State-of-the-Art Review on Shipboard Microgrids: Architecture, Control, Management, Protection, and Future Perspectives
Abstract
:1. Introduction
1.1. Background
1.2. Related Work
1.3. Contribution
- A comparison of SBMGs and land-based MGs;
- An exploration of the classification of SBMGs based on distribution types, propulsion system types, and architecture types;
- A comparison of the most recent studies on the control, management, and protection of SBMGs based on the contributions and shortcomings of each study;
- A bibliometric analysis to study the most recent trends concerning SBMGs in terms of control, management, and protection;
- An investigation of the uncertainties that may be encountered with SBMGs;
- A presentation of the most recent new trends related to SBMGs.
2. Motivation
3. SBMG Versus Land-Based MG IEC/IEEE Standards
- Environmental considerations: Shipboard microgrids are exposed to harsh environmental conditions, such as high humidity, saltwater, and vibrations, which can affect the performance of electrical components. The standards for shipboard microgrids consider these environmental factors and provide guidance for equipment selection and testing to ensure reliable operation [59].
- Safety requirements: Shipboard microgrids must adhere to stringent safety requirements, particularly regarding shock and fire hazards. Standards such as IEC/IEEE 80005-1 provide guidance for the design and testing of shipboard electrical systems to ensure they meet these safety requirements [60].
- Power quality considerations: Due to the sensitive electrical equipment on board ships, power quality is of the utmost importance. Standards for shipboard microgrids, such as IEEE 2030.8, provide guidelines for maintaining stable power quality in the presence of variable loads and power sources [61].
- Operational considerations: Shipboard microgrids have unique operational considerations compared to land-based microgrids. For example, shipboard microgrids may need to operate in the islanded mode for extended periods, and there may be limited access to maintenance resources during operation. Standards for shipboard microgrids provide guidance for these operational considerations to ensure reliable and safe operation [61].
4. Classification of SBMGs
4.1. SBMG Classification According to Distribution System Types
4.1.1. AC Shipboard Microgrid
4.1.2. DC Shipboard Microgrid
4.1.3. Hybrid AC/DC Shipboard Microgrid
4.2. SBMG Classification According to Propulsion Systems
4.2.1. Mechanical Propulsion System
4.2.2. Electrical Propulsion System
4.2.3. Hybrid Propulsion System
4.3. SBMG Classification According to Power System Architectures
4.3.1. Radial Architecture
4.3.2. Ring Architecture
4.3.3. Zonal Architecture
5. Control Techniques in SBMGs
5.1. Dynamic Positioning Control (DPC)
5.2. Converter Control Methods
6. Uncertainties in SBMGs
7. Energy Management Systems (EMSs) in SBMGs
8. Protection of SBMGs
- Lack of natural zero-crossing current;
- The nature and direction of the fault current;
- Incoordination of current-based relays;
- The effect of the output filter;
- Dependence on converter topology;
- Severe transient discharge;
- The grounding system;
- The occurrence of miscoordination between the primary and secondary protection due to the short time required for fault clearing and the circuit breaker used in the DC-SBMG.
9. Real Ships in The World
10. Research Trends and Recommendations
11. Conclusions
- Dynamic modeling of SBMGs, considering all uncertainty issues, is essential for their operation.
- A hybrid AC/DC distribution system with an integrated power system in a zonal structure is recommended for a more reliable and flexible power system.
- A hierarchical control framework is better suited for regulating voltage and frequency deviations in complex SBMGs.
- Particle swarm optimization (PSO) and genetic algorithms (GAs) are more effective for multi-objective optimization with multiple constraints using machine learning.
- Machine-learning methods with communication for fault diagnosis and breakerless topologies for fault isolation are recommended for better protection systems.
- Fifth-generation wireless communication is suggested to reduce delay time and sensor losses in control, management, and protection processes.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yuan, Y.; Wang, J.; Yan, X.; Shen, B.; Long, T. A review of multi-energy hybrid power system for ships. Renew. Sustain. Energy Rev. 2020, 132, 110081. [Google Scholar] [CrossRef]
- Bauer, A.; Menrad, K. Standing up for the Paris Agreement: Do global climate targets influence individuals’ greenhouse gas emissions? Environ. Sci. Policy 2019, 99, 72–79. [Google Scholar] [CrossRef]
- Trivyza, N.L.; Rentizelas, A.; Theotokatos, G. Impact of carbon pricing on the cruise ship energy systems optimal configuration. Energy 2019, 175, 952–966. [Google Scholar] [CrossRef]
- Geertsma, R.D.; Negenborn, R.R.; Visser, K.; Hopman, J.J. Design and control of hybrid power and propulsion systems for smart ships: A review of developments. Appl. Energy 2017, 194, 30–54. [Google Scholar] [CrossRef]
- Geng, P.; Mao, H.; Zhang, Y.; Wei, L.; You, K.; Ju, J.; Chen, T. Combustion characteristics and NOx emissions of a waste cooking oil biodiesel blend in a marine auxiliary diesel engine. Appl. Therm. Eng. 2017, 115, 947–954. [Google Scholar] [CrossRef]
- Khooban, M.H.; Dragicevic, T.; Blaabjerg, F.; Delimar, M. Shipboard Microgrids: A Novel Approach to Load Frequency Control. IEEE Trans. Sustain. Energy 2017, 9, 843–852. [Google Scholar] [CrossRef]
- Thongam, J.S.; Tarbouchi, M.; Okou, A.F.; Bouchard, D.; Beguenane, R. Trends in naval ship propulsion drive motor technology. In Proceedings of the 2013 IEEE Electrical Power and Energy Conference, Halifax, NS, Canada, 21–23 August 2013; pp. 1–5. [Google Scholar] [CrossRef]
- Sun, Y.; Yan, X.; Yuan, C.; Tang, X.; Malekian, R.; Guo, C.; Li, Z. The application of hybrid photovoltaic system on the ocean-going ship: Engineering practice and experimental research. J. Mar. Eng. Technol. 2019, 18, 56–66. [Google Scholar] [CrossRef]
- Yuan, Y.; Wang, J.; Yan, X.; Li, Q.; Long, T. A design and experimental investigation of a large-scale solar energy/diesel generator powered hybrid ship. Energy 2018, 165, 965–978. [Google Scholar] [CrossRef]
- Li, F.; Yuan, Y.; Yan, X.; Malekian, R.; Li, Z. A study on a numerical simulation of the leakage and diffusion of hydrogen in a fuel cell ship. Renew. Sustain. Energy Rev. 2018, 97, 177–185. [Google Scholar] [CrossRef]
- Zohrabi, N.; Shi, J.; Abdelwahed, S. An overview of design specifications and requirements for the MVDC shipboard power system. Int. J. Electr. Power Energy Syst. 2019, 104, 680–693. [Google Scholar] [CrossRef]
- Nuchturee, C.; Li, T.; Xia, H. Energy efficiency of integrated electric propulsion for ships—A review. Renew. Sustain. Energy Rev. 2020, 134, 110145. [Google Scholar] [CrossRef]
- Jafarzadeh, S.; Schjølberg, I. Operational profiles of ships in Norwegian waters: An activity-based approach to assess the benefits of hybrid and electric propulsion. Transp. Res. Part D Transp. Environ. 2018, 65, 500–523. [Google Scholar] [CrossRef]
- Pan, P.; Sun, Y.; Yuan, C.; Yan, X.; Tang, X. Research progress on ship power systems integrated with new energy sources: A review. Renew. Sustain. Energy Rev. 2021, 144, 111048. [Google Scholar] [CrossRef]
- Colavitto, A.; Vicenzutti, A.; Bosich, D.; Sulligoi, G. Open Challenges in Future Electric Ship Design: High-Frequency Disturbance Propagation in Integrated Power and Energy Systems on Ships. IEEE Electrif. Mag. 2019, 7, 98–110. [Google Scholar] [CrossRef]
- Bakar, N.N.A.; Guerrero, J.M.; Vasquez, J.C.; Bazmohammadi, N.; Yu, Y.; Abusorrah, A.; Al-Turki, Y.A. A review of the conceptualization and operational management of seaport microgrids on the shore and seaside. Energies 2021, 14, 7941. [Google Scholar] [CrossRef]
- Sciarretta, A.; Sciarretta, A.; Serrao, L.; Dewangan, P.C.; Tona, P.; Bergshoeff, E.N.D.; Bordons, C.; Charmpa, L.; Elbert, P.; Eriksson, L.; et al. A control benchmark on the energy management of a plug-in hybrid electric vehicle. Control Eng. Pract. 2014, 29, 287–298. [Google Scholar] [CrossRef]
- Alghassab, M.A.; Nour, A.M.M.; Hatata, A.Y.; Sedhom, B.E. Two-layer hybrid control scheme for distribution network integrated with photovoltaic sources based self-tuning H-infinity and fuzzy logic controller. IET Renew. Power Gener. 2023. [Google Scholar] [CrossRef]
- Sultan, Y.A.; Kaddah, S.S.; Eladl, A.A. VSC-HVDC system-based on model predictive control integrated with offshore wind farms. IET Renew. Power Gener. 2021, 15, 1315–1330. [Google Scholar] [CrossRef]
- Alhasnawi, B.N.; Jasim, B.H.; Alhasnawi, A.N.; Sedhom, B.E.; Jasim, A.M.; Khalili, A.; Bureš, V.; Burgio, A.; Siano, P. A Novel Approach to Achieve MPPT for Photovoltaic System Based SCADA. Energies 2022, 15, 8480. [Google Scholar] [CrossRef]
- Xie, P.; Guerrero, J.M.; Tan, S.; Bazmohammadi, N.; Vasquez, J.C.; Mehrzadi, M.; Al-Turki, Y. Optimization-Based Power and Energy Management System in Shipboard Microgrid: A Review. IEEE Syst. J. 2021, 16, 578–590. [Google Scholar] [CrossRef]
- Eladl, A.A.; El-Afifi, M.I.; El-Saadawi, M.M.; Sedhom, B.E. A review on energy hubs: Models, methods, classification, applications, and future trends. Alexandria Eng. J. 2023, 68, 315–342. [Google Scholar] [CrossRef]
- Saeed, M.A.; Eladl, A.A.; Alhasnawi, B.N.; Motahhir, S.; Nayyar, A.; Shah, M.A.; Sedhom, B.E. Energy management system in smart buildings based coalition game theory with fog platform and smart meter infrastructure. Sci. Rep. 2023, 13, 2023. [Google Scholar] [CrossRef] [PubMed]
- Eladl, A.A.; Saeed, M.A.; Sedhom, B.E. Energy Management System for Smart Microgrids Considering Energy Theft. In Proceedings of the 2022 23rd International Middle East Power Systems Conference (MEPCON), Cairo, Egypt, 13–15 December 2022. [Google Scholar]
- Satpathi, K.; Ukil, A.; Nag, S.S.; Pou, J.; Zagrodnik, M.A. DC Marine Power System: Transient Behavior and Fault Management Aspects. IEEE Trans. Ind. Inform. 2018, 15, 1911–1925. [Google Scholar] [CrossRef]
- De-Troya, J.J.; Álvarez, C.; Fernández-Garrido, C.; Carral, L. Analysing the possibilities of using fuel cells in ships. Int. J. Hydrogen Energy 2016, 41, 2853–2866. [Google Scholar] [CrossRef]
- Barros, J.; Diego, R.I. A review of measurement and analysis of electric power quality on shipboard power system networks. Renew. Sustain. Energy Rev. 2016, 62, 665–672. [Google Scholar] [CrossRef]
- Jin, Z.; Sulligoi, G.; Cuzner, R.; Meng, L.; Vasquez, J.C.; Guerrero, J.M. Next-Generation Shipboard DC Power System: Introduction Smart Grid and dc Microgrid Technologies into Maritime Electrical Netowrks. IEEE Electrif. Mag. 2016, 4, 45–57. [Google Scholar] [CrossRef]
- Jin, Z.; Savaghebi, M.; Vasquez, J.C.; Meng, L.; Guerrero, J.M. Maritime DC microgrids—A combination of microgrid technologies and maritime onboard power system for future ships. In Proceedings of the 2016 IEEE 8th International Power Electronics and Motion Control Conference (IPEMC-ECCE Asia), Hefei, China, 22–26 May 2016; pp. 179–184. [Google Scholar] [CrossRef]
- Yan, X.; Liang, X.; Ouyang, W.; Liu, Z.; Liu, B.; Lan, J. A review of progress and applications of ship shaft-less rim-driven thrusters. Ocean Eng. 2017, 144, 142–156. [Google Scholar] [CrossRef]
- Alnes, O.; Eriksen, S.; Vartdal, B.-J. Battery-Powered Ships: A Class Society Perspective. IEEE Electrif. Mag. 2017, 5, 10–21. [Google Scholar] [CrossRef]
- Chai, M.; Reddy, B.D.; Lingeshwaren, S.; Panda, S.K.; Wu, D.; Chen, X. Progressing towards DC electrical systems for marine vessels. Energy Procedia 2017, 143, 27–32. [Google Scholar] [CrossRef]
- Satpathi, K.; Ukil, A.; Pou, J. Short-Circuit Fault Management in DC Electric Ship Propulsion System: Protection Requirements, Review of Existing Technologies and Future Research Trends. IEEE Trans. Transp. Electrif. 2017, 4, 272–291. [Google Scholar] [CrossRef]
- Jayasinghe, S.G.; Meegahapola, L.; Fernando, N.; Jin, Z.; Guerrero, J.M. Review of ship microgrids: System architectures, storage technologies and power quality aspects. Inventions 2017, 2, 4. [Google Scholar] [CrossRef]
- Mutarraf, M.U.; Terriche, Y.; Niazi, K.A.K.; Vasquez, J.C.; Guerrero, J.M. Energy storage systems for shipboard microgrids—A review. Energies 2018, 11, 3492. [Google Scholar] [CrossRef]
- Kim, K.; Park, K.; Roh, G.; Chun, K. DC-grid system for ships: A study of benefits and technical considerations. J. Int. Marit. Saf. Environ. Aff. Shipp. 2018, 2, 1–12. [Google Scholar] [CrossRef]
- Al-Falahi, M.D.A.; Tarasiuk, T.; Jayasinghe, S.G.; Jin, Z.; Enshaei, H.; Guerrero, J.M. Ac ship microgrids: Control and power management optimization. Energies 2018, 11, 1458. [Google Scholar] [CrossRef]
- Babaei, M.; Shi, J.; Abdelwahed, S. A Survey on Fault Detection, Isolation, and Reconfiguration Methods in Electric Ship Power Systems. IEEE Access 2018, 6, 9430–9441. [Google Scholar] [CrossRef]
- Kumar, D.; Zare, F. A Comprehensive Review of Maritime Microgrids: System Architectures, Energy Efficiency, Power Quality, and Regulations. IEEE Access 2019, 7, 67249–67277. [Google Scholar] [CrossRef]
- Jaurola, M.; Hedin, A.; Tikkanen, S.; Huhtala, K. Optimising design and power management in energy-efficient marine vessel power systems: A literature review. J. Mar. Eng. Technol. 2019, 18, 92–101. [Google Scholar] [CrossRef]
- Fang, S.; Wang, Y.; Gou, B.; Xu, Y. Toward Future Green Maritime Transportation: An Overview of Seaport Microgrids and All-Electric Ships. IEEE Trans. Veh. Technol. 2019, 69, 207–219. [Google Scholar] [CrossRef]
- Boveri, A.; Di Mare, G.A.; Rattazzi, D.; Gualeni, P.; Magistri, L.; Silvestro, F. Shipboard distributed energy resources: Motivations, challenges and possible solutions in the cruise ship arena. Int. Shipbuild. Prog. 2019, 66, 181–199. [Google Scholar] [CrossRef]
- Iris, Ç.; Lam, J.S.L. A review of energy efficiency in ports: Operational strategies, technologies and energy management systems. Renew. Sustain. Energy Rev. 2019, 112, 170–182. [Google Scholar] [CrossRef]
- Paul, D. A History of Electric Ship Propulsion Systems [History]. IEEE Ind. Appl. Mag. 2020, 26, 9–19. [Google Scholar] [CrossRef]
- Sulligoi, G.; Bosich, D.; Vicenzutti, A.; Khersonsky, Y. Design of Zonal Electrical Distribution Systems for Ships and Oil Platforms: Control Systems and Protections. IEEE Trans. Ind. Appl. 2020, 56, 5656–5669. [Google Scholar] [CrossRef]
- Frangopoulos, C.A. Developments, trends, and challenges in optimization of ship energy systems. Appl. Sci. 2020, 10, 4639. [Google Scholar] [CrossRef]
- Gnacinski, P.; Tarasiuk, T.; Mindykowski, J.; Peplinski, M.; Gorniak, M.; Hallmann, D.; Pillat, A. Power Quality and Energy-Efficient Operation of Marine Induction Motors. IEEE Access 2020, 8, 152193–152203. [Google Scholar] [CrossRef]
- Mehrzadi, M.; Terriche, Y.; Su, C.L.; Othman, M.B.; Vasquez, J.C.; Guerrero, J.M. Review of dynamic positioning control in maritime microgrid systems. Energies 2020, 13, 3188. [Google Scholar] [CrossRef]
- Roy, A.; Auger, F.; Olivier, J.; Schae, E.; Auvity, B. Design, Sizing, and Energy Management of Microgrids in Harbor Areas: A Review. Energies 2020, 13, 5314. [Google Scholar] [CrossRef]
- Tarasiuk, T.; Jayasinghe, S.G.; Gorniak, M.; Pilat, A.; Shagar, V.; Liu, W.; Guerrero, J.M. Review of Power Quality Issues in Maritime Microgrids. IEEE Access 2021, 9, 81798–81817. [Google Scholar] [CrossRef]
- Bayati, N. Protection Systems for DC Shipboard Microgrids. Energies 2021, 14, 5319. [Google Scholar] [CrossRef]
- Huang, Y.; Wang, L.; Zhang, Y.; Wang, L.; Zhao, Z. An Overview of Multi-Energy Microgrid in All-Electric Ships. Front. Energy Res. 2022, 10, 1–13. [Google Scholar] [CrossRef]
- Hassan, M.A.; Su, C.-L.; Pou, J.; Sulligoi, G.; Almakhles, D.; Bosich, D.; Guerrero, J.M. DC Shipboard Microgrids with Constant Power Loads: A Review of Advanced Nonlinear Control Strategies and Stabilization Techniques. IEEE Trans. Smart Grid 2022, 13, 3422–3438. [Google Scholar] [CrossRef]
- Yin, H.; Lan, H.; Hong, Y.-Y.; Wang, Z.; Cheng, P.; Li, D.; Guo, D. A Comprehensive Review of Shipboard Power Systems with New Energy Sources. Energies 2023, 16, 2307. [Google Scholar] [CrossRef]
- Khersonsky, Y. New IEEE Power Electronics Standards for Ships. In Proceedings of the 2014 IEEE Petroleum and Chemical Industry Technical Conference (PCIC), San Francisco, CA, USA, 8–10 September 2014. [Google Scholar]
- Wilson, D.G.; Weaver, W.W.; Robinett, D.R., III; Young, J.; Glover, S.F.; Cook, M.A.; Markle, S.; McCoy, T.J. Nonlinear Power Flow Control Design Methodology for Navy Electric Ship Microgrid Energy Storage Requirements. Proc. Int. Nav. Eng. Conf. Exhib. 2018, 14. [Google Scholar] [CrossRef]
- Trinklein, E.H.; Parker, G.G.; McCoy, T.J. Modeling, optimization, and control of ship energy systems using exergy methods. Energy 2020, 191, 116542. [Google Scholar] [CrossRef]
- Xu, L.; Guerrero, J.M.; Lashab, A.; Wei, B.; Bazmohammadi, N.; Vasquez, J.C.; Abusorrah, A. A Review of DC Shipboard Microgrids Part II: Control Architectures, Stability Analysis and Protection Schemes. IEEE Trans. Power Electron. 2021, 37, 4105–4120. [Google Scholar] [CrossRef]
- IEEE Std 45.2-2011; IEEE Recommended Practice for Electrical Installations on Shipboard—Controls and Automation. IEEE: New York, NY, USA, 2012.
- Noble, D.R.; O’shea, M.; Judge, F.; Robles, E.; Martinez, R.; Khalid, F.; Thies, P.R.; Johanning, L.; Corlay, Y.; Gabl, R.; et al. Standardising marine renewable energy testing: Gap analysis and recommendations for development of standards. J. Mar. Sci. Eng. 2021, 9, 971. [Google Scholar] [CrossRef]
- Parise, G.; Parise, L.; Malerba, A.; Sabatini, S.; Chavdarian, P.; Su, C.-L. High voltage shore connections (HVSC), an IEC/ISO/IEEE 80005-1 compliant solution: The neutral grounding system. In Proceedings of the 2016 IEEE Industry Applications Society Annual Meeting, Portland, OR, USA, 2–6 October 2016; pp. 4–9. [Google Scholar]
- IEEE Std 2030-2011; IEEE Guide for Smart Grid Interoperability of Energy Technology and Information Technology Operation with the Electric Power System (EPS), End-Use Applications, and Loads. IEEE: New York, NY, USA, 2011.
- IEEE Std 1547; IEEE Standard for Interconnection and Interoperability of Distributed Energy Resources with Associated Electric Power Systems Interfaces. IEEE: New York, NY, USA, 2018.
- IEEE Std 1547.4-2011; IEEE Guide for Design, Operation, and Integration of Distributed Resource Island Systems with Electric Power Systems. IEEE: New York, NY, USA, 2011.
- Kabir-Querrec, M.; Mocanu, S.; Thiriet, J.M.; Savary, E. A Test bed dedicated to the Study of Vulnerabilities in IEC 61850 Power Utility Automation Networks. In Proceedings of the 2016 IEEE 21st International Conference on Emerging Technologies and Factory Automation (ETFA), Berlin, Germany, 6–9 September 2016. [Google Scholar] [CrossRef]
- Kishor, Y.; Rao, C.H.K.; Patel, R.N.; Sahu, L.K. An Architectural and Control Overview of DC-Microgrid for Sustainable Remote Electrification; Springer: Singapore, 2021. [Google Scholar]
- Arif, M.S.B.; Hasan, M.A. Microgrid Architecture, Control, and Operation; Elsevier Ltd.: Amsterdam, The Netherlands, 2018. [Google Scholar]
- Guerrero, J.M.; Jin, Z.; Liu, W.; Othman, M.B.; Savaghebi, M.; Anvari-Moghaddam, A.; Meng, L.; Vasquez, J.C. Shipboard microgrids: Maritime islanded power systems technologies. In Proceedings of the PCIM Asia 2016—International Exhibition and Conference for Power Electronics, Intelligent Motion, Renewable Energy and Energy Management, Shanghai, China, 28–30 June 2016; pp. 1–8. [Google Scholar]
- D’Agostino, F.; Kaza, D.; Martelli, M.; Schiapparelli, G.P.; Silvestro, F.; Soldano, C. Development of a multiphysics real-time simulator for model-based design of a DC shipboard microgrid. Energies 2020, 13, 3580. [Google Scholar] [CrossRef]
- Skjong, E.; Volden, R.; Rodskar, E.; Molinas, M.; Johansen, T.A.; Cunningham, J. Past, present, and future challenges of the marine vessel’s electrical power system. IEEE Trans. Transp. Electrif. 2016, 2, 522–537. [Google Scholar] [CrossRef]
- Prenc, R.; Baumgartner, I. Advantages of using a DC power system on board ship. Pomor. Zb. 2016, 52, 83–97. [Google Scholar] [CrossRef]
- Justo, J.J.; Mwasilu, F.; Lee, J.; Jung, J.W. AC-microgrids versus DC-microgrids with distributed energy resources: A review. Renew. Sustain. Energy Rev. 2013, 24, 387–405. [Google Scholar] [CrossRef]
- Planas, E.; Andreu, J.; Gárate, J.I.; De Alegría, I.M.; Ibarra, E. AC and DC technology in microgrids: A review. Renew. Sustain. Energy Rev. 2015, 43, 726–749. [Google Scholar] [CrossRef]
- Ullah, S.; Haidar, A.M.A.; Zen, H. Assessment of technical and financial benefits of AC and DC microgrids based on solar photovoltaic. Electr. Eng. 2020, 102, 1297–1310. [Google Scholar] [CrossRef]
- Ullah, S.; Haidar, A.M.A.; Hoole, P.; Zen, H.; Ahfock, T. The current state of Distributed Renewable Generation, challenges of interconnection and opportunities for energy conversion based DC microgrids. J. Clean. Prod. 2020, 273, 122777. [Google Scholar] [CrossRef]
- Kuruseelan, S.; Vaithilingam, C. Peer-to-peer energy trading of a community connected with an AC and DC microgrid. Energies 2019, 12, 3709. [Google Scholar] [CrossRef]
- Xu, L.; Member, S.; Guerrero, J.M.; Lashab, A.; Wei, B. A Review of DC Shipboard Microgrids Part I: Power Architectures, Energy Storage, and Power Converters. IEEE Trans. Power Electron. 2021, 37, 5155–5172. [Google Scholar] [CrossRef]
- Ghimire, P.; Park, D.; Zadeh, M.K.; Thorstensen, J.; Pedersen, E. Shipboard Electric Power Conversion: System Architecture, Applications, Control, and Challenges [Technology Leaders]. IEEE Electrif. Mag. 2019, 7, 6–20. [Google Scholar] [CrossRef]
- Nguyen, H.P.; Hoang, A.T.; Nizetic, S.; Nguyen, X.P.; Le, A.T.; Luong, C.N.; Chu, V.D.; Pham, V.V. The electric propulsion system as a green solution for management strategy of CO2 emission in ocean shipping: A comprehensive review. Int. Trans. Electr. Energy Syst. 2021, 31, e12580. [Google Scholar] [CrossRef]
- Yanamoto, T.; Izumi, M.; Yokoyama, M.; Umemoto, K. Electric Propulsion Motor Development for Commercial Ships in Japan. Proc. IEEE 2015, 103, 2333–2343. [Google Scholar] [CrossRef]
- Mindykowski, J.; Tarasiuk, T. Problems of power quality in the wake of ship technology development. Ocean Eng. 2015, 107, 108–117. [Google Scholar] [CrossRef]
- Zhu, W.; Shi, J.; Zhi, P.; Fan, L.; Lim, G.J. Distributed Reconfiguration of a Hybrid Shipboard Power System. IEEE Trans. Power Syst. 2020, 36, 4–16. [Google Scholar] [CrossRef]
- Bø, T.I.; Johansen, T.A.; Sørensen, A.J.; Mathiesen, E. Dynamic consequence analysis of marine electric power plant in dynamic positioning. Appl. Ocean Res. 2016, 57, 30–39. [Google Scholar] [CrossRef]
- Brodtkorb, A.H.; Nielsen, U.D.; Sørensen, A.J. Sea state estimation using vessel response in dynamic positioning. Appl. Ocean Res. 2018, 70, 76–86. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, H.; Li, M.; Wang, D.; Fu, M. Adaptive fuzzy controller design for dynamic positioning ship integrating prescribed performance. Ocean Eng. 2021, 219, 107956. [Google Scholar] [CrossRef]
- Lin, X.; Nie, J.; Jiao, Y.; Liang, K.; Li, H. Nonlinear adaptive fuzzy output-feedback controller design for dynamic positioning system of ships. Ocean Eng. 2018, 158, 186–195. [Google Scholar] [CrossRef]
- Wang, Y.L.; Han, Q.L.; Fei, M.R.; Peng, C. Network-Based T-S Fuzzy Dynamic Positioning Controller Design for Unmanned Marine Vehicles. IEEE Trans. Cybern. 2018, 48, 2750–2763. [Google Scholar] [CrossRef] [PubMed]
- Øvereng, S.S.; Nguyen, D.T.; Hamre, G. Dynamic Positioning using Deep Reinforcement Learning. Ocean Eng. 2021, 235, 109433. [Google Scholar] [CrossRef]
- Hu, X.; Wei, X.; Zhang, H.; Xie, W.; Zhang, Q. Composite anti-disturbance dynamic positioning of vessels with modelling uncertainties and disturbances. Appl. Ocean Res. 2020, 105, 102404. [Google Scholar] [CrossRef]
- Zheng, H.; Wu, J.; Wu, W.; Zhang, Y. Robust dynamic positioning of autonomous surface vessels with tube-based model predictive control. Ocean Eng. 2020, 199, 106820. [Google Scholar] [CrossRef]
- Li, J.; Du, J.; Hu, X. Robust adaptive prescribed performance control for dynamic positioning of ships under unknown disturbances and input constraints. Ocean Eng. 2020, 206, 107254. [Google Scholar] [CrossRef]
- Mehrzadi, M.; Terriche, Y.; Su, C.-L.; Xie, P.; Bazmohammadi, N.; Costa, M.N.; Liao, C.-H.; Vasquez, J.C.; Guerrero, J.M. A deep learning method for short-term dynamic positioning load forecasting in maritime microgrids. Appl. Sci. 2020, 10, 4889. [Google Scholar] [CrossRef]
- Gao, X.; Li, T.; Shan, Q.; Xiao, Y.; Yuan, L.; Liu, Y. Online optimal control for dynamic positioning of vessels via time-based adaptive dynamic programming. J. Ambient Intell. Humaniz. Comput. 2019, 1–13. [Google Scholar] [CrossRef]
- Skulstad, R.; Li, G.; Zhang, H.; Fossen, T.I. A Neural Network Approach to Control Allocation of Ships for Dynamic Positioning. IFAC PapersOnLine 2018, 51, 128–133. [Google Scholar] [CrossRef]
- Ye, J.; Roy, S.; Godjevac, M.; Baldi, S. Observer-based Robust Control for Dynamic Positioning of Large-Scale Heavy Lift Vessels. IFAC PapersOnLine 2019, 52, 138–143. [Google Scholar] [CrossRef]
- Zhang, G.; Huang, C.; Zhang, X.; Zhang, W. Practical constrained dynamic positioning control for uncertain ship through the minimal learning parameter technique. IET Control Theory Appl. 2018, 12, 2526–2533. [Google Scholar] [CrossRef]
- Du, J.; Hu, X.; Krstić, M.; Sun, Y. Dynamic positioning of ships with unknown parameters and disturbances. Control Eng. Pract. 2018, 76, 22–30. [Google Scholar] [CrossRef]
- Witkowska, A.; Śmierzchalski, R. Adaptive dynamic control allocation for dynamic positioning of marine vessel based on backstepping method and sequential quadratic programming. Ocean Eng. 2018, 163, 570–582. [Google Scholar] [CrossRef]
- Hu, X.; Du, J. Robust nonlinear control design for dynamic positioning of marine vessels with thruster system dynamics. Nonlinear Dyn. 2018, 94, 365–376. [Google Scholar] [CrossRef]
- Brodtkorb, A.H.; Værnø, S.A.; Teel, A.R.; Sørensen, A.J.; Skjetne, R. Hybrid controller concept for dynamic positioning of marine vessels with experimental results. Automatica 2018, 93, 489–497. [Google Scholar] [CrossRef]
- Lin, Y.; Du, J.; Zhu, G.; Fang, H. Thruster fault-tolerant control for dynamic positioning of vessels. Appl. Ocean Res. 2018, 80, 118–124. [Google Scholar] [CrossRef]
- Geertsma, R.D.; Negenborn, R.R.; Visser, K.; Loonstijn, M.A.; Hopman, J.J. Pitch control for ships with diesel mechanical and hybrid propulsion: Modelling, validation and performance quantification. Appl. Energy 2017, 206, 1609–1631. [Google Scholar] [CrossRef]
- Geertsma, R.D.; Negenborn, R.R.; Visser, K.; Hopman, J.J. Parallel Control for Hybrid Propulsion of Multifunction Ships. IFAC PapersOnLine 2017, 50, 2296–2303. [Google Scholar] [CrossRef]
- Castellan, S.; Menis, R.; Tessarolo, A.; Luise, F.; Mazzuca, T. A review of power electronics equipment for all-electric ship MVDC power systems. Int. J. Electr. Power Energy Syst. 2018, 96, 306–323. [Google Scholar] [CrossRef]
- Xu, Q.; Vafamand, N.; Chen, L.; Dragicevic, T.; Xie, L.; Blaabjerg, F. Review on Advanced Control Technologies for Bidirectional DC/DC Converters in DC Microgrids. IEEE J. Emerg. Sel. Top. Power Electron. 2020, 9, 1205–1221. [Google Scholar] [CrossRef]
- Terriche, Y.; Su, C.-L.; Lashab, A.; Mutarraf, M.U.; Mehrzadi, M.; Guerrero, J.M.; Vasquez, J.C. Effective Controls of Fixed Capacitor-Thyristor Controlled Reactors for Power Quality Improvement in Shipboard Microgrids. IEEE Trans. Ind. Appl. 2021, 57, 2838–2849. [Google Scholar] [CrossRef]
- Heydari, R.; Gheisarnejad, M.; Khooban, M.H.; Dragicevic, T.; Blaabjerg, F. Robust and Fast Voltage-Source-Converter (VSC) Control for Naval Shipboard Microgrids. IEEE Trans. Power Electron. 2019, 34, 8299–8303. [Google Scholar] [CrossRef]
- Hou, J.; Song, Z.; Hofmann, H.F.; Sun, J. Control Strategy for Battery/Flywheel Hybrid Energy Storage in Electric Shipboard Microgrids. IEEE Trans. Ind. Inform. 2020, 17, 1089–1099. [Google Scholar] [CrossRef]
- Vafamand, N.; Mardani, M.M.; Khooban, M.H.; Blaabjerg, F.; Boudjadar, J. Pulsed power load effect mitigation in DC shipboard microgrids: A constrained model predictive approach. IET Power Electron. 2019, 12, 2155–2160. [Google Scholar] [CrossRef]
- Mardani, M.M.; Khooban, M.H.; Masoudian, A.; Dragicevic, T. Model Predictive Control of DC-DC Converters to Mitigate the Effects of Pulsed Power Loads in Naval DC Microgrids. IEEE Trans. Ind. Electron. 2018, 66, 5676–5685. [Google Scholar] [CrossRef]
- Bo, T.I.; Johansen, T.A. Battery Power Smoothing Control in a Marine Electric Power Plant Using Nonlinear Model Predictive Control. IEEE Trans. Control Syst. Technol. 2016, 25, 1449–1456. [Google Scholar] [CrossRef]
- Saad, A.A.; Faddel, S.; Youssef, T.; Mohammed, O. Small-signal model predictive control based resilient energy storage management strategy for all electric ship MVDC voltage stabilization. J. Energy Storage 2019, 21, 370–382. [Google Scholar] [CrossRef]
- Hou, J.; Song, Z.; Park, H.; Hofmann, H.; Sun, J. Implementation and evaluation of real-time model predictive control for load fluctuations mitigation in all-electric ship propulsion systems. Appl. Energy 2018, 230, 62–77. [Google Scholar] [CrossRef]
- Hou, J.; Sun, J.; Hofmann, H. Adaptive model predictive control with propulsion load estimation and prediction for all-electric ship energy management. Energy 2018, 150, 877–889. [Google Scholar] [CrossRef]
- Vafamand, N.; Khooban, M.H.; Dragicevic, T.; Boudjadar, J.; Asemani, M.H. Time-Delayed Stabilizing Secondary Load Frequency Control of Shipboard Microgrids. IEEE Syst. J. 2019, 13, 3233–3241. [Google Scholar] [CrossRef]
- Gheisarnejad, M.; Khooban, M.H.; Dragicevic, T. The Future 5G Network-Based Secondary Load Frequency Control in Shipboard Microgrids. IEEE J. Emerg. Sel. Top. Power Electron. 2019, 8, 836–844. [Google Scholar] [CrossRef]
- Choudhary, A.K.; Prakash, S.; Sharma, M.; Dhundhara, S. Grasshopper optimisation based robust power/frequency regulator for shipboard micro-grid. IET Renew. Power Gener. 2020, 14, 3568–3577. [Google Scholar] [CrossRef]
- Latif, A.; Hussain, S.M.S.; Das, D.C.; Ustun, T.S. Double stage controller optimization for load frequency stabilization in hybrid wind-ocean wave energy based maritime microgrid system. Appl. Energy 2021, 282, 116171. [Google Scholar] [CrossRef]
- Khooban, M.-H.; Gheisarnejad, M.; Vafamand, N.; Jafari, M.; Mobayen, S.; Dragicevic, J. Tomislav Boudjadar Robust frequency regulation in mobile microgrids: HIL implementation. IEEE Syst. J. 2019, 13, 4281–4291. [Google Scholar] [CrossRef]
- Khooban, M.H.; Gheisarnejad, M. Islanded Microgrid Frequency Regulations concerning the Integration of Tidal Power Units: Real-Time Implementation. IEEE Trans. Circuits Syst. II Express Briefs 2019, 67, 1099–1103. [Google Scholar] [CrossRef]
- Khooban, M.H.; Gheisarnejad, M.; Farsizadeh, H.; Masoudian, A.; Boudjadar, J. A New Intelligent Hybrid Control Approach for DC-DC Converters in Zero-Emission Ferry Ships. IEEE Trans. Power Electron. 2019, 35, 5832–5841. [Google Scholar] [CrossRef]
- Xiao, Z.X.; Li, H.-M.; Fang, H.-W.; Guan, Y.-Z.; Liu, T.; Hou, L.; Guerrero, J.M. Operation Control for Improving Energy Efficiency of Shipboard Microgrid including Bow Thrusters and Hybrid Energy Storages. IEEE Trans. Transp. Electrif. 2020, 6, 856–868. [Google Scholar] [CrossRef]
- Jin, Z.; Meng, L.; Guerrero, J.M.; Han, R. Hierarchical control design for a shipboard power system with DC distribution and energy storage aboard future more-electric ships. IEEE Trans. Ind. Inform. 2017, 14, 703–714. [Google Scholar] [CrossRef]
- Mutarraf, M.U.; Terriche, Y.; Niazi, K.A.K.; Khan, F.; Vasquez, J.C.; Guerrero, J.M. Control of hybrid diesel/PV/battery/ultra-capacitor systems for future shipboard microgrids. Energies 2019, 12, 3460. [Google Scholar] [CrossRef]
- He, L.; Li, Y.; Shuai, Z.; Guerrero, J.M.; Cao, Y.; Wen, M.; Wang, W.; Shi, J. A flexible power control strategy for hybrid AC/DC zones of shipboard power system with distributed energy storages. IEEE Trans. Ind. Inform. 2018, 14, 5496–5508. [Google Scholar] [CrossRef]
- Zhaoxia, X.; Tianli, Z.; Huaimin, L.; Guerrero, J.M.; Su, C.L.; Vasquez, J.C. Coordinated Control of a Hybrid-Electric-Ferry Shipboard Microgrid. IEEE Trans. Transp. Electrif. 2019, 5, 828–839. [Google Scholar] [CrossRef]
- Mutarraf, M.U.; Terriche, Y.; Nasir, M.; Guan, Y.; Su, C.-L.; Vasquez, J.C.; Guerrero, J.M. A Communication-Less Multimode Control Approach for Adaptive Power Sharing in Ship-Based Seaport Microgrid. IEEE Trans. Transp. Electrif. 2021, 7, 3070–3082. [Google Scholar] [CrossRef]
- Lin, Y.; Fu, L.; Xiao, X. Decentralised power distribution and SOC management algorithm for the hybrid energy storage of shipboard integrated power system. IET Gener. Transm. Distrib. 2021, 14, 6493–6503. [Google Scholar] [CrossRef]
- Zhang, Y.; Ji, F.; Hu, Q.; Fu, L.; Gao, X. Decentralised control strategy for hybrid battery energy storage system with considering dynamical state-of-charge regulation. IET Smart Grid 2020, 3, 890–897. [Google Scholar] [CrossRef]
- Zeng, Y.; Zhang, Q.; Liu, Y.; Zhuang, X.; Che, L.; Niu, M.; Zheng, X. State-of-charge dynamic balancing strategy for distributed energy storage system in DC shipboard microgrid. Int. J. Electr. Power Energy Syst. 2021, 133, 107094. [Google Scholar] [CrossRef]
- Yousefizadeh, S.; Bendtsen, J.D.; Vafamand, N.; Khooban, M.H.; Dragicevic, T.; Blaabjerg, F. EKF-Based Predictive Stabilization of Shipboard DC Microgrids with Uncertain Time-Varying Load. IEEE J. Emerg. Sel. Top. Power Electron. 2018, 7, 901–909. [Google Scholar] [CrossRef]
- Faddel, S.; Saad, A.A.; El Hariri, M.; Mohammed, O.A. Coordination of Hybrid Energy Storage for Ship Power Systems with Pulsed Loads. IEEE Trans. Ind. Appl. 2019, 56, 1136–1145. [Google Scholar] [CrossRef]
- He, J.; Zhang, X. An Ellipse-Optimized Composite Backstepping Control Strategy for a Point-of-Load Inverter Under Load Disturbance in the Shipboard Power System. IEEE Open J. Power Electron. 2020, 1, 420–430. [Google Scholar] [CrossRef]
- Ryan, D.J.; Razzaghi, R.; Torresan, H.D.; Karimi, A.; Bahrani, B. Grid-Supporting Battery Energy Storage Systems in Islanded Microgrids: A Data-Driven Control Approach. IEEE Trans. Sustain. Energy 2020, 12, 834–846. [Google Scholar] [CrossRef]
- Panasetsky, D.; Sidorov, D.; Li, Y.; Ouyang, L.; Xiong, J.; He, L. Centralized emergency control for multi-terminal VSC-based shipboard power systems. Int. J. Electr. Power Energy Syst. 2019, 104, 205–214. [Google Scholar] [CrossRef]
- Hardan, F.; Norman, R. Balancing loads of rotating generators utilizing VSC direct power controllers in a ship AC/DC smartgrid. Electr. Power Syst. Res. 2020, 182, 106200. [Google Scholar] [CrossRef]
- Wu, W.; Chen, Y.; Zhou, L.; Zhou, X.; Yang, L.; Dong, Y.; Xie, Z.; Luo, A. A virtual phase-lead impedance stability control strategy for the maritime VSC-HVDC system. IEEE Trans. Ind. Inform. 2018, 14, 5475–5486. [Google Scholar] [CrossRef]
- Chen, Y.; Zhao, S.; Li, Z.; Wei, X.; Kang, Y. Modeling and Control of the Isolated DC-DC Modular Multilevel Converter for Electric Ship Medium Voltage Direct Current Power System. IEEE J. Emerg. Sel. Top. Power Electron. 2016, 5, 124–139. [Google Scholar] [CrossRef]
- Fang, S.; Xu, Y.; Wang, H.; Shang, C.; Feng, X. Robust Operation of Shipboard Microgrids with Multiple-Battery Energy Storage System under Navigation Uncertainties. IEEE Trans. Veh. Technol. 2020, 69, 10531–10544. [Google Scholar] [CrossRef]
- Li, Z.; Xu, Y.; Wu, L.; Zheng, X. A Risk-Averse Adaptively Stochastic Optimization Method for Multi-Energy Ship Operation under Diverse Uncertainties. IEEE Trans. Power Syst. 2020, 36, 2149–2161. [Google Scholar] [CrossRef]
- Lan, H.; Bai, Y.; Wen, S.; Yu, D.C.; Hong, Y.-Y.; Dai, J.; Cheng, P. Modeling and stability analysis of hybrid PV/Diesel/ESS in ship power system. Inventions 2016, 1, 5. [Google Scholar] [CrossRef]
- Yousefizadeh, S.; Bendtsen, J.D.; Vafamand, N.; Khooban, M.H.; Blaabjerg, F.; Dragicevic, T. Tracking control for a dc microgrid feeding uncertain loads in more electric aircraft: Adaptive backstepping approach. IEEE Trans. Ind. Electron. 2018, 66, 5644–5652. [Google Scholar] [CrossRef]
- Vafamand, N.; Yousefizadeh, S.; Khooban, M.H.; Bendtsen, J.D.; Dragičević, T. EKF for power estimation of uncertain time-varying CPLs in DC shipboard MGs. In Proceedings of the IECON 2018—44th Annual Conference of the IEEE Industrial Electronics Society, Washington, DC, USA, 21–23 October 2018; pp. 3413–3418. [Google Scholar] [CrossRef]
- Wen, S.; Lan, H.; Hong, Y.Y.; Yu, D.C.; Zhang, L.; Cheng, P. Allocation of ESS by interval optimization method considering impact of ship swinging on hybrid PV/diesel ship power system. Appl. Energy 2016, 175, 158–167. [Google Scholar] [CrossRef]
- Tang, R.; Lin, Q.; Zhou, J.; Zhang, S.; Lai, J.; Li, X.; Dong, Z. Suppression strategy of short-term and long-term environmental disturbances for maritime photovoltaic system. Appl. Energy 2020, 259, 114183. [Google Scholar] [CrossRef]
- Wen, S.; Lan, H.; Yu, D.C.; Fu, Q.; Hong, Y.-Y.; Yu, L.; Yang, R. Optimal sizing of hybrid energy storage sub-systems in PV/diesel ship power system using frequency analysis. Energy 2017, 140, 198–208. [Google Scholar] [CrossRef]
- Frances-Roger, A.; Anvari-Moghaddam, A.; Rodriguez-Diaz, E.; Vasquez, J.C.; Guerrero, J.M.; Uceda, J. Dynamic assessment of COTS converters-based DC integrated power systems in electric ships. IEEE Trans. Ind. Inform. 2018, 14, 5518–5529. [Google Scholar] [CrossRef]
- Hein, K.; Xu, Y.; Gary, W.; Gupta, A.K. Robustly coordinated operational scheduling of a grid-connected seaport microgrid under uncertainties. IET Gener. Transm. Distrib. 2020, 15, 347–358. [Google Scholar] [CrossRef]
- Li, Z.; Xu, Y.; Fang, S.; Zheng, X.; Feng, X. Robust Coordination of a Hybrid AC/DC Multi-Energy Ship Microgrid with Flexible Voyage and Thermal Loads. IEEE Trans. Smart Grid 2020, 11, 2782–2793. [Google Scholar] [CrossRef]
- Manickavasagam, K.; Thotakanama, N.K.; Puttaraj, V. Intelligent energy management system for renewable energy driven ship. IET Electr. Syst. Transp. 2019, 9, 24–34. [Google Scholar] [CrossRef]
- Yu, W.; Li, S.; Zhu, Y.; Yang, C.F. Management and distribution strategies for dynamic power in a ship’s micro-grid system based on photovoltaic cell, diesel generator, and lithium battery. Energies 2019, 12, 4505. [Google Scholar] [CrossRef]
- Feng, X.; Butler-Purry, K.L.; Zourntos, T. Real-time electric load management for DC zonal all-electric ship power systems. Electr. Power Syst. Res. 2018, 154, 503–514. [Google Scholar] [CrossRef]
- Kermani, M.; Parise, G.; Shirdare, E.; Martirano, L. Transactive Energy Solution in a Port’s Microgrid based on Blockchain Technology. In Proceedings of the 2020 IEEE International Conference on Environment and Electrical Engineering and 2020 IEEE Industrial and Commercial Power Systems Europe, EEEIC/I and CPS Europe 2020, Madrid, Spain, 9–12 June 2020; pp. 1–6. [Google Scholar] [CrossRef]
- Eladl, A.A.; El-Afifi, M.I.; Saeed, M.A.; El-Saadawi, M.M. Optimal operation of energy hubs integrated with renewable energy sources and storage devices considering CO2 emissions. Int. J. Electr. Power Energy Syst. 2020, 117, 105719. [Google Scholar] [CrossRef]
- Sedhom, B.E.; El-Saadawi, M.M.; El Moursi, M.S.; Hassan, M.A.; Eladl, A.A. IoT-based optimal demand side management and control scheme for smart microgrid. Int. J. Electr. Power Energy Syst. 2021, 127, 106674. [Google Scholar] [CrossRef]
- Eladl, A.A.; ElDesouky, A.A. Optimal economic dispatch for multi heat-electric energy source power system. Int. J. Electr. Power Energy Syst. 2019, 110, 21–35. [Google Scholar] [CrossRef]
- El-Afifi, M.I.; Saadawi, M.M.; Eladl, A.A. Cogeneration Systems Performance Analysis as a Sustainable Clean Energy and Water Source Based on Energy Hubs Using the Archimedes Optimization Algorithm. Sustainability 2022, 14, 14766. [Google Scholar] [CrossRef]
- Elmouatamid, A.; Ouladsine, R.; Bakhouya, M.; El Kamoun, N.; Khaidar, M.; Zine-Dine, K. Review of control and energy management approaches in micro-grid systems. Energies 2021, 14, 168. [Google Scholar] [CrossRef]
- Vahabzad, N.; Jadidbonab, M.; Mohammadi-Ivatloo, B.; Tohidi, S.; Anvari-Moghaddam, A. Energy management strategy for a short-route hybrid cruise ship: An IGDT-based approach. IET Renew. Power Gener. 2020, 14, 1755–1763. [Google Scholar] [CrossRef]
- Letafat, A.; Rafiei, M.; Sheikh, M.; Afshari-Igder, M.; Banaei, M.; Boudjadar, J.; Khooban, M.H. Simultaneous energy management and optimal components sizing of a zero-emission ferry boat. J. Energy Storage 2020, 28, 101215. [Google Scholar] [CrossRef]
- Rafiei, M.; Boudjadar, J.; Khooban, M.H. Energy Management of a Zero-Emission Ferry Boat with a Fuel-Cell-Based Hybrid Energy System: Feasibility Assessment. IEEE Trans. Ind. Electron. 2020, 68, 1739–1748. [Google Scholar] [CrossRef]
- Feng, J.; Zhang, J.; Wang, C.; Jiang, R.; Xu, M. Multi-Objective Economic Scheduling of a Shipboard Microgrid Based on Self-Adaptive Collective Intelligence DE Algorithm. IEEE Access 2020, 8, 73204–73219. [Google Scholar] [CrossRef]
- Fang, S.; Xu, Y. Multi-objective robust energy management for all-electric shipboard microgrid under uncertain wind and wave. Int. J. Electr. Power Energy Syst. 2020, 117, 105600. [Google Scholar] [CrossRef]
- Hein, K.; Xu, Y.; Wilson, G.; Gupta, A.K. Coordinated Optimal Voyage Planning and Energy Management of All-Electric Ship with Hybrid Energy Storage System. IEEE Trans. Power Syst. 2020, 36, 2355–2365. [Google Scholar] [CrossRef]
- Fang, S.; Xu, Y.; Li, Z.; Zhao, T.; Wang, H. Two-Step Multi-Objective Management of Hybrid Energy Storage System in All-Electric Ship Microgrids. IEEE Trans. Veh. Technol. 2019, 68, 3361–3373. [Google Scholar] [CrossRef]
- Balsamo, F.; De Falco, P.; Mottola, F.; Pagano, M. Power Flow Approach for Modeling Shipboard Power System in Presence of Energy Storage and Energy Management Systems. IEEE Trans. Energy Convers. 2020, 35, 1944–1953. [Google Scholar] [CrossRef]
- Hein, K.; Xu, Y.; Senthilkumar, Y.; Gary, W.; Gupta, A.K. Rule-based operation task-aware energy management for ship power systems. IET Gener. Transm. Distrib. 2021, 14, 6348–6358. [Google Scholar] [CrossRef]
- Wen, S.; Zhao, T.; Tang, Y.; Xu, Y.; Zhu, M.; Fang, S.; Ding, Z. Coordinated Optimal Energy Management and Voyage Scheduling for All-Electric Ships Based on Predicted Shore-Side Electricity Price. IEEE Trans. Ind. Appl. 2020, 57, 139–148. [Google Scholar] [CrossRef]
- Boveri, A.; Silvestro, F.; Molinas, M.; Skjong, E. Optimal Sizing of Energy Storage Systems for Shipboard Applications. IEEE Trans. Energy Convers. 2019, 34, 801–811. [Google Scholar] [CrossRef]
- Skjong, E.; Johansen, T.A.; Molinas, M.; Sorensen, A.J. Approaches to Economic Energy Management in Diesel-Electric Marine Vessels. IEEE Trans. Transp. Electrif. 2017, 3, 22–35. [Google Scholar] [CrossRef]
- Fang, S.; Gou, B.; Wang, Y.; Xu, Y.; Shang, C.; Wang, H. Optimal Hierarchical Management of Shipboard Multibattery Energy Storage System Using a Data-Driven Degradation Model. IEEE Trans. Transp. Electrif. 2019, 5, 1306–1318. [Google Scholar] [CrossRef]
- Hasanvand, S.; Rafiei, M.; Gheisarnejad, M.; Khooban, M.H. Reliable Power Scheduling of an Emission-Free Ship: Multiobjective Deep Reinforcement Learning. IEEE Trans. Transp. Electrif. 2020, 6, 832–843. [Google Scholar] [CrossRef]
- Roselyn, J.P.; Ravi, A.; Devaraj, D.; Venkatesan, R. Optimal SoC estimation considering hysteresis effect for effective battery management in shipboard batteries. IEEE J. Emerg. Sel. Top. Power Electron. 2020, 9, 5533–5541. [Google Scholar] [CrossRef]
- Accetta, A.; Pucci, M. Energy management system in DC micro-grids of smart ships: Main gen-set fuel consumption minimization and fault compensation. IEEE Trans. Ind. Appl. 2019, 55, 3097–3113. [Google Scholar] [CrossRef]
- Fang, S.; Xu, Y.; Wen, S.; Zhao, T.; Wang, H.; Liu, L. Data-Driven Robust Coordination of Generation and Demand-Side in Photovoltaic Integrated All-Electric Ship Microgrids. IEEE Trans. Power Syst. 2019, 35, 1783–1795. [Google Scholar] [CrossRef]
- Lai, K.; Illindala, M.S. A distributed energy management strategy for resilient shipboard power system. Appl. Energy 2018, 228, 821–832. [Google Scholar] [CrossRef]
- Xu, Q.; Yang, B.; Han, Q.; Yuan, Y.; Chen, C.; Guan, X. Optimal Power Management for Failure Mode of MVDC Microgrids in All-Electric Ships. IEEE Trans. Power Syst. 2018, 34, 1054–1067. [Google Scholar] [CrossRef]
- Rivarolo, M.; Rattazzi, D.; Magistri, L. Best operative strategy for energy management of a cruise ship employing different distributed generation technologies. Int. J. Hydrogen Energy 2018, 43, 23500–23510. [Google Scholar] [CrossRef]
- Al-Falahi, M.D.A.; Nimma, K.S.; Jayasinghe, S.D.G.; Enshaei, H.; Guerrero, J.M. Power management optimization of hybrid power systems in electric ferries. Energy Convers. Manag. 2018, 172, 50–66. [Google Scholar] [CrossRef]
- Abkenar, A.T.; Nazari, A.; Jayasinghe, S.D.G.; Kapoor, A.; Negnevitsky, M. Fuel Cell Power Management Using Genetic Expression Programming in All-Electric Ships. IEEE Trans. Energy Convers. 2017, 32, 779–787. [Google Scholar] [CrossRef]
- Kanellos, F.D.; Anvari-Moghaddam, A.; Guerrero, J.M. A cost-effective and emission-aware power management system for ships with integrated full electric propulsion. Electr. Power Syst. Res. 2017, 150, 63–75. [Google Scholar] [CrossRef]
- Lashway, C.R.; Elsayed, A.T.; Mohammed, O.A. Hybrid energy storage management in ship power systems with multiple pulsed loads. Electr. Power Syst. Res. 2016, 141, 50–62. [Google Scholar] [CrossRef]
- Tajalli, S.Z.; Kavousi-Fard, A.; Mardaneh, M. Multi-agent-based optimal power scheduling of shipboard power systems. Sustain. Cities Soc. 2021, 74, 103137. [Google Scholar] [CrossRef]
- Li, Z.; Xu, Y.; Fang, S.; Wang, Y.; Zheng, X. Multi objective Coordinated Energy Dispatch and Voyage Scheduling for a Multienergy Ship Microgrid. IEEE Trans. Ind. Appl. 2019, 56, 989–999. [Google Scholar] [CrossRef]
- Khazaei, J. Optimal Flow of MVDC Shipboard Microgrids with Hybrid Storage Enhanced with Capacitive and Resistive Droop Controllers. IEEE Trans. Power Syst. 2021, 36, 3728–3739. [Google Scholar] [CrossRef]
- Wang, Y.; Mondal, S.; Satpathi, K.; Xu, Y.; Dasgupta, S.; Gupta, A.K. Multi-Agent Distributed Power Management of DC Shipboard Power Systems for Optimal Fuel Efficiency. IEEE Trans. Transp. Electrif. 2021, 7, 3050–3061. [Google Scholar] [CrossRef]
- Michalopoulos, P.; Kanellos, F.D.; Tsekouras, G.J.; Prousalidis, J.M. A method for optimal operation of complex ship power systems employing shaft electric machines. IEEE Trans. Transp. Electrif. 2016, 2, 547–557. [Google Scholar] [CrossRef]
- Jianyun, Z.; Li, C.; Lijuan, X.; Bin, W. Bi-objective optimal design of plug-in hybrid electric propulsion system for ships. Energy 2019, 177, 247–261. [Google Scholar] [CrossRef]
- Balsamo, F.; Capasso, C.; Miccione, G.; Veneri, O. Hybrid Storage System Control Strategy for All-Electric Powered Ships. Energy Procedia 2017, 126, 1083–1090. [Google Scholar] [CrossRef]
- Haseltalab, A.; Negenborn, R.R.; Lodewijks, G. Multi-Level Predictive Control for Energy Management of Hybrid Ships in the Presence of Uncertainty and Environmental Disturbances. IFAC PapersOnLine 2016, 49, 90–95. [Google Scholar] [CrossRef]
- Fang, S.; Xu, Y.; Li, Z.; Ding, Z.; Liu, L.; Wang, H. Optimal Sizing of Shipboard Carbon Capture System for Maritime Greenhouse Emission Control. IEEE Trans. Ind. Appl. 2019, 55, 5543–5553. [Google Scholar] [CrossRef]
- Tang, R.; An, Q.; Xu, F.; Zhang, X.; Li, X.; Lai, J.; Dong, Z. Optimal operation of hybrid energy system for intelligent ship: An ultrahigh-dimensional model and control method. Energy 2020, 211, 119077. [Google Scholar] [CrossRef]
- Vahabzad, N.; Mohammadi-Ivatloo, B.; Anvari-Moghaddam, A. Optimal energy scheduling of a solar-based hybrid ship considering cold-ironing facilities. IET Renew. Power Gener. 2021, 15, 532–547. [Google Scholar] [CrossRef]
- Kanellos, F.D.; Anvari-Moghaddam, A.; Guerrero, J.M. Smart shipboard power system operation and management. Inventions 2016, 1, 22. [Google Scholar] [CrossRef]
- Tang, R.; Li, X.; Lai, J. A novel optimal energy-management strategy for a maritime hybrid energy system based on large-scale global optimization. Appl. Energy 2018, 228, 254–264. [Google Scholar] [CrossRef]
- Banaei, M.; Boudjadar, J.; Khooban, M.H. Stochastic Model Predictive Energy Management in Hybrid Emission-Free Modern Maritime Vessels. IEEE Trans. Ind. Inform. 2020, 17, 5430–5440. [Google Scholar] [CrossRef]
- Bazmohammadi, N.; Anvari-Moghaddam, A.; Tahsiri, A.; Madary, A.; Vasquez, J.C.; Guerrero, J.M. Stochastic predictive energy management of multi-microgrid systems. Appl. Sci. 2020, 10, 4833. [Google Scholar] [CrossRef]
- Tang, R.; Wu, Z.; Li, X. Optimal operation of photovoltaic/battery/diesel/cold-ironing hybrid energy system for maritime application. Energy 2018, 162, 697–714. [Google Scholar] [CrossRef]
- Gonsoulin, D.E.; Vu, T.V.; Diaz, F.; Vahedi, H.; Perkins, D.; Edrington, C.S. Coordinating multiple energy storages using MPC for ship power systems. In Proceedings of the 2017 IEEE Electric Ship Technologies Symposium (ESTS), Arlington, VA, USA, 14–17 August 2017; pp. 551–556. [Google Scholar] [CrossRef]
- Hou, J.; Sun, J.; Hofmann, H. Control development and performance evaluation for battery/flywheel hybrid energy storage solutions to mitigate load fluctuations in all-electric ship propulsion systems. Appl. Energy 2018, 212, 919–930. [Google Scholar] [CrossRef]
- Banaei, M.; Rafiei, M.; Boudjadar, J.; Khooban, M.H. A Comparative Analysis of Optimal Operation Scenarios in Hybrid Emission-Free Ferry Ships. IEEE Trans. Transp. Electrif. 2020, 6, 318–333. [Google Scholar] [CrossRef]
- Van Vu, T.; Gonsoulin, D.; Diaz, F.; Edrington, C.S.; El-Mezyani, T. Predictive Control for Energy Management in Ship Power Systems under High-Power Ramp Rate Loads. IEEE Trans. Energy Convers. 2017, 32, 788–797. [Google Scholar] [CrossRef]
- Hou, J.; Sun, J.; Hofmann, H.F. Mitigating Power Fluctuations in Electric Ship Propulsion with Hybrid Energy Storage System: Design and Analysis. IEEE J. Ocean. Eng. 2017, 43, 93–107. [Google Scholar] [CrossRef]
- Haseltalab, A.; Negenborn, R.R. Model predictive maneuvering control and energy management for all-electric autonomous ships. Appl. Energy 2019, 251, 113308. [Google Scholar] [CrossRef]
- Vafamand, N.; Boudjadar, J.; Khooban, M.H. Model predictive energy management in hybrid ferry grids. Energy Rep. 2020, 6, 550–557. [Google Scholar] [CrossRef]
- Hou, J.; Song, Z.; Hofmann, H.; Sun, J. Adaptive model predictive control for hybrid energy storage energy management in all-electric ship microgrids. Energy Convers. Manag. 2019, 198, 111929. [Google Scholar] [CrossRef]
- Dagar, A.; Gupta, P.; Niranjan, V. Microgrid protection: A comprehensive review. Renew. Sustain. Energy Rev. 2021, 149, 111401. [Google Scholar] [CrossRef]
- Eladl, A.A.; Saeed, M.A.; Sedhom, B.E.; Guerrero, J.M. IoT Technology-Based Protection Scheme for MT-HVDC Transmission Grids with Restoration Algorithm Using Support Vector Machine. IEEE Access 2021, 9, 86268–86284. [Google Scholar] [CrossRef]
- Hatata, A.Y.; Essa, M.A.; Sedhom, B.E. Adaptive Protection Scheme for FREEDM Microgrid Based on Convolutional Neural Network and Gorilla Troops Optimization Technique. IEEE Access 2022, 10, 55583–55601. [Google Scholar] [CrossRef]
- Hatata, F.A.Y.; Abd-Raboh, E.H.; Sedhom, B.E. A review of anti-islanding protection methods for renewable distributed generation systems. J. Electr. Eng. 2016, 16, 235–246. [Google Scholar]
- Hatata, A.Y.; Essa, M.A.; Sedhom, B.E. Implementation and Design of FREEDM System Differential Protection Method Based on Internet of Things. Energies 2022, 15, 5754. [Google Scholar] [CrossRef]
- Satpathi, K.; Yeap, Y.M.; Ukil, A.; Geddada, N. Short-Time Fourier Transform Based Transient Analysis of VSC Interfaced Point-to-Point DC System. IEEE Trans. Ind. Electron. 2017, 65, 4080–4091. [Google Scholar] [CrossRef]
- Liu, S.; Sun, Y.; Zhang, L.; Su, P. Fault diagnosis of shipboard medium-voltage DC power system based on machine learning. Int. J. Electr. Power Energy Syst. 2021, 124, 106399. [Google Scholar] [CrossRef]
- Boveri, A.; D’Agostino, F.; Fidigatti, A.; Ragaini, E.; Silvestro, F. Dynamic modeling of a supply vessel power system for DP3 protection system. IEEE Trans. Transp. Electrif. 2016, 2, 570–579. [Google Scholar] [CrossRef]
- Lindahl, P.A.; Green, D.H.; Bredariol, G.; Aboulian, A.; Donnal, J.S.; Leeb, S.B. Shipboard Fault Detection Through Nonintrusive Load Monitoring: A Case Study. IEEE Sens. J. 2018, 18, 8986–8995. [Google Scholar] [CrossRef]
- Silva, A.A.; Gupta, S.; Bazzi, A.M.; Ulatowski, A. Wavelet-based information filtering for fault diagnosis of electric drive systems in electric ships. ISA Trans. 2018, 78, 105–115. [Google Scholar] [CrossRef]
- Ulissi, G.; Lee, S.Y.; Dujic, D. Scalable Solid-State Bus-Tie Switch for Flexible Shipboard Power Systems. IEEE Trans. Power Electron. 2020, 36, 239–247. [Google Scholar] [CrossRef]
- Ulissi, G.; Lee, S.Y.; Dujic, D. Solid-State Bus-Tie Switch for Shipboard Power Distribution Networks. IEEE Trans. Transp. Electrif. 2020, 6, 1253–1264. [Google Scholar] [CrossRef]
- Cairoli, P.; Qi, L.; Tschida, C.; Ramanan, R.R.V.; Raciti, L.; Antoniazzi, A. High Current Solid State Circuit Breaker for DC Shipboard Power Systems. In Proceedings of the 2019 IEEE Electric Ship Technologies Symposium (ESTS), Washington, DC, USA, 14–16 August 2019; pp. 468–476. [Google Scholar] [CrossRef]
- Kim, S.; Dujić, D.; Kim, S.N. Protection schemes in low-voltage dc shipboard power systems. In Proceedings of the PCIM Europe 2018: International Exhibition and Conference for Power Electronics, Intelligent Motion, Renewable Energy and Energy Management, Nuremberg, Germany, 5–7 June 2018; pp. 1–7. [Google Scholar]
- Maqsood, A.; Corzine, K.A. Integration of Z-Source Breakers into Zonal DC Ship Power System Microgrids. IEEE J. Emerg. Sel. Top. Power Electron. 2016, 5, 269–277. [Google Scholar] [CrossRef]
- Aboelezz, A.M.; Sedhom, B.E.; El-Saadawi, M.M. Pilot Distance Protection Scheme for DC Zonal Shipboard Microgrid. In Proceedings of the 2021 4th International Symposium on Advanced Electrical and Communication Technologies (ISAECT), Alkhobar, Saudi Arabia, 6–8 December 2021; pp. 1–6. [Google Scholar] [CrossRef]
- Aboelezz, A.M.; Sedhom, B.E.; El-Saadawi, M.M. Intelligent Distance Relay based on IEC 61850 for DC Zonal Shipboard Microgrid Protection. In Proceedings of the 2022 Second International Conference on Power, Control and Computing Technologies (ICPC2T), Raipur, India, 1–3 March 2022; pp. 1–5. [Google Scholar] [CrossRef]
Refs. | Year | EMS | Operation | Protection | Architecture | Control | Challenges | Propulsion System | Uncertainties | BA | Research Gap |
---|---|---|---|---|---|---|---|---|---|---|---|
[26,27,28,29] | 2016 | - | ✔ | ✔ | ✔ | - | - | - | - | - | |
[4,30,31,32,33,34] | 2017 | - | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ | - | - | ✔ |
[35,36,37,38] | 2018 | ✔ | ✔ | ✔ | ✔ | ✔ | - | - | - | - | ✔ |
[39,40,41,42,43] | 2019 | ✔ | ✔ | ✔ | ✔ | - | - | - | ✔ | ||
[1,12,44,45,46,47,48,49] | 2020 | ✔ | ✔ | ✔ | ✔ | ✔ | - | ✔ | ✔ | - | - |
[14,21,50,51] | 2021 | ✔ | - | ✔ | ✔ | - | ✔ | - | - | - | ✔ |
[52,53] | 2022 | ✔ | - | - | ✔ | ✔ | - | - | - | - | ✔ |
[54] | 2023 | ✔ | - | - | - | - | - | - | - | - | - |
This paper | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ |
Standard | SBMG | Land-Based MG |
---|---|---|
IEC 61850 | Not applicable, as shipboard microgrids are not interconnected | Applies to land-based microgrids, used for communication and interoperability between different devices |
IEEE 1547 | Not applicable, as it applies to the interconnection of distributed resources with the grid | Applies to land-based microgrids and sets requirements for the connection of distributed energy resources to the utility grid |
IEC 60780 | Applies to shipboard microgrids and sets requirements for insulation monitoring | Not applicable to land-based microgrids |
IEEE 930 | Applies to shipboard microgrids and sets requirements for the design and operation of shipboard power systems | Not applicable to land-based microgrids |
IEC 60092 | Applies to shipboard microgrids and sets requirements for electrical installations in ships | Not applicable to land-based microgrids |
IEEE 2030.1 | Not applicable, as it applies to the smart grid interoperability of energy storage systems | Applies to land-based microgrids and sets guidelines for integrating distributed energy resources, including energy storage, into microgrids |
Factors | AC Shipboard Microgrid | DC Shipboard Microgrid |
---|---|---|
Conversion Efficiency | Low | High |
Cost of Converters | High | Low |
Transmission Efficiency | Low | High |
Power-Supply Reliability | Difficult to maintain a successful transition after faults | Smooth transition |
Controllability | Difficult | Simple |
Power Converter | More components for converters in the three-phase system Requires heavier low-frequency transformers | Fewer components for converters in the DC lines Requires smaller and lighter high-frequency transformers |
Load Availability | High | Low |
Protection System | Cheap, better protection and less complicated circuit breaker systems, all of which are due to the help of natural current zero | Costly components that are not always straightforward to use |
Stability | It is affected by the operation mode, types of DERs, and control topology | It is affected by power electronics interfaces for satisfactorily integrating sources, loads, and storage devices |
Suitability | AC electrical loads | DC electrical loads |
Calculation Procedure | Numbers can be complex | Numbers can be real |
Power Quality | Lower | Higher power quality |
Synchronization | Requires synchronization | No synchronization issues |
Life Span | Shorter lifespan | Maximum lifespan |
Frequency | 50 Hz | There is no need to regulate the frequency |
Operational Cost | More operational costs | Huge savings are available with operational costs |
Size of SBMG | High | Small |
Scalability | Difficult | Flexible and easier |
Ref. | Algorithm | Contributions | Shortcomings |
---|---|---|---|
[85] | Fuzzy Control |
|
|
[86] | Fuzzy Control |
|
|
[87] | Fuzzy Control |
|
|
[88] | Deep Reinforcement Learning (DRL) |
|
|
[89] | Optimal Control |
|
|
[90] | Model Predictive Control (MPC) |
|
|
[91] | Performance Control |
|
|
[92] | Neural Network (NN) |
|
|
[93] | Neural Network (NN) |
|
|
[94] | Neural Network (NN) |
|
|
[95] | Observer Control |
|
|
[96] | Backstepping Control |
|
|
[97] | Backstepping Control |
|
|
[98] | Backstepping Control |
|
|
[99] | Backstepping Control |
|
|
[100] | Hybrid Control |
|
|
[101] | Fault-Tolerant Control (FTC) |
|
|
[102] | Pitch Control |
|
|
[103] | Parallel Control |
|
|
Ref. | Algorithm | Contributions | Shortcomings |
---|---|---|---|
[107] | Model Predictive Control (MPC) |
|
|
[108] | MPC |
|
|
[109] | MPC |
|
|
[110] | MPC |
|
|
[111] | MPC |
|
|
[112] | MPC |
|
|
[113] | MPC |
|
|
[114] | MPC |
|
|
[115] | Load Frequency Control (LFC) |
|
|
[116] | LFC |
|
|
[117] | LFC |
|
|
[6] | LFC |
|
|
[118] | LFC |
|
|
[119] | LFC |
|
|
[120] | LFC |
|
|
[121] | Hybrid Control |
|
|
[122] | Hierarchical Control |
|
|
[123] | Hierarchical Control |
|
|
[124] | PI Control |
|
|
[125] | Droop Control |
|
|
[126] | Droop Control |
|
|
[127] | Droop Control |
|
|
[128] | Droop Control |
|
|
[129] | Droop Control |
|
|
[130] | Droop Control |
|
|
[131] | Fuzzy Control |
|
|
[132] | Fuzzy Control |
|
|
[133] | Backstepping Control |
|
|
[134] | Data-Driven Control |
|
|
[135] | Emergency Control |
|
|
[136] | Power Control |
|
|
[137] | Phase-Lead Impedance Control |
|
|
[138] | Fundamental Period Averaging Control (FPA) |
|
|
Ref. | Considered Uncertainties | Contributions |
---|---|---|
[144] | PV System Uncertainty |
|
[145] | PV Uncertainties |
|
[146] | PV Uncertainties |
|
[147] | Dynamic Interactions of Power Converters |
|
[139] | Navigation Uncertainties |
|
[148] | RES Uncertainties |
|
[149] | RES Uncertainties |
|
[150] | RES Uncertainties |
|
[142] | Uncertain Time-Varying Loads |
|
[151] | Uncertain Time-Varying Loads |
|
[152] | Uncertain Time-Varying Loads |
|
Ref. | Contributions | Objectives and Constraints | Shortcomings |
---|---|---|---|
[159] |
| Objectives:
|
|
[160] |
| Objectives:
|
|
[161] |
| Objectives:
|
|
[162] |
| Objectives:
|
|
[163] |
| Objectives:
|
|
[164] |
| Objectives:
|
|
[165] |
| Objectives:
|
|
[166] |
| Objectives:
|
|
[167] |
| Objectives:
|
|
[168] |
| Objectives:
|
|
[169] |
| Objectives:
|
|
[170] |
| Objectives:
|
|
[171] |
| Objectives:
|
|
[172] |
| Objectives:
|
|
[173] |
| Objectives:
|
|
[174] |
| Objectives:
|
|
[175] |
| Objectives:
|
|
[176] |
| Objectives:
|
|
[177] |
| Objectives:
|
|
[178] |
| Objectives:
|
|
[179] |
| Objectives:
|
|
[180] |
| Objectives:
|
|
[181] |
| Objectives:
|
|
[182] |
| Objectives:
|
|
[183] |
| Objectives:
|
|
[184] |
| Objectives:
|
|
[185] |
| Objectives:
|
|
[186] |
| Objectives:
|
|
[187] |
| Objectives:
|
|
[188] |
| Objectives:
|
|
[189] |
| Objectives:
|
|
[190] |
| Objectives:
|
|
[191] |
| Objectives:
|
|
[192] |
| Objectives:
|
|
[193] |
| Objectives:
|
|
[194] |
| Objectives:
|
|
[195] |
| Objectives:
|
|
[196] |
| Objectives:
|
|
[197] |
| Objectives:
|
|
[198] |
| Objectives:
|
|
[199] |
| Objectives:
|
|
[200] |
| Objectives:
|
|
[201] |
| Objectives:
|
|
[202] |
| Objectives:
|
|
[203] |
| Objectives:
|
|
[204] |
| Objectives:
|
|
[205] |
| Objectives:
|
|
[206] |
| Objectives:
|
|
Refs. | Contributions | Issues |
---|---|---|
[213] | Presents fault diagnosis based on machine-learning Noise-Assisted Multi-variate Empirical Mode Decomposition and Multi-level Iterative—LightGBM (NA-MEMD) and (MI-LightGBM) | Fault reconfiguration is not investigated |
[214] | Presents static and dynamic protection systems Discusses the short-term dynamics for a zonal SBMG after fault occurrence considering load-shedding actions Models the propulsion power converter’s electro-mechanics | The system’s dynamic is not investigated |
[215] | Presents fault detection and isolation based on nonintrusive load monitoring (NILM) | Fault reconfiguration is not investigated |
[216] | Presents a fault diagnosis method based on the wavelet-based filtering approach Minimizes the probability of misdetection | Fault reconfiguration is not investigated |
[217] | Presents a scalable solid-state bus-tie Switch that can be easily scaled for current and voltage Investigates fault-detection methods Reduces the electrical and thermal stresses by using multiple units rather than a single unit | Fault localization and reconfiguration are not investigated |
[218] | Presents a new solid-state bus-tie switch (SSBTS) Parallel connecting multiple units of the topology to increase power and voltage ratings | Fault localization and reconfiguration are not investigated |
[219] | Presents a solid-state DC circuit breaker Detects and isolates the fault in significantly less time | Fault reconfiguration is not investigated |
[220] | Explores three different protection schemes for DC faults in SBMGs, namely, a six-pulse thyristor rectifier, a six-pulse diode rectifier, and a two-level active rectifier | Fault reconfiguration is not investigated |
[221] | Presents a fault-detection algorithm based on overcurrent Recloses the Z-source breaker after the fault if necessary by control Integrates Z-source DC circuit breakers into a zonal MVDC SBMG Provides solutions for two Z-source breakers to work in parallel and supply current for the same load center Explores the SCR’s gate control | Fault localization is not detected |
[222,223] | Presents a fault-detection and -localization method based on a distance scheme Locates different types of faults in both forward and reverse directions | Fault reconfiguration is not investigated |
Ship Name | Ship Type | Sources of Power Supply | Storage System | Year |
---|---|---|---|---|
Suntech | Yacht | PV panels with 19.6 kW Diesel generators | Batteries | 2001 |
Sun 21 | Catamaran yacht | PV panels | Batteries | 2007 |
Auriga Leader | Car carrier | PV panels with 40 kW | Batteries | 2008 |
MS Viking Legend | Car ferry | Asynchronous generators | Unknown | 2009 |
Truanor Planet Solar | Catamaran yacht | PV panels with 93 kW | Li-ion batteries | 2010 |
COSCO Tengfei | Ocean-going car carrier | PV panels with 143.1 kW Diesel generators | Li-ion batteries with 750 kW | 2011 |
Hornblower Hybrid | Ferry ship | Wind turbines with 5 kW Diesel generators PV panels with 20 kW | Hydrogen fuel cells | 2011 |
Solar Sailor | Ferry ship | PV panels Wind Diesel generators | Batteries | 2012 |
Emerald Ace | Car carrier | PV panels with 160 kW diesel generators | Li-ion batteries | 2012 |
Anji204 Inland River | Ro-ro car ship | PV panels with 37.12 kW | Li-ion batteries with 128 kW | 2015 |
Harvey Stone | Multi-purpose field support vessel | 2 × 3350 kW main generators 3120 kW emergency generator | Unknown | 2016 |
Vision of the Fjords | Car ferry | Diesel genset | 600 kWh Batteries | 2016 |
Texel Stroom | Car ferry | 4 × 2000 kW diesel generators | Compressed natural gas (CNG) | 2016 |
NKT Victoria | Cable-laying vessel | 2240 kW main generator | Batteries | 2017 |
Van Oords’ Nexus | Cable-laying vessel | 2 × 2666 kW and 2 × 2000 kW main generator engines 1 × 1432 kW aux generator engine | Unknown | 2017 |
Tycho Brahe and Aurora of HH ferries | Car ferry | 4 × 2.6 MW Wärtsila diesel gensets | Batteries | 2017 |
Happiness | Ferry | Diesel generator | Lithium-iron phosphate battery | 2017 |
E-ferry | Car ferry | Batteries | 4.3 MWh lithium-ion batteries | 2018 |
Australian Research Vessel | ASRV | Diesel generator with an emergency diesel generator set | Unknown | 2020 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aboelezz, A.M.; Sedhom, B.E.; El-Saadawi, M.M.; Eladl, A.A.; Siano, P. State-of-the-Art Review on Shipboard Microgrids: Architecture, Control, Management, Protection, and Future Perspectives. Smart Cities 2023, 6, 1435-1484. https://doi.org/10.3390/smartcities6030069
Aboelezz AM, Sedhom BE, El-Saadawi MM, Eladl AA, Siano P. State-of-the-Art Review on Shipboard Microgrids: Architecture, Control, Management, Protection, and Future Perspectives. Smart Cities. 2023; 6(3):1435-1484. https://doi.org/10.3390/smartcities6030069
Chicago/Turabian StyleAboelezz, Asmaa M., Bishoy E. Sedhom, Magdi M. El-Saadawi, Abdelfattah A. Eladl, and Pierluigi Siano. 2023. "State-of-the-Art Review on Shipboard Microgrids: Architecture, Control, Management, Protection, and Future Perspectives" Smart Cities 6, no. 3: 1435-1484. https://doi.org/10.3390/smartcities6030069
APA StyleAboelezz, A. M., Sedhom, B. E., El-Saadawi, M. M., Eladl, A. A., & Siano, P. (2023). State-of-the-Art Review on Shipboard Microgrids: Architecture, Control, Management, Protection, and Future Perspectives. Smart Cities, 6(3), 1435-1484. https://doi.org/10.3390/smartcities6030069