From Traffic Congestion to Sustainable Mobility: A Case Study of Public Transport in Odesa, Ukraine
Abstract
:1. Introduction
Literature Review
- (1)
- Which characteristics of traveling by PT influence individual satisfaction?
- (2)
- To what extent do the effects of travel characteristics on various subgroups of PT users differ?
2. Transport and Passenger Satisfaction
2.1. Improving the Performance of the Urban Transport System
2.2. Current Market Shares in PT and Passenger Satisfaction
3. Materials and Methods
3.1. Study Area
3.2. Data Collection and Methods
3.3. Evaluation for Table Recognition
4. Results and Discussion
4.1. Major Findings: Optimizing the PT Network
4.2. Optimizing the Schedule of Urban Passenger Transport
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bashynska, I.; Kovalova, O.; Malovichko, O.; Shirobokova, O. Risk management of innovative socially significant projects (on the example of urban passenger transport). Int. J. Adv. Res. Eng. Technol. 2020, 11, 294–305. [Google Scholar]
- McKay, T. South Africa’s Key Urban Transport Challenges. In Urban Geography in South Africa; Springer: Berlin/Heidelberg, Germany, 2020; pp. 189–207. [Google Scholar] [CrossRef]
- Rode, P.; Floater, G.; Thomopoulos, N.; Docherty, J.; Schwinger, P.; Mahendra, A.; Fang, W. Accessibility in cities: Transport and urban form. Disrupting Mobil. 2017, 239–273. [Google Scholar] [CrossRef]
- Sclar, E. Transforming Urban Transport; Davis, D., Altshuler, A., Eds.; Oxford University Press: New York, NY, USA, 2018; p. 336. ISBN 9780190875718. [Google Scholar]
- Chocholac, J.; Sommerauerova, D.; Hyrslova, J.; Kucera, T.; Hruska, R.; Machalik, S. Service quality of the urban public transport companies and sustainable city logistics. Open Eng. 2020, 10, 86–97. [Google Scholar] [CrossRef]
- Da Silva, F.J.G.; Gouveia, R.M. Global population growth and industrial impact on the environment. In Cleaner Production; Springer: Berlin/Heidelberg, Germany, 2020; pp. 33–75. [Google Scholar] [CrossRef]
- Dedík, M.; Čechovič, L.; Gašparík, J. Methodical process for innovative management of the sustainable railway passenger transport. Transp. Res. Procedia 2020, 44, 305–312. [Google Scholar] [CrossRef]
- Godil, D.I.; Sharif, A.; Afshan, S.; Yousuf, A.; Khan, S.A.R. The asymmetric role of freight and passenger transport in testing EKC in the US economy: Evidence from QARDL approach. Environ. Sci. Pollut. Res. 2020, 27, 30108–30117. [Google Scholar] [CrossRef]
- Majorova, Y.V.; Glebov, V.; Shevtsov, V.; Ahmedzyanov, V.; Kuliyeva, G. Modern Approaches to Improve the Performance of the Transport System of the City (on Moscow Case). In Proceedings of the International Session on Factors of Regional Extensive Development (FRED 2019), Irkutsk, Russia, 27 May–1 June 2019; Atlantis Press: Paris, France, 2020; pp. 126–130. [Google Scholar]
- Zhang, J.; Garrick, N.W.; Atkinson-Palombo, C.; Ahangari, H. How similar is China’s traffic safety pattern to industrialized countries in their early stage of motorization? An analysis of death registration data for large and small/medium cities. J. Transp. Saf. Secur. 2017, 9 (Suppl. S1), 83–102. [Google Scholar] [CrossRef]
- Oskarbski, J. Perspectives of Telematics Implementation in Tri-City Transport Systems Management and Planning. In Proceedings of the 11th International Conference on Transport Systems Telematics, TST 2011, Katowice-Ustron, Poland, 19–22 October 2011; Springer: Berlin/Heidelberg, Germany, 2011; pp. 233–240. [Google Scholar]
- Freeman, L.A.; Corbett, D.R.; Fitzgerald, A.M.; Lemley, D.A.; Quigg, A.; Steppe, C.N. Impacts of urbanization and development on estuarine ecosystems and water quality. Estuaries Coasts 2019, 42, 1821–1838. [Google Scholar] [CrossRef]
- Rajsman, M. Public urban passenger transport as important factor in the development of cities. J. Traffic Logist. Eng. 2014, 2. [Google Scholar] [CrossRef]
- Hernantes, J.; Maraña, P.; Gimenez, R.; Sarriegi, J.M.; Labaka, L. Towards resilient cities: A maturity model for operationalizing resilience. Cities 2019, 84, 96–103. [Google Scholar] [CrossRef]
- Bogumil, V.; Duque, M. Estimation of Passenger Load for Urban Passenger Transport on the Route. In IOP Conference Series: Materials Science and Engineering, Proceedings of the International Conference on Digital Solutions for Automotive Industry, Roadway Maintenance and Traffic Control (DS ART 2019; Cholpon-Ata, Kyrgyzstan, 1 November 2019, IOP Publishing: Bristol, UK, 2020; p. 12043. [Google Scholar]
- Poliak, M.; Poliakova, A.; Mrnikova, M.; Šimurková, P.; Jaśkiewicz, M.; Jurecki, R. The competitiveness of public transport. J. Compet. 2017, 9, 81–97. [Google Scholar] [CrossRef]
- Cooper, P.; Tryfonas, T.; Crick, T.; Marsh, A. Electric vehicle mobility-as-a-service: Exploring the “Tri-Opt” of novel private transport business models. J. Urban Technol. 2019, 26, 35–56. [Google Scholar] [CrossRef]
- Zahedi, S.; Batista-Foguet, J.M.; van Wunnik, L. Exploring the public’s willingness to reduce air pollution and greenhouse gas emissions from private road transport in Catalonia. Sci. Total Environ. 2019, 646, 850–861. [Google Scholar] [CrossRef] [PubMed]
- Hall, C.M.; Le-Klähn, D.-T.; Ram, Y. Tourism, Public Transport and Sustainable Mobilit; Channel View Publications: Bristol, UK, 2017. [Google Scholar] [CrossRef]
- Turoń, K.; Sierpiński, G.; Tóth, J. Support for pro-ecological solutions in smart cities with the use of travel databases–a case study based on a bike-sharing system in Budapes. In Smart and Green Solutions for Transport Systems: 16th Scientific and Technical Conference “Transport Systems. Theory and Practice 2019” Selected Papers 16; Springer: Cham, Switzerland, 2020; pp. 225–237. [Google Scholar]
- Un, D. Revision of World Urbanization Prospects; United Nations Department of Economic and Social Affairs: New York, NY, USA, 2018; Available online: https://population.un.org/wup/?_gl=1*1ubeos4*_ga*NTEwNDI5NTIzLjE2ODQzNzQ1MDU.*_ga_TK9BQL5X7Z*MTY4NDM3NDUwNS4xLjAuMTY4NDM3NDUwNS4wLjAuMA (accessed on 17 May 2023).
- Ritchie, H.; Roser, M. Urbanization. Our World Data 2018. [Google Scholar]
- Chow, J. Informed Urban Transport Systems: Classic and Emerging Mobility Methods toward Smart Cities; Elsevier: Amsterdam, The Netherlands, 2018; Available online: https://ourworldindata.org/urbanization (accessed on 17 May 2023).
- Fransen, K.; Neutens, T.; Farber, S.; De Maeyer, P.; Deruyter, G.; Witlox, F. Identifying public transport gaps using time-dependent accessibility levels. J. Transp. Geogr. 2015, 48, 176–187. [Google Scholar] [CrossRef]
- Ogryzek, M.; Adamska-Kmieć, D.; Klimach, A. Sustainable Transport: An Efficient Transport Network—Case Study. Sustainability 2020, 12, 8274. [Google Scholar] [CrossRef]
- Wong, S. The limitations of using activity space measurements for representing the mobilities of individuals with visual impairment: A mixed methods case study in the San Francisco Bay Area. J. Transp. Geogr. 2018, 66, 300–308. [Google Scholar] [CrossRef]
- Sun, W.; Bocchini, P.; Davison, B.D. Resilience metrics and measurement methods for transport infrastructure: The state of the art. Sustain. Resilient Infrastruct. 2020, 5, 168–199. [Google Scholar] [CrossRef]
- Marks-Bielska, R.; Kurowska, K. Institutional efficiency of communes in Poland in respect of space management. Int. Multidiscip. Sci. GeoConference SGEM 2017, 17, 521–528. [Google Scholar]
- Paulley, N.; Balcombe, R.; Mackett, R.; Titheridge, H.; Preston, J.; Wardman, M.; Shires, J.; White, P. The demand for public transport: The effects of fares, quality of service, income and car ownership. Transp. Policy 2006, 13, 295–306. [Google Scholar] [CrossRef]
- Redman, L.; Friman, M.; Gärling, T.; Hartig, T. Quality attributes of public transport that attract car users: A research review. Transp. Policy 2013, 25, 119–127. [Google Scholar] [CrossRef]
- Ferreira, M.C.; Dias, T.G.; e Cunha, J.F. Is Bluetooth low energy feasible for mobile ticketing in urban passenger transport? Transp. Res. Interdiscip. Perspect. 2020, 5, 100120. [Google Scholar]
- Sojol, J.I.; Piya, N.F.; Sadman, S.; Motahar, T. Smart bus: An automated passenger counting system. Int. J. Pure Appl. Math. 2018, 118, 3169–3177. [Google Scholar]
- Benga, G.C.; Savu, D.; Savu, S.V.; Olei, A.; Iacobici, R.I. Assesment of Trends in Inland Waterway Transport within European Union. Adv. Eng. Forum 2019, 34, 247–254. [Google Scholar] [CrossRef]
- Storme, T.; Casier, C.; Azadi, H.; Witlox, F. Impact Assessments of New Mobility Services: A Critical Review. Sustainability 2021, 13, 3074. [Google Scholar] [CrossRef]
- Grover, V.; Chiang, R.H.; Liang, T.-P.; Zhang, D. Creating strategic business value from big data analytics: A research framework. J. Manag. Inf. Syst. 2018, 35, 388–423. [Google Scholar] [CrossRef]
- Van Lierop, D.; Badami, M.G.; El-Geneidy, A.M. What influences satisfaction and loyalty in public transport? A review of the literature. Transp. Rev. 2018, 38, 52–72. [Google Scholar] [CrossRef]
- Bruzzone, F.; Cavallaro, F.; Nocera, S. The integration of passenger and freight transport for first-last mile operations. Transp. Policy 2021, 100, 31–48. [Google Scholar] [CrossRef]
- Hirschhorn, F.; Paulsson, A.; Sørensen, C.H.; Veeneman, W. Public transport regimes and mobility as a service: Governance approaches in Amsterdam, Birmingham, and Helsinki. Transp. Res. Part A: Policy Pract. 2019, 130, 178–191. [Google Scholar] [CrossRef]
- Yao, Z.; Ye, K.; Xiao, L.; Wang, X. Radiation Effect of Urban Agglomeration’s Transport Network: Evidence from Chengdu–Chongqing Urban Agglomeration, China. Land 2021, 10, 520. [Google Scholar] [CrossRef]
- World-Bank, Sustainable Mobility for Odessa, A Road Map for Improving Accessibility and Energy Efficiency. 2018. Available online: http://documents1.worldbank.org/curated/en/498021530861926262/pdf/Sustainable-Mobility-for-Odessa.pdf (accessed on 17 May 2023).
- Borysova, T.; Monastyrskyi, G. Marketing innovation activity of urban public transport: Results of the empirical study. Mark. Manag. Innov. 2018, 229–240. [Google Scholar] [CrossRef]
- Bashynska, I. Improving the Tariff Policy of Urban Passenger Transport Based on International Experience. TEM J. 2020, 9, 1588–1596. [Google Scholar] [CrossRef]
- Gao, L.; Miao, L.; Xu, Z.; Chen, L.; Guan, Z.; Zhai, H.; Jia, L.; Chen, Y.; Zhuang, J. Research on Passenger Flow Distribution in Urban Rail Transit Hub Platform. In Proceedings of the 4th International Conference on Electrical and Information Technologies for Rail Transport (EITRT) 2019, Qingdao, China, 25–27 October 2019; Rail Transport Information Processing and Operational Management Technologies. Springer Nature: Singapore, 2020; p. 447. [Google Scholar]
- Jing, Y.; Weng, J.; Zhang, Z.; Wang, J.; Qian, H. Public Traffic Passenger Flow Prediction Model for Short-Term Large Scale Activities Based on Wavelet Analysis. In Green, Smart and Connected Transport Systems; Springer: Berlin/Heidelberg, Germany, 2020; pp. 1281–1294. [Google Scholar]
- Li, W.; Li, Y.; Deng, H.; Bao, L. Planning of electric public transport system under battery swap mode. Sustainability 2018, 10, 2528. [Google Scholar] [CrossRef]
- Pazoysky, Y.; Kalikina, T.; Saveliev, M.; Kurtikova, E. The Methodology of Calculating Route Network of Long-Distance Passenger Trains in the Conditions of Fluctuating Passenger Flows. In Proceedings of the International Scientific Siberian Transport Forum, Novosibirsk, Russia, 22–27 May 2019; Springer: Cham, Switzerland, 2019; pp. 1035–1042. [Google Scholar]
- Uimonen, S.; Tukia, T.; Siikonen, M.-L.; Lehtonen, M. Impact of daily passenger traffic on energy consumption of intermittent-operating escalators. Energy Build. 2017, 140, 348–358. [Google Scholar] [CrossRef]
- Enoch, M.P.; Cross, R.; Potter, N.; Davidson, C.; Taylor, S.; Brown, R.; Huang, H.; Parsons, J.; Tucker, S.; Wynne, E. Future local passenger transport system scenarios and implications for policy and practice. Transp. Policy 2020, 90, 52–67. [Google Scholar] [CrossRef]
- Brumercikova, E.; Bukova, B. The regression and correlation analysis of carried persons by means of public passenger transport of the Slovak Republic. Transp. Res. Procedia 2020, 44, 61–68. [Google Scholar] [CrossRef]
- Ulrich, C.; Friedrich, H.E.; Weimer, J.; Schmid, S.A. New Operating Strategies for an On-the-Road Modular, Electric and Autonomous Vehicle Concept in Urban Transport. World Electr. Veh. J. 2019, 10, 91. [Google Scholar] [CrossRef]
- Dreier, D.; Silveira, S.; Khatiwada, D.; Fonseca, K.V.; Nieweglowski, R.; Schepanski, R. The influence of passenger load, driving cycle, fuel price and different types of buses on the cost of transport service in the BRT system in Curitiba, Brazil. Transport 2019, 46, 2195–2242. [Google Scholar] [CrossRef]
- De Angelis, M.; Mantecchini, L.; Pietrantoni, L. A Cluster Analysis of University Commuters: Attitudes, Personal Norms and Constraints, and Travel Satisfaction. Int. J. Environ. Res. Public Health 2021, 18, 4592. [Google Scholar] [CrossRef]
- Prati, G.; Puchades, V.M.; De Angelis, M.; Pietrantoni, L.; Fraboni, F.; Decarli, N.; Guerra, A.; Dardari, D. Evaluation of user behavior and acceptance of an on-bike system. Transp. Res. Part F Traffic Psychol. Behav. 2018, 58, 145–155. [Google Scholar] [CrossRef]
- Eboli, L.; Mazzulla, G. Customer satisfaction as a measure of service quality in public transport planning. Int. Encycl. Transp. 2021, 6, 220–224. [Google Scholar]
- De Oña, J. The role of involvement with public transport in the relationship between service quality, satisfaction and behavioral intentions. Transp. Res. Part A Policy Pract. 2020, 142, 296–318. [Google Scholar] [CrossRef]
- De Oña, J. Understanding the mediator role of satisfaction in public transport: A cross-country analysis. Transp. Policy 2021, 100, 129–149. [Google Scholar] [CrossRef]
- Soza-Parra, J.; Raveau, S.; Muñoz, J.C.; Cats, O. The underlying effect of public transport reliability on users’ satisfaction. Transp. Res. Part A Policy Pract. 2019, 126, 83–93. [Google Scholar] [CrossRef]
- Cascetta, E. Transport Systems Engineering: Theory and Methods; Springer Science & Business Media: New York, NY, USA, 2013; Volume 49. [Google Scholar] [CrossRef]
- Behrooz, H.; Hayeri, Y.M. Machine Learning Applications in Surface Transportation Systems: A Literature Review. Appl. Sci. 2022, 12, 9156. [Google Scholar] [CrossRef]
- Gärling, T.; Friman, M. Unsustainable Travel Becoming (More) Sustainable. In Handbook of Research on Sustainable Consumption; Edward Elgar Publishing: London, UK, 2015. [Google Scholar] [CrossRef]
- Bartłomiejczyk, M.; Połom, M. Sustainable use of the catenary by trolleybuses with auxiliary power sources on the example of Gdynia. Infrastructures 2021, 6, 61. [Google Scholar] [CrossRef]
- Nelson, G.D.; Rae, A. An economic geography of the United States: From commutes to megaregions. PLoS ONE 2016, 11, e0166083. [Google Scholar] [CrossRef]
- Ettema, D.; Friman, M.; Gärling, T.; Olsson, L.E. Travel mode use, travel mode shift and subjective well-being: Overview of theories, empirical findings and policy implications. In Mobility, Sociability and Well-being of Urban Living; Springer: Berlin/Heidelberg, Germany, 2016; pp. 129–150. [Google Scholar] [CrossRef]
- Buehler, R.; Pucher, J. Demand for public transport in Germany and the USA: An analysis of rider characteristics. Transp. Rev. 2012, 32, 541–567. [Google Scholar] [CrossRef]
- Efthymiou, D.; Antoniou, C. Understanding the effects of economic crisis on public transport users’ satisfaction and demand. Transp. Policy 2017, 53, 89–97. [Google Scholar] [CrossRef]
- Friman, M.; Gärling, T.; Ettema, D.; Olsson, L.E. How does travel affect emotional well-being and life satisfaction? Transp. Res. Part A Policy Pract. 2017, 106, 170–180. [Google Scholar] [CrossRef]
- Ye, R.; Titheridge, H. Satisfaction with the commute: The role of travel mode choice, built environment and attitudes. Transp. Res. Part D Transp. Environ. 2017, 52, 535–547. [Google Scholar] [CrossRef]
- Friman, M.; Maier, R.; Olsson, L.E. Applying a motivational stage-based approach in order to study a temporary free public transport intervention. Transp. Policy 2019, 81, 173–183. [Google Scholar] [CrossRef]
- Ettema, D.; Gärling, T.; Olsson, L.E.; Friman, M. Out-of-home activities, daily travel, and subjective well-being. Transp. Res. Part A Policy Pract. 2010, 44, 723–732. [Google Scholar] [CrossRef]
- Zhu, J.; Fan, Y. Daily travel behavior and emotional well-being: Effects of trip mode, duration, purpose, and companionship. Transp. Res. Part A Policy Pract. 2018, 118, 360–373. [Google Scholar] [CrossRef]
- Chowdhury, S.; Ceder, A.A. Users’ willingness to ride an integrated public-transport service: A literature review. Transp. Policy 2016, 48, 183–195. [Google Scholar] [CrossRef]
- Dragomyretska, O.; Dragomyretskyy, O.; Skipa, M. Carbonate karst and its relationship with geodynamic conditions of the Odessa city (Ukraine). Environ. Earth Sci. 2016, 75, 569. [Google Scholar] [CrossRef]
- Marsden, M. Islamic cosmopolitanism out of Muslim Asia: Hindu–Muslim business co-operation between Odessa and Yiwu. Hist. Anthropol. 2018, 29, 121–139. [Google Scholar] [CrossRef]
- Myronenko, S.; Lauwers, D.; Witlox, F. Study of the capacity of the city road network of Odessa. In Proceedings of the BIVEC-GIBET Transport Research Days 2019: Moving towards More Sustainable Mobility and Transport through Smart Systzems, Ghent, Belgium, 23–24 May 2019; pp. 69–77. [Google Scholar]
- CoE-Expert-Team, City of Odessa Intercultural Profile. 2017. Available online: https://rm.coe.int/odessa-intercultural-profile/1680759d6c (accessed on 17 May 2023).
- Šepić, J.; Rabinovich, A.B.; Sytov, V.N. Odessa tsunami of 27 June 2014: Observations and numerical modelling. Pure Appl. Geophys. 2018, 175, 1545–1572. [Google Scholar] [CrossRef]
- Ugnenko, E.; Shevchenko, A.; Matviienko, O.; Maliavin, A.; Viselga, G.; Turla, V. Analysis of existing train lines and international railway transport corridors of Ukraine. In TRANSBALTICA XI: Transport Science and Technology, Proceedings of the International Conference TRANSBALTICA, Vilnius, Lithuania, 2–3 May 2019; Springer: Cham, Switzerland, 2020; pp. 622–632. [Google Scholar]
- Lapkin, A. Analysis of the Odessa City’s Transport Infrastructure and Prospective Ways of Main Problems Solving; Publishing House “Baltija Publishing”: Riga, Latvia, 2020. [Google Scholar] [CrossRef]
- SSSU, State Statistics Service of Ukraine. 2020. Available online: www.ukrstat.gov.ua (accessed on 17 May 2023).
- Grönroos, C. What Can a Aervice Logic Offer Marketing Theory? In The Service-Dominant Logic of Marketing; Routledge: New York, NY, USA, 2014; pp. 372–382. [Google Scholar]
- Gilani, A.; Qasim, S.R.; Malik, I.; Shafait, F. Table Detection Using Deep Learning. In Proceedings of the 2017 14th IAPR international conference on document analysis and recognition (ICDAR), Kyoto, Japan, 9–15 November 2017; pp. 771–776. [Google Scholar]
- Alcantara, E.C. On the derivation of some reduction formula through tabular integration by parts. Asia Pac. J. Multidiscip. Res. 2015, 3, 80–84. [Google Scholar]
- Teo, J.S.; Taniguchi, E.; Qureshi, A.G. Evaluation of load factor control and urban freight road pricing joint schemes with multi-agent systems learning models. Procedia-Soc. Behav. Sci. 2014, 125, 62–74. [Google Scholar] [CrossRef]
- Deng, Y.; Rosenberg, D.; Mann, G. Challenges in end-to-end neural scientific table recognition. In Proceedings of the 2019 International Conference on Document Analysis and Recognition (ICDAR), Sydney, Australia, 20–25 September 2019; pp. 894–901. [Google Scholar]
- Zhong, X.; ShafieiBavani, E.; Jimeno Yepes, A. Image-based table recognition: Data, model, and evaluation. In Computer Vision–ECCV 2020, 16th European Conference, Glasgow, UK, 23–28 August 2020, Proceedings, Part XXI 16; Springer: Cham, Switzerland, 2020; pp. 564–580. [Google Scholar]
- Pawlik, M.; Augsten, N. Tree edit distance: Robust and memory-efficient. Inf. Syst. 2016, 56, 157–173. [Google Scholar] [CrossRef]
- Arpteg, A.; Brinne, B.; Crnkovic-Friis, L.; Bosch, J. Software engineering challenges of deep learning. In Proceedings of the 2018 44th Euromicro Conference on Software Engineering and Advanced Applications (SEAA), Prague, Czech Republic, 29–31 August 2018; pp. 50–59. [Google Scholar]
- Campbell, E.A.; Hynynen, J.; Burger, B.; Vainionpää, A.; Ala-Ruona, E. Vibroacoustic treatment to improve functioning and ability to work: A multidisciplinary approach to chronic pain rehabilitation. Disabil. Rehabil. 2021, 43, 2055–2070. [Google Scholar] [CrossRef] [PubMed]
- Hashmi, K.A.; Liwicki, M.; Stricker, D.; Afzal, M.A.; Afzal, M.A.; Afzal, M.Z. Current status and performance analysis of table recognition in document images with deep neural networks. IEEE Access 2021, 9, 87663–87685. [Google Scholar] [CrossRef]
- Siddiqui, S.A.; Fateh, I.A.; Rizvi, S.T.R.; Dengel, A.; Ahmed, S. Deeptabstr: Deep learning based table structure recognition. In Proceedings of the 2019 International Conference on Document Analysis and Recognition (ICDAR), Sydney, Australia, 20–25 September 2019; pp. 1403–1409. [Google Scholar]
- Tensmeyer, C.; Morariu, V.I.; Price, B.; Cohen, S.; Martinez, T. Deep splitting and merging for table structure decomposition. In Proceedings of the 2019 International Conference on Document Analysis and Recognition (ICDAR), Sydney, Australia, 20–25 September 2019; pp. 114–121. [Google Scholar]
- Qasim, S.R.; Mahmood, H.; Shafait, F. Rethinking table recognition using graph neural networks. In Proceedings of the 2019 International Conference on Document Analysis and Recognition (ICDAR), Sydney, Australia, 20–25 September 2019; pp. 142–147. [Google Scholar]
- Xue, W.; Li, Q.; Zhang, Z.; Zhao, Y.; Wang, H. Table analysis and information extraction for medical laboratory reports. In Proceedings of the 2018 IEEE 16th Intl Conf on Dependable, Autonomic and Secure Computing, 16th Intl Conf on Pervasive Intelligence and Computing, 4th Intl Conf on Big Data Intelligence and Computing and Cyber Science and Technology Congress(DASC/PiCom/DataCom/CyberSciTech), Athens, Greece, 12–15 August 2018; pp. 193–199. [Google Scholar]
- Deb, S.; Ahmed, M.A. Determining the service quality of the city bus service based on users’ perceptions and expectations. Travel Behav. Soc. 2018, 12, 1–10. [Google Scholar] [CrossRef]
- Malandri, C.; Mantecchini, L.; Paganelli, F.; Postorino, M.N. Public transport network vulnerability and delay distribution among travelers. Sustainability 2021, 13, 8737. [Google Scholar] [CrossRef]
- Sanchez-Atondo, A.; Garcia, L.; Calderon-Ramirez, J.; Gutiérrez-Moreno, J.M.; Mungaray-Moctezuma, A. Understanding Public Transport Ridership in Developing Countries to Promote Sustainable Urban Mobility: A Case Study of Mexicali, Mexico. Sustainability 2020, 12, 3266. [Google Scholar] [CrossRef]
- Burian, J.; Zajíčková, L.; Ivan, I.; Macků, K. Attitudes and motivation to use public or individual transport: A case study of two middle-sized cities. Soc. Sci. 2018, 7, 83. [Google Scholar] [CrossRef]
- De Vos, J.; Schwanen, T.; Van Acker, V.; Witlox, F. Travel and subjective well-being: A focus on findings, methods and future research needs. Transp. Rev. 2013, 33, 421–442. [Google Scholar] [CrossRef]
- Currie, G.; Delbosc, A. Exploring the trip chaining behaviour of public transport users in Melbourne. Transp. Policy 2011, 18, 204–210. [Google Scholar] [CrossRef]
- Kos, G.; Brlek, P.; Franolić, I. Rationalization of Public Road Passenger Transport by Merging Bus Lines on the Example of Zadar County. Promet Traffic Transp 2012, 24, 323–334. [Google Scholar] [CrossRef]
- Shelat, S.; Huisman, R.; van Oort, N. Analysing the trip and user characteristics of the combined bicycle and transit mode. Res. Transp. Econ. 2018, 69, 68–76. [Google Scholar] [CrossRef]
- Anable, J. ‘Complacent car addicts’ or ‘aspiring environmentalists’? Identifying travel behaviour segments using attitude theory. Transp. Policy 2005, 12, 65–78. [Google Scholar] [CrossRef]
- Diana, M.; Mokhtarian, P.L. Grouping travelers on the basis of their different car and transit levels of use. Transport 2009, 36, 455–467. [Google Scholar] [CrossRef]
No. | Route Number | The Capacity of the PT Service Line | Minimum Number of Passengers in One Way | Maximum Number of Passengers in One Way | Average Number of Passengers in One Way | Length of Route, km |
---|---|---|---|---|---|---|
1 | 117 | 200 | 52 | 88 | 70 | 20.43 |
2 | 145 | 198 | 78 | 139 | 99 | 29.29 |
3 | 137 | 310 | 76 | 143 | 98 | 18.89 |
4 | 232a | 210 | 98 | 133 | 112 | 31.59 |
5 | 203 | 285 | 45 | 70 | 57 | 11.97 |
6 | 185 | 235 | 74 | 109 | 86 | 21.86 |
7 | 175 | 224 | 74 | 98 | 82 | 21.64 |
8 | 146 | 198 | 98 | 139 | 109 | 32.34 |
9 | 145 | 194 | 76 | 131 | 97 | 29.29 |
10 | 121 | 192 | 94 | 133 | 109 | 33.71 |
11 | 233 | 227 | 40 | 70 | 53 | 13.74 |
12 | 117 | 163 | 44 | 64 | 57 | 20.43 |
13 | 208 | 180 | 47 | 77 | 66 | 21.78 |
14 | 201 | 226 | 52 | 77 | 64 | 17.01 |
15 | 120 | 210 | 49 | 93 | 70 | 19.48 |
16 | 130 | 229 | 52 | 82 | 65 | 17.01 |
17 | 165 | 228 | 61 | 95 | 80 | 20.81 |
18 | 190 | 227 | 52 | 98 | 72 | 19.07 |
19 | 232 | 217 | 94 | 154 | 116 | 31.59 |
20 | 240 | 227 | 47 | 98 | 72 | 18.52 |
21 | 242 | 203 | 77 | 116 | 88 | 25.79 |
22 | 250 | 224 | 49 | 94 | 71 | 18.71 |
23 | 210 | 240 | 50 | 78 | 64 | 16.23 |
24 | 127 | 240 | 70 | 99 | 80 | 19.81 |
25 | 150 | 240 | 40 | 56 | 48 | 11.88 |
26 | 198 | 258 | 45 | 64 | 56 | 12.93 |
27 | 197 | 318 | 99 | 149 | 122 | 23.19 |
28 | 220a | 232 | 66 | 106 | 89 | 22.78 |
29 | 221 | 221 | 64 | 75 | 70 | 18.90 |
30 | 191 | 171 | 51 | 96 | 74 | 25.95 |
31 | 168 | 215 | 106 | 148 | 122 | 34.27 |
32 | 117 | 189 | 44 | 84 | 66 | 20.43 |
33 | 110 | 272 | 53 | 64 | 59 | 12.61 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Myronenko, S.; Oborskyi, H.; Dmytryshyn, D.; Shobik, V.; Lauwers, D.; Witlox, F. From Traffic Congestion to Sustainable Mobility: A Case Study of Public Transport in Odesa, Ukraine. Smart Cities 2023, 6, 1398-1415. https://doi.org/10.3390/smartcities6030067
Myronenko S, Oborskyi H, Dmytryshyn D, Shobik V, Lauwers D, Witlox F. From Traffic Congestion to Sustainable Mobility: A Case Study of Public Transport in Odesa, Ukraine. Smart Cities. 2023; 6(3):1398-1415. https://doi.org/10.3390/smartcities6030067
Chicago/Turabian StyleMyronenko, Sergii, Hennadii Oborskyi, Dmytro Dmytryshyn, Vyacheslav Shobik, Dirk Lauwers, and Frank Witlox. 2023. "From Traffic Congestion to Sustainable Mobility: A Case Study of Public Transport in Odesa, Ukraine" Smart Cities 6, no. 3: 1398-1415. https://doi.org/10.3390/smartcities6030067
APA StyleMyronenko, S., Oborskyi, H., Dmytryshyn, D., Shobik, V., Lauwers, D., & Witlox, F. (2023). From Traffic Congestion to Sustainable Mobility: A Case Study of Public Transport in Odesa, Ukraine. Smart Cities, 6(3), 1398-1415. https://doi.org/10.3390/smartcities6030067