M.; Salvo, A.; Valladares, G. Beneficial Insects in Urban Environments: Parasitism Rates Increase in Large and Less Isolated Plant Patches via Enhanced Parasitoid Species Richness. Biol. Conserv. 2013, 164, 82–89. [Google Scholar] [CrossRef]
- Eötvös, C.B.; Lövei, G.L.; Magura, T. Predation Pressure on Sentinel Insect Prey along a Riverside Urbanization Gradient in Hungary. Insects 2020, 11, 97. [Google Scholar] [CrossRef] [PubMed]
- Harrison, T.; Winfree, R. Urban Drivers of Plant-pollinator Interactions. Funct. Ecol. 2015, 29, 879–888. [Google Scholar] [CrossRef]
- Villegas, M.; Garitano-Zavala, Á. Bird Community Responses to Different Urban Conditions in La Paz, Bolivia. Urban Ecosyst. 2010, 13, 375–391. [Google Scholar] [CrossRef]
- Van Nes, A.; Yamu, C. Analysing Linear Spatial Relationships: The Measures of Connectivity, Integration, and Choice. In Introduction to Space Syntax in Urban Studies; Springer International Publishing: Cham, Switzerland, 2021; pp. 35–86. ISBN 978-3-030-59139-7. [Google Scholar]
- Corbet, S.A.; Fussell, M.; Ake, R.; Fraser, A.; Gunson, C.; Savage, A.; Smith, K. Temperature and the Pollinating Activity of Social Bees. Ecol. Entomol. 1993, 18, 17–30. [Google Scholar] [CrossRef]
- Deguines, N.; Jono, C.; Baude, M.; Henry, M.; Julliard, R.; Fontaine, C. Large-scale Trade-off between Agricultural Intensification and Crop Pollination Services. Front. Ecol Env. 2014, 12, 212–217. [Google Scholar] [CrossRef]
- Pimsler, M.L.; Oyen, K.J.; Herndon, J.D.; Jackson, J.M.; Strange, J.P.; Dillon, M.E.; Lozier, J.D. Biogeographic Parallels in Thermal Tolerance and Gene Expression Variation under Temperature Stress in a Widespread Bumble Bee. Sci. Rep. 2020, 10, 17063. [Google Scholar] [CrossRef]
- Li, Z.-L.; Si, M.; Leng, P. A review of remotely sensed surface urban heat islands from the fresh perspective of comparisons among different regions (invited review). PIER C 2020, 102, 31–46. [Google Scholar] [CrossRef]
- Batty, M. A New Theory of Space Syntax, Working Paper no. 75 of the Centre for Advanced Spatial Analysis (University College, London). 2005. Available online: https://www.researchgate.net/publication/316233430_A_new_theory_of_space_syntax (accessed on 6 March 2024).
- Crooks, A.T.; Heppenstall, A.J. Introduction to Agent-Based Modelling. In Agent-Based Models of Geographical Systems; Heppenstall, A.J., Crooks, A.T., See, L.M., Batty, M., Eds.; Springer: Dordrecht, The Netherlands, 2012; pp. 85–105. ISBN 978-90-481-8927-4. [Google Scholar]
- Zaninotto, V.; Perrard, A.; Babiar, O.; Hansart, A.; Hignard, C.; Dajoz, I. Seasonal Variations of Pollinator Assemblages among Urban and Rural Habitats: A Comparative Approach Using a Standardized Plant Community. Insects 2021, 12, 199. [Google Scholar] [CrossRef]
- Comune di Milano; Centro Studi PIM; AMAT. Documento di Piano_Milano 2030 Visione, Costruzione, Strategie, Spazi; Comune di Milano: Milan, Italy, 2019. [Google Scholar]
- Newbold, T.; Hudson, L.N.; Arnell, A.P.; Contu, S.; De Palma, A.; Ferrier, S.; Hill, S.L.L.; Hoskins, A.J.; Lysenko, I.; Phillips, H.R.P.; et al. Has Land Use Pushed Terrestrial Biodiversity beyond the Planetary Boundary? A Global Assessment. Science 2016, 353, 288–291. [Google Scholar] [CrossRef]
- Villa, F.; Arcidiacono, A.; Causone, F.; Masera, G.; Tadi, M.; Grosso, M. Entering rocinha: A gis approach for the improvement of solid waste management in a slum in rio de janeiro (Brazil). Detritus 2020, 9, 221–231. [Google Scholar] [CrossRef]
- Kowarik, I.; Buchholz, S.; Von Der Lippe, M.; Seitz, B. Biodiversity Functions of Urban Cemeteries: Evidence from One of the Largest Jewish Cemeteries in Europe. Urban For. Urban Green. 2016, 19, 68–78. [Google Scholar] [CrossRef]
- Parison, S.; Chaumont, M.; Kounkou-Arnaud, R.; Long, F.; Bernik, A.; Da Silva, M.; Hendel, M. The Effects of Greening a Parking Lot as a Heat Mitigation Strategy on Outdoor Thermal Stress Using Fixed and Mobile Measurements: Case-Study Project “Tertiary Forest". Sustain. Cities Soc. 2023, 98, 104818. [Google Scholar] [CrossRef]
- Goddard, M.A.; Dougill, A.J.; Benton, T.G. Scaling up from Gardens: Biodiversity Conservation in Urban Environments. Trends Ecol. Evol. 2010, 25, 90–98. [Google Scholar] [CrossRef]
- Pino, J.; Marull, J. Ecological Networks: Are They Enough for Connectivity Conservation? A Case Study in the Barcelona Metropolitan Region (NE Spain). Land Use Policy 2012, 29, 684–690. [Google Scholar] [CrossRef]
- Albrecht, H.; Haider, S. Species Diversity and Life History Traits in Calcareous Grasslands Vary along an Urbanization Gradient. Biodivers. Conserv. 2013, 22, 2243–2267. [Google Scholar] [CrossRef]
- Hülsmann, M.; Von Wehrden, H.; Klein, A.-M.; Leonhardt, S.D. Plant Diversity and Composition Compensate for Negative Effects of Urbanization on Foraging Bumble Bees. Apidologie 2015, 46, 760–770. [Google Scholar] [CrossRef]
- Moreno, C.; Allam, Z.; Chabaud, D.; Gall, C.; Pratlong, F. Introducing the “15-Minute City”: Sustainability, Resilience and Place Identity in Future Post-Pandemic Cities. Smart Cities 2021, 4, 93–111. [Google Scholar] [CrossRef]
- Francesca Cavalcanti, M.; Jan Terstegge, M. The Urgenda Case: The Dutch Path towards a New Climate Constitutionalism. DPCE Online 2020, 43, DPCE. [Google Scholar] [CrossRef]
- Scheper, J.; Reemer, M.; Van Kats, R.; Ozinga, W.A.; Van Der Linden, G.T.J.; Schaminée, J.H.J.; Siepel, H.; Kleijn, D. Museum Specimens Reveal Loss of Pollen Host Plants as Key Factor Driving Wild Bee Decline in The Netherlands. Proc. Natl. Acad. Sci. USA 2014, 111, 17552–17557. [Google Scholar] [CrossRef]
Data Layer | Data Resource | Repository Link |
---|---|---|
Administrative Boundary (in vectors) | Geoportale della Lombardia | https://www.geoportale.regione.lombardia.it/en-GB/home (accessed on 1 May 2024) |
Volume (in vectors) | Geoportale della Lombardia | https://www.geoportale.regione.lombardia.it/en-GB/home (accessed on 1 May 2024) |
Green Space (in vectors) | Regione Emilia-Romagna | https://geoportale.regione.emilia-romagna.it/ (accessed on 2 May 2024) |
Normalized Difference Vegetation Index (NDVI) | Landsat 8–9 | https://earthexplorer.usgs.gov/ (accessed on 22 January 2025) |
Land Surface Temperature (LST) | Landsat 8–9 | https://earthexplorer.usgs.gov/ (accessed on 22 January 2025) |
Input Parameter | Lambrate | Bologna | Ispra | |
---|---|---|---|---|
General Setting | Food–Agent Ratio (TrRat) | 50 | 50 | 50 |
Total Green Space Area | 1,220,427 m2 | 372,985 m2 | 6,738,090 m2 | |
Starting Agent Numbers (PopS) | 2000 | 1000 | 1000 | |
Number of Green Space Sample Points in Spring (Food and Emitter) | 2974 | 957 | 4113 | |
Number of Green Space Sample Points in Autumn (Food and Emitter) | 2164 | 665 | 3093 | |
Number of Building and Railway Geometries (Obstacles) | 1513 | 1372 | 3109 | |
Agent Groups | Radius of Ground-to-Canopy Pollinator Movement (Ddis = RGround) | 200 m | 200 m | 200 m |
Radius of Avian Pollinator Movement (Ddis = RAvian) | 500 m | 500 m | 500 m |
Research Case | Time | Q1 (%) | Median (%) | Q3 (%) | Mean (%) | Retained Agents (N) | Retention Rate (%) | Active Zone Rate (%) | |
---|---|---|---|---|---|---|---|---|---|
RGround = 200 m | Lambrate | April | 1.18 | 2.52 | 4.87 | 3.35 | 595 | 29.75 | 82.51 |
November | 1.11 | 3.11 | 6.44 | 4.48 | 459 | 22.95 | 78.11 | ||
Bolognina | April | 2.3 | 4.2 | 6.3 | 4.31 | 650 | 65.00 | 95.48 | |
November | 2.32 | 4.64 | 7.45 | 5.00 | 604 | 60.40 | 97.37 | ||
Ispra | April | 1.07 | 1.68 | 2.29 | 1.76 | 655 | 65.50 | 90.37 | |
November | 0.9 | 1.7 | 2.5 | 1.78 | 636 | 63.60 | 89.06 | ||
RAvian = 500 m | Lambrate | April | 6.14 | 14.71 | 25.7 | 16.78 | 537 | 26.85 | 99.58 |
November | 5.99 | 14.98 | 28.8 | 18.42 | 434 | 21.70 | 98.03 | ||
Bolognina | April | 14.74 | 22.77 | 29.93 | 22.15 | 685 | 68.50 | 100.00 | |
November | 14.57 | 23.22 | 34.75 | 24.41 | 659 | 65.90 | 100.00 | ||
Ispra | April | 5.97 | 8.06 | 10.16 | 7.82 | 620 | 62.00 | 98.49 | |
November | 4.75 | 8.2 | 11.15 | 7.99 | 610 | 61.00 | 97.65 |
Location | Cell ID | Platform | Catalyst | Design Ordering Principle (DOP) | Action | Case Reference | Academic Support | Stakeholders |
---|---|---|---|---|---|---|---|---|
Lambrate | 1192 | Manual Analysis | Porosity | DOP 01—Balance the ground land-use of the city considered as a whole ecosystem consisting of both natural and socio-economic components. | Action 1.4—Reduce urban land cover and reduce urban soil sealing. | NbSouth via retrofitting for Climate Adaptation, Brazil | Villa et al. (2020) [105] | Local municipality, water management department, academic researchers |
SOFIA | Permeability | DOP 05—Create connected open space system, activate urban metabolism. | Action 5.3—Develop a green infrastructure strategy that identifies priority areas for new green infrastructure. | Biotope Verbund System, Berlin, Germany | Kowarik et al. (2016) [106] | Municipal green space department, local residents, and entomology researchers | ||
ChatGPT 4.0 Web | Continuity | DOP 05—Create connected open space system, activate urban metabolism, | Action 5.4—Design a connected network that integrates green infrastructure, such as green roofs, green walls, bioswales, rain gardens, and nature-based solutions, with the urban built environment. | Cheonggyecheon Stream restoration, South Korea | Yu et al. (2020) [13] | Municipal planners, landscape architects, community associations | ||
3231 | Manual Analysis | Accessibility | DOP 08—Change from multi-modality to inter-modality concept. | Action 8.1—Develop and implement a connected, systems approach to support inter-modality. This includes building bike lanes, pedestrian walkways, transit lanes, and dedicated parking areas for bike and car-sharing. | Tertiary Forest Parking Lot, France | Parison et al. (2023) [107] | Municipal planners, Academic Institutions, Meteorological and Environmental Monitoring Agencies, Public User Feedback | |
SOFIA | Effectiveness | DOP 07—Balancing the public transportation potential. | Action 7.2—Rebalance public service distribution through accessibility mapping. | Biodiversity Action Plans (BAP), UK | Goddard, Dougill, and Benton (2010) [108] | Ornithological societies, park managers, urban farmers | ||
ChatGPT 4.0 Web | Diversity | DOP 04—Make biodiversity an important part of urban life. | Action 4.1—Enhance ecological restoration in cities by restoring degraded and underutilized land to improve local ecosystem health and wildlife habitat. | Biblioteca degli Alberi, Milan, Italy | Fahrig (2003) [9] | Ecologists, urban forest planners, biodiversity NGOs | ||
Bolognina | 462 | Manual Analysis | Diversity | DOP 04—Make biodiversity an important part of urban life. | Action 4.7—Measuring and monitoring biodiversity. | Valona Strategic Planning, Albania | IMM Internal Source [5] | Local municipality, academic researchers, and urban planners |
SOFIA | Continuity | DOP 04—Make biodiversity an important part of urban life. | Action 4.1—Enhance ecological restoration in cities by restoring degraded and underutilized land to improve local ecosystem health and wildlife habitat. | Green Axes, Spain | Pino and Marull (2012) [109] | City planners, botanical gardeners | ||
ChatGPT 4.0 Web | Continuity | DOP 05—Create connected open space system, activate urban metabolism. | Action 5.1—Create a connected, continuous, and integrated system of urban open green spaces. | Green Belt of Vitoria-Gasteiz, Spain | Parker and Simpson (2018) [1] | Ecological planners, municipal green departments, mobility engineers | ||
1528 | Manual Analysis | Porosity | DOP 01—Balance the ground land use of the city considered as a whole ecosystem consisting of both natural and socio-economic components. | Action 1.4—Reduce urban land cover and reduce the urban soil sealing. | NbSouth via retrofitting for Climate Adaptation, Brazil | Villa et al. (2020) [105] | Local municipality, water management department, academic researchers | |
SOFIA | Interface | DOP 03—Balance the distribution of key types of uses and foster multifunctional spaces. | Action 3.4—Encourages multi-functional buildings. | Chicago Nature and Wildlife Plan, United States | Albrecht and Haider (2013) [110] | Property owners, architects, beekeeping associations | ||
ChatGPT 4.0 Web | Interface | DOP 06—Promote walkability, cycling and reinforce their integration with public transportation. | Action 6.5—Optimize spatial connectivity. | Pollinator Pathway, Seattle, United States | Crooks and Heppenstall (2012) [101] | Urban designers, pollinator conservation NGOs, active mobility advocates | ||
Ispra | 5610 | Manual Analysis | Accessibility | DOP 08: Change from multi-modality to inter-modality concept. | Action 8.1—Develop and implement a connected, systems approach to support inter-modality. This includes building bike lanes, pedestrian walkways, transit lanes, and dedicated parking areas for bike and car-sharing. | Tertiary Forest Parking Lot, France | Parison et al. (2023) [107] | Municipal planners, academic institutions, meteorological and environmental monitoring agencies, public user feedback |
SOFIA | Diversity | DOP 01—Balance the ground land-use of the city considered as a whole ecosystem consisting of both natural and socio-economic components. | Action 1.5—Implement green open spaces like community gardens, urban farms, and pocket parks to reduce soil sealing, mitigate urban heat islands, absorb stormwater, provide wildlife habitats, and offer recreational opportunities for urban residents. | Munich’s “Blühstreifen” (Flowering Strips) Initiative, Germany | Hülsmann et al. (2015) [111] | Agricultural extension services, schools, nature reserves | ||
ChatGPT 4.0 Web | Proximity | DOP 03—Balance the distribution of key types of uses and foster multifunctional spaces. | Action 3.2—Prioritize compact, mixed-use, and walkable development patterns. | Paris’ Vision for 15-min City, France | Moreno et al. (2021) [112] | Local planners, mobility departments, citizen cooperatives | ||
8814 | Manual Analysis | Porosity | DOP 04—Make biodiversity an important part of urban life. | Action 4.6—Integrate both green and non-green infrastructures in a holistic landscape approach. | Urgenda Case, Netherlands | Matthijs Jan Terstegge (2020) [113] | Local municipality, academic researchers, and urban planners | |
SOFIA | Proximity | DOP 02—Implement Permeability to facilitate urban flow. | Action 2.2—Design Pedestrian-friendly streets: Incorporating the pedestrian and cycling paths with open spaces and greenery. | Honey Highway, Netherlands | Scheper et al. (2014) [114] | Transport agencies, utility companies, environmental NGOs | ||
ChatGPT 4.0 Web | Effectiveness | DOP 07—Balancing the public transportation potential. | Action 7.3—Activate a joint land use–transit model for integrating land use and transit planning. | Freiburg-Vauban District, Germany | Beatley (2016) [85] | Regional mobility agency, urban development board, sustainability task force |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dong, T.; Tadi, M.; Tesfaye, S.T. Unveiling Hidden Green Corridors: An Agent-Based Simulation (ABS) of Urban Green Continuity for Ecosystem Services and Climate Resilience. Smart Cities 2025, 8, 163. https://doi.org/10.3390/smartcities8050163
Dong T, Tadi M, Tesfaye ST. Unveiling Hidden Green Corridors: An Agent-Based Simulation (ABS) of Urban Green Continuity for Ecosystem Services and Climate Resilience. Smart Cities. 2025; 8(5):163. https://doi.org/10.3390/smartcities8050163
Chicago/Turabian StyleDong, Tao, Massimo Tadi, and Solomon Tamiru Tesfaye. 2025. "Unveiling Hidden Green Corridors: An Agent-Based Simulation (ABS) of Urban Green Continuity for Ecosystem Services and Climate Resilience" Smart Cities 8, no. 5: 163. https://doi.org/10.3390/smartcities8050163
APA StyleDong, T., Tadi, M., & Tesfaye, S. T. (2025). Unveiling Hidden Green Corridors: An Agent-Based Simulation (ABS) of Urban Green Continuity for Ecosystem Services and Climate Resilience. Smart Cities, 8(5), 163. https://doi.org/10.3390/smartcities8050163