Getting Smarter: Blockchain and IOT Mixture in China Smart Public Services
Abstract
:1. Introduction
2. Materials and Methods
2.1. UTAUT and Blockchain Adoption
2.2. Data Collection
- Part 1: Sociodemographic (12 items)
- Part 2: Information Privacy Value (4 items)
- Part 3: Public Trust Value (4 items)
- Part 4: Social Influence Value (4 items)
- Part 5: Digital Society Affinity Value (4 items)
- Part 6: Public Value (4 items)
- Part 7: Continuous Usage Intention (4 items)
- Part 8: Citizens Empowerment Value (4 items)
- Part 9: Blockchain implementation impact (5 items)
2.3. Hypothesis Statements
2.3.1. Public Trust Value (PTV)
2.3.2. Social Influence Value (SIV)
2.3.3. Digital Social Affinity Value (DSAV)
2.3.4. Public Value (PV)
2.3.5. Citizen Empowerment Value (CEV)
2.3.6. Blockchain Applications
2.4. The Conceptual Model
3. Results
3.1. Sample Characteristics or Sociodemographic
3.2. Model Validation
3.2.1. Data Analysis Technique
3.2.2. Reflective Measurement Model Evaluation
Structural Model Effect Size f2 Values
3.2.3. Formative Measurement Model Evaluation
3.2.4. Structural Model Evaluation Results
4. Discussion
5. Conclusions
- Evaluate the effectiveness of the new strategies aiming to ensure security in smart sustainable cities;
- Improve the safety of the individuals and their goods;
- Study the effect of environmental and lifestyle factors of the IOT and blockchain adoption;
- Determine the effects of the IOT in the society;
- Design and advocate for a more trusted Internet of Things to make cities and human settlements inclusive, safe, resilient, and sustainable.
6. Limitation and Future Work
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- State Information Center; Smarter City Development and Research Center. China Smart City Long-Term Operation Research Report, 2021. Available online: https://urlzs.com/T6Vwh (accessed on 17 April 2022).
- Dameri, R.P.; Benevolo, C.; Veglianti, E.; Li, Y. Understanding smart cities as a glocal strategy: A comparison between Italy and China. Technol. Forecast. Soc. Chang. 2018, 142, 26–41. [Google Scholar]
- Kar, A.K.; Ilavarasan, V.; Gupta, M.P.; Janssen, M.; Kothari, R. Moving beyond Smart Cities: Digital Nations for Social Innovation & Sustainability. Inf. Syst. Front. 2019, 21, 495–501. [Google Scholar]
- Benevolo, C.; Dameri, R.P.; D’auria, B. Smart Mobility in Smart City. In Empowering Organizations; Springer: Cham, Switzerland, 2016; Volume 11, pp. 13–28. [Google Scholar]
- Guillemin, P.; Friess, P. Internet of Things Strategic Research Roadmap. The Cluster of European Research Project; Publisher: The Cluster of European Research Projects. Available online: https://www.semanticscholar.org/paper/Internet-of-Things-Strategic-Research-Roadmap-Vermesan-Friess/ff47de2d1b387f681bb452779c3de86faed31456 (accessed on 17 April 2022).
- Eger, J.M. Smart growth, smart cities, and the crisis at the pump a worldwide phenomenon. I-Ways. J. E-Gov. Policy Regul. 2009, 32, 47–53. [Google Scholar]
- Harrison, T.M.; Guerrero, S.; Burke, G.B.; Cook, M.; Cresswell, A.; Helbig, N.; Hrdinova, J.; Pardo, T. Open government and e-government: Democratic challenges from a public value perspective. Inf. Polity 2012, 17, 83–97. [Google Scholar] [CrossRef]
- Barrionuevo, J.M.; Berrone, P.; Ricart, J.E. Smart cities, sustainable progress. IESE Insight 2012, 14, 50–57. [Google Scholar]
- Bakıcı, T.; Almirall, E.; Wareham, J. A Smart City Initiative: The Case of Barcelona. J. Knowl. Econ. 2013, 4, 135–148. [Google Scholar]
- Camero, A.; Alba, E. Smart City and information technology: A review. Cities 2019, 93, 84–94. [Google Scholar]
- Ruhlandt, R.W.S. The governance of smart cities: A systematic literature review. Cities 2018, 81, 1–23. [Google Scholar]
- Conoscenti, M.; Vetro, A.; Martin, J.C.D. Blockchain for the internet of things: A systematic literature review. In Proceeding of the 3rd International Conference on Computer Systems and Applications, Agadir, Morocco, 29 November–2 December 2016; pp. 1–6. [Google Scholar]
- Jabbar, R.; Dhib, E.; Said, A.B.; Krichen, M.; Fetais, N.; Zaidan, E.; Barkaoui, K. Blockchain Technology for Intelligent Transportation Systems: A Systematic Literature Review. IEEE Access 2022, 10, 20995–21031. [Google Scholar] [CrossRef]
- Mamoshina, P.; Ojomoko, L.; Yanovich, Y.; Ostrovski, A.; Botezatu, A.; Prikhodko, P.; Izumchenko, E.; Aliper, A.; Romantsov, K.; Zhebrak, A.; et al. Converging blockchain and next-generation artificial intelligence technologies to decentralize and accelerate biomedical research and healthcare. Oncotarget 2018, 9, 5665. [Google Scholar]
- D’Orey, P.M.; Ferreira, M. ITS for Sustainable Mobility: A Survey on Applications and Impact Assessment Tools. IEEE Trans. Intell. Transp. Syst. 2013, 15, 477–493. [Google Scholar] [CrossRef]
- Panarello, A.; Tapas, N.; Merlino, G.; Longo, F.; Puliafito, A. Blockchain and IoT Integration: A Systematic Survey. Sensors 2018, 18, 2575. [Google Scholar]
- Boustani, N.M. Artificial intelligence impact on banks clients and employees in an Asian developing country. J. Asia Bus. Stud. 2021, 16, 267–278. [Google Scholar] [CrossRef]
- Banerjee, M.; Lee, J.; Choo, K.-K.R. A blockchain future for internet of things security: A position paper. Digit. Commun. Networks 2018, 4, 149–160. [Google Scholar]
- Halim, N.S.A.; Rahman, M.A.; Azad, S.; Kabir, M.N. Blockchain Security Hole: Issues and Solutions. In Proceedings of the International Conference of Reliable Information and Communication Technology, Johor Bahru, Malaysia, 23–24 April 2017; pp. 739–746. [Google Scholar]
- Lord, R. Blockchain in Health Care: The good, the Bad and the Ugly. 2018. Available online: https://www.forbes.com/sites/forbestechcouncil/2018/04/13/Blockchain-in-health-care-thegood-the-bad-and-the-ugly/#4ce669f16278 (accessed on 17 April 2022).
- Xu, R.; Nikouei, S.Y.; Nagothu, D.; Fitwi, A.; Chen, Y. BlendSPS: A BLockchain-ENabled Decentralized Smart Public Safety System. Smart Cities 2020, 3, 928–951. [Google Scholar] [CrossRef]
- Alnahari, M.S.; Ariaratnam, S.T. The Application of Blockchain Technology to Smart City Infrastructure. Smart Cities 2022, 5, 979–993. [Google Scholar] [CrossRef]
- Venkatesh, V.; Morris, M.G.; Davis, G.B.; Davis, F.D. User Acceptance of Information Technology: Toward a Unified View. MIS Q. 2003, 27, 425–478. [Google Scholar] [CrossRef] [Green Version]
- Prodanovic, K. The Public Sector Will Bring the IoT into the Mainstream, Truphone, 2019. Available online: https://medium.com/truphone/the-public-sector-will-bring-iot-into-the-mainstream-e6ddbf81d6a5 (accessed on 17 April 2022).
- Chatterjee, S.; Kar, A.K.; Gupta, M. Success of IoT in Smart Cities of India: An empirical analysis. Gov. Inf. Q. 2018, 35, 349–361. [Google Scholar] [CrossRef]
- Ismail, N. How IoT is Changing the Game in the Public Sector—Information Age. 2017. Available online: https://www.information-age.com/iot-changing-game-public-sector-123469870/ (accessed on 2 February 2020).
- Kshetri, N. The economics of the Internet of Things in the Global South. Third World Q. 2016, 38, 311–339. [Google Scholar] [CrossRef] [Green Version]
- Brooks, A. IoT Based Intelligent Traffic Management System for Smart City, 2019. Available online: https://www.iihglobal.com/blog/intelligent-traffic-management-system/ (accessed on 2 February 2020).
- Venkatesh, V.Y.L.; Thong, J.; Xu, X. Consumer acceptance and use of information Technology: Extending the unified theory of acceptance and use of technology. MIS Q. 2012, 36, 157–178. [Google Scholar]
- Chohan, S.R.; Hu, G.; Si, W.; Pasha, A.T. Synthesizing e-government maturity model: A public value paradigm towards digital Pakistan. Transform. Gov. People Process Policy 2020, 14, 495–522. [Google Scholar]
- Chohan, S.R.; Hu, G. Success Factors Influencing Citizens’ Adoption of IoT Service Orchestration for Public Value Creation in Smart Government. IEEE Access 2020, 8, 208427–208448. [Google Scholar] [CrossRef]
- Mahmood, M.; Weerakkody, V.; Chen, W. The influence of transformed government on citizen trust: Insights from Bahrain. Inf. Technol. Dev. 2018, 25, 275–303. [Google Scholar] [CrossRef]
- Van Dijck, J. Governing digital societies: Private platforms, public values. Comput. Law Secur. Rev. 2020, 36, 105377. [Google Scholar] [CrossRef]
- Albesher, A.; Brooks, L. Trustworthiness as a source of long-term e-government adoption. In Proceedings of the Eighth Saudi Students Conference in the UK, London, UK, 31 January–1 February 2015; pp. 53–62. [Google Scholar] [CrossRef]
- Alshehri, M.; Drew, S.; Alhussain, T.; Alghamdi, R. The effects of website quality on adoption of E-government service: An Empirical study applying UTAUT model using SEM, Australasian Conference On Information Systems. arXiv 2012, arXiv:1211.2410. [Google Scholar]
- AlHogail, A. Improving IoT Technology Adoption through Improving Consumer Trust. Technologies 2018, 6, 64. [Google Scholar] [CrossRef] [Green Version]
- Gao, L.; Bai, X. A unified perspective on the factors influencing consumer acceptance of internet of things technology. Asia Pac. J. Mark. Logist. 2014, 26, 211–231. [Google Scholar]
- Bigne, E.; Ruiz, C.; Sanz, S. Key drivers of mobile commerce adoption. An exploratory study of Spanish mobile users. J. Theor. Appl. Electron. Commer. Res. 2007, 2, 48–60. [Google Scholar]
- Aldás-Manzano, J.; Ruiz-Mafé, C.; Sanz-Blas, S. Exploring individual personality factors as drivers of M-shopping acceptance. Ind. Manag. Data Syst. 2009, 109, 739–757. [Google Scholar] [CrossRef]
- Rogers, E.M. Diffusion of Innovations; Free Press: New York, NY, USA, 1995. [Google Scholar]
- El-Haddadeh, R.; Weerakkody, V.; Osmani, M.; Thakker, D.; Kapoor, K.K. Examining citizens’ perceived value of internet of things technologies in facilitating public sector services engagement. Gov. Inf. Q. 2018, 36, 310–320. [Google Scholar] [CrossRef] [Green Version]
- Harrison, C.; Eckman, B.; Hamilton, R.; Hartswick, P.; Kalagnanam, J.; Paraszczak, J.; Williams, P. Foundations for smarter cities. IBM J. Res. Dev. 2010, 54, 1–16. [Google Scholar]
- Laila, A.-O.; Hosam, A.-S.; Ibrahim, A.A.; Nasser, A. Students’ intention to adopt e-government learning services: A developing country perspective. Libr. Hi Tech 2020, 39, 308–334. [Google Scholar] [CrossRef]
- Buckwalter, N.D. The Potential for Public Empowerment through Government-Organized Participation. Public Adm. Rev. 2014, 74, 573–584. [Google Scholar] [CrossRef] [Green Version]
- Chatfield, A.T.; Reddick, C.G. A framework for Internet of Things-enabled smart government: A case of IoT cybersecurity policies and use cases in U.S. federal government. Gov. Inf. Q. 2019, 36, 346–357. [Google Scholar] [CrossRef]
- Kankanhalli, A.; Charalabidis, Y.; Mellouli, S. IoT and AI for Smart Government: A Research Agenda. Gov. Inf. Q. 2019, 36, 304–309. [Google Scholar] [CrossRef]
- Alshibly, H.; Aisbett, J.; Pires, G. A Characterisation of Consumer Empowerment Drawn from Three Views of Power. In Developments in Marketing Science: Proceedings of the Academy of Marketing Science; Springer: Berlin/Heidelberg, Germany, 2015; pp. 208–213. [Google Scholar] [CrossRef]
- Giesbrecht, T.; Scholl, H.J.; Schwabe, G. Smart advisors in the front office: Designing employee-empowering and citizen-centric services. Gov. Inf. Q. 2016, 33, 669–684. [Google Scholar] [CrossRef] [Green Version]
- Naranjo-Zolotov, M.; Oliveira, T.; Cruz-Jesus, F.; Martins, J.; Gonçalves, R.; Branco, F.; Xavier, N. Examining social capital and individual motivators to explain the adoption of online citizen participation. Futur. Gener. Comput. Syst. 2018, 92, 302–311. [Google Scholar]
- Atlam, H.F.; Alenezi, A.; Alassafi, M.O.; Wills, G.B. Blockchain with internet of things: Benefits, challenges, and future directions. Int. J. Intell. Syst. Appl. 2018, 10, 40–48. [Google Scholar]
- Minoli, D.; Occhiogrosso, B. Blockchain mechanisms for IoT security. Internet Things 2018, 1–2, 1–13. [Google Scholar] [CrossRef]
- Boustani, N.M.; Elisabetta, M. Smart Insurance Contracts Shielding Pandemic Business Disruption in Developing Countries and Blockchain Solution. FinTech 2022, 1, 294–309. [Google Scholar] [CrossRef]
- Adere, E.M. Blockchain in healthcare and IoT: A systematic literature review. Array 2022, 14, 100139. [Google Scholar] [CrossRef]
- Hair, J.F.; Sarstedt, M.; Pieper, T.M.; Ringle, C.M. The Use of Partial Least Squares Structural Equation Modeling in Strategic Management Research: A Review of Past Practices and Recommendations for Future Applications. Long Range Plan. 2012, 45, 320–340. [Google Scholar]
- Henseler, J.; Ringle, C.M.; Sinkovics, R.R. The Use of Partial Least Squares Path Modeling in International Marketing. In New Challenges to International Marketing; Sinkovics, R.R., Ghauri, P.N., Eds.; Emerald Group Publishing Limited: Bingley, UK, 2009; pp. 277–319. [Google Scholar]
- Hair, J.F., Jr.; Sarstedt, M.; Hopkins, L.; Kuppelwieser, V.G. Partial least squares structural equation modeling (PLS-SEM): An emerging tool in business research. Eur. Bus. Review 2014, 26, 106–121. [Google Scholar]
- Ringle, C.; Da Silva, D.; Bido, D. Structural equation modeling with the SmartPLS. Structural Equation Modeling with the Smartpls. Braz. J. Mark. 2015, 13, 56–73. [Google Scholar]
- Hair, J.F.; Risher, J.J.; Sarstedt, M.; Ringle, C.M. When to use and how to report the results of PLS-SEM. Eur. Bus. Rev. 2019, 31, 2–24. [Google Scholar]
- Lee, N.; Cadogan, J.W. Problems with formative and higher-order reflective variables. J. Bus. Res. 2013, 66, 242–247. [Google Scholar]
- Jarvis, C.B.; MacKenzie, S.B.; Podsakoff, P.M. A Critical Review of Construct Indicators and Measurement Model Misspecification in Marketing and Consumer Research. J. Consum. Res. 2003, 30, 199–218. [Google Scholar]
- Becker, J.-M.; Klein, K.; Wetzels, M. Hierarchical latent variable models in PLS-SEM: Guidelines for using reflective-formative type models. Long Range Plan. 2012, 45, 359–394. [Google Scholar]
- Hair, J.F., Jr.; Hult, G.T.M.; Ringle, C.; Sarstedt, M. A Primer on Partial Least Squares Structural Equation Modeling (PLS-SEM); Sage Publications: New York, NY, USA, 2016. [Google Scholar]
- Duarte, P.; Amaro, S. Methods for modelling reflective-formative second order constructs in pls: An application to online travel shopping. J. Hosp. Tour. Technol. 2018, 9, 295–313. [Google Scholar]
- Sundmaeker, H.; Guillemin, P.; Friess, P.; Woelfflé, S. Vision and Challenges for Realizing the Internet of Things; European Commission: Brussels, Belgium, 2010. [Google Scholar]
- Li, N.; Jain, J.J.; Busso, C. Modeling of driver behavior in real world scenarios using multiple noninvasive sensors. IEEE Trans. Multimed. 2013, 15, 1213–1225. [Google Scholar]
- Zhang, F.; Cecchetti, E.; Croman, K.; Juels, A.; Shi, E. Town crier: An authenticated data feed for smart contracts. In Proceedings of the 2016 ACM sIGSAC Conference on Computer and Communications Security, Vienna, Austria, 24–28 October 2016; pp. 270–282. [Google Scholar]
- Perera, C.; Zaslavsky, A.; Christen, P.; Georgakopoulos, D. Sensing as a Service Model for Smart Cities Supported by Internet of Things; Transactions on Emerging Telecommunications Technologies (ETT); Wiley: Hoboken, NJ, USA, 2013; Volume 25, pp. 81–93. [Google Scholar]
- Zaslavsky, A.; Perera, C.; Georgakopoulos, D. Sensing as a service and big data. arXiv 2013, arXiv:1301.0159. [Google Scholar]
- Hong, J.; Wentao, L.; Shukuan, Z.; Yong, C. Technology standardization, competitive behavior, and ‘enterprises’ performance of innovation: A conceptual model. Libr. Hi Tech 2019, 38, 251–269. [Google Scholar] [CrossRef]
- Ying, M.; Kang, P.; Chen, W.; Long, C.; Hui, S.; Dazhi, C. Artificial Intelligence powered Internet of Things and smart public service. Libr. Hi Tech 2019, 38, 165–179. [Google Scholar] [CrossRef]
- Komninos, N. Intelligent City Strategies: Setting Global Innovation Environments. In Intelligent Cities: Towards Interactive And Global Innovation Environments; Inderscience: Geneva, Switzerland, 2009; pp. 343–347. [Google Scholar]
- Galichet, F. La sécurité, une Valeur Civique? Éduquer: Digital Resources in the Humanities and Social Sciences: Paris, France, 2008; pp. 1–11. [Google Scholar] [CrossRef]
- Ceyhan, A. Analyser la Sécurité: Dillon, Waever, Williams et les Autres; Cultures Et Conflits: Paris, France, 1998. [Google Scholar] [CrossRef] [Green Version]
- Axworthy, L. La Sécurité Humaine: La Sécurité Des Individus Dans Un Monde En Mutation; Politique étrangère: Paris, France, 1999; Volume 64, pp. 33–42. [Google Scholar] [CrossRef]
- Ceyhan, A. Technologie et sécurité: Une Gouvernance libérale dans un Contexte d’incertitudes; Cultures & Conflits: Paris, France, 2006; pp. 11–32. [Google Scholar] [CrossRef] [Green Version]
- Wu, Y.; Zhang, L.; Berretti, S.; Wan, S. Medical Image Encryption by Content-aware DNA Computing for Secure Healthcare. IEEE Trans. Ind. Inform. 2022, 19, 2089–2098. [Google Scholar] [CrossRef]
- Wu, Y.; Cao, H.; Yang, G.; Lu, T.; Wan, S. Digital Twin of Intelligent Small Surface Defect Detection with Cyber-Manufacturing Systems. ACM Trans. Internet Technol. 2022. accepted. [Google Scholar] [CrossRef]
- Boustani, N.M. Traditional Banks and Fintech: Survival, Future and Threats. In ICT for an Inclusive World. Lecture Notes in Information Systems and Organisation; Baghdadi, Y., Harfouche, A., Musso, M., Eds.; Springer: Cham, Switzerland, 2020; Volume 35. [Google Scholar] [CrossRef]
R Square | R Square Adjusted | |
---|---|---|
Blockchain adoption in smart cities | 0.549 | 0.549 |
CUI | 0.423 | 0.423 |
IoT | 0.990 | 0.990 |
Path | f-Square |
---|---|
IoT -> Blockchain adoption in smart cities | 0.217 |
Blockchain adoption in smart cities -> CUI | 0.734 |
CEV -> IoT | 1.994 |
DSAV -> IoT | 2.422 |
PTV -> IoT | 2.335 |
PV -> IoT | 3.036 |
SIV -> IoT | 2.271 |
Factor | Construct Items | Loading | p Values | CR | AVE |
---|---|---|---|---|---|
Public trust value (PTV) | Q2.2 | 0.778 | 0.000 | 0.817 | 0.598 |
Q2.3 | 0.755 | 0.000 | |||
Q2.4 | 0.787 | 0.000 | |||
Social influence value (SIV) | Q3.2 | 0.746 | 0.000 | 0.798 | 0.552 |
Q3.3 | 0.750 | 0.000 | |||
Q3.4 | 0.764 | 0.000 | |||
Digital social affinity value (DSAV) | Q4.1 | 0.815 | 0.000 | 0.843 | 0.642 |
Q4.3 | 0.799 | 0.000 | |||
Q4.4 | 0.789 | 0.000 | |||
Public Value (PV) | Q5.1 | 0.723 | 0.000 | 0.802 | 0.574 |
Q5.2 | 0.744 | 0.000 | |||
Q5.4 | 0.804 | 0.000 | |||
Citizen empowerment value (CEV) | Q8.1 | 0.786 | 0.000 | 0.820 | 0.603 |
Q8.3 | 0.779 | 0.000 | |||
Q8.4 | 0.764 | 0.000 | |||
Blockchain adoption in smart cities | Q7.1 | 0.784 | 0.000 | 0.833 | 0.625 |
Q7.3 | 0.828 | 0.000 | |||
Q7.5 | 0.759 | 0.000 | |||
Continuous usage intention (CUI) | Q6.1 | 0.755 | 0.000 | 0.786 | 0.551 |
Q6.2 | 0.735 | 0.000 | |||
Q6.4 | 0.736 | 0.000 |
Blockchain Adoption in Smart Cities | CEV | CUI | DSAV | IOT | PTV | PV | |
---|---|---|---|---|---|---|---|
CEV | 0.857 | ||||||
CUI | 0.209 | 0.382 | |||||
DSAV | 0.899 | 0.463 | 0.866 | ||||
IOT | 0.729 | 0.768 | 0.056 | 0.441 | |||
PTV | 0.850 | 0.633 | 0.670 | 0.815 | 0.343 | ||
PV | 0.651 | 0.560 | 0.150 | 0.884 | 0.791 | 0.578 | |
SIV | 0.852 | 0.485 | 0.872 | 0.309 | 0.076 | 0.891 | 0.418 |
Relationships | Hypothesis | Loading | Standard Deviation (STDEV) | p Value | Hypothesis Verification |
---|---|---|---|---|---|
PTV → IOT | H1a | 0.222 *** | 0.009 | 0.000 | Supported |
SIV → IOT | H1b | 0.220 *** | 0.009 | 0.000 | Supported |
DSAV → IOT | H1c | 0.261 *** | 0.012 | 0.000 | Supported |
PV → IOT | H1d | 0.249 *** | 0.011 | 0.000 | Supported |
CEV → IOT | H1e | 0.231 *** | 0.010 | 0.000 | Supported |
IOT → Blockchain adoption in smart cities | H2 | 0.741 *** | 0.023 | 0.000 | Supported |
Blockchain adoption in smart cities → CUI | H3 | 0.651 *** | 0.029 | 0.000 | Supported |
IOT → Blockchain adoption in smart cities → CUI | H4 | 0.482 *** | 0.034 | 0.000 | Supported |
Loading | Standard Deviation (STDEV) | T Statistics | p Values | |
---|---|---|---|---|
CEV -> IOT -> Blockchain adoption in smart cities -> CUI | 0.112 *** | 0.007 | 16.826 | 0.000 |
DSAV -> IOT -> Blockchain adoption in smart cities -> CUI | 0.126 *** | 0.007 | 18.041 | 0.000 |
PTV -> IOT -> Blockchain adoption in smart cities -> CUI | 0.107 *** | 0.008 | 14.101 | 0.000 |
PV -> IOT -> Blockchain adoption in smart cities -> CUI | 0.120 *** | 0.012 | 10.220 | 0.000 |
SIV -> IOT -> Blockchain adoption in smart cities -> CUI | 0.106 *** | 0.008 | 13.402 | 0.000 |
IOT -> Blockchain adoption in smart cities -> CUI | 0.482 *** | 0.034 | 14.021 | 0.000 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Boustani, N.M.; Xu, Q.; Xu, Y. Getting Smarter: Blockchain and IOT Mixture in China Smart Public Services. Smart Cities 2022, 5, 1811-1828. https://doi.org/10.3390/smartcities5040090
Boustani NM, Xu Q, Xu Y. Getting Smarter: Blockchain and IOT Mixture in China Smart Public Services. Smart Cities. 2022; 5(4):1811-1828. https://doi.org/10.3390/smartcities5040090
Chicago/Turabian StyleBoustani, Nada Mallah, Qing Xu, and Yan Xu. 2022. "Getting Smarter: Blockchain and IOT Mixture in China Smart Public Services" Smart Cities 5, no. 4: 1811-1828. https://doi.org/10.3390/smartcities5040090
APA StyleBoustani, N. M., Xu, Q., & Xu, Y. (2022). Getting Smarter: Blockchain and IOT Mixture in China Smart Public Services. Smart Cities, 5(4), 1811-1828. https://doi.org/10.3390/smartcities5040090