Smart and Sentient Retail High Streets
Abstract
:1. Introduction
“People in the streets/Please/People in the streets/Please”[1]
2. Retail High Streets
3. The Technological Substrate of the Smart Retail High Street
3.1. Linked Data
3.2. Wireless Communications
3.3. Near-Field Communications
3.4. The Internet of Things
3.5. Location-Aware Technologies
3.6. Sensors
4. An Argument for Sentient Retail High Streets
4.1. Wearables
4.2. Cameras and Computer Vision
4.3. Edge Computing
5. Capabilities for Smart and Sentient Retail High Streets
5.1. Geo-Targeting
5.2. Wi-Edge
5.3. High Street Retail Recommender Systems
5.4. Community as a Platform
5.5. High Street Advertising Exchanges
5.6. Customer Journey Information Systems
5.7. Context-Aware Retail Intelligence
5.8. Augmented and Extended Reality
5.9. Deep Streetscapes
5.10. Contactless and Frictionless Shopping
5.11. New Landscapes for Public Privacy
6. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
References
- Yorke, T.; Greenwood, J. The same. In The Smile. A Light for Attracting Attention; Self Help Tapes LLP; XL Recordings; Kobalt Music Publishing; Warner Chappell Music Ltd.: London, UK, 2022. [Google Scholar]
- Townsend, A.M. Smart Cities: Big Data, Civic Hackers, and the Quest for a New Utopia; W. W. Norton: New York, NY, USA, 2013. [Google Scholar]
- Torrens, P.M.; Li, X.; Griffin, W.A. Building agent-based walking models by machine-learning on diverse databases of space-time trajectory samples. Trans. Geogr. Inf. Sci. 2011, 15, 67–94. [Google Scholar] [CrossRef]
- Dourish, P. Where the Action Is: The Foundations of Embodied Interaction; MIT Press: Cambridge, MA, USA, 2001. [Google Scholar]
- Dawson, J.A. Futures for the high street. Geogr. J. 1988, 154, 1–12. [Google Scholar] [CrossRef]
- UK Ministry of Housing Communities & Local Government. The High Street Report. Available online: https://www.gov.uk/government/publications/the-high-street-report (accessed on 14 February 2022).
- Talen, E.; Jeong, H. Does the classic American main street still exist? An exploratory look. J. Urban Des. 2019, 24, 78–98. [Google Scholar] [CrossRef]
- Brown, S. Retail location at the micro-scale: Inventory and prospect. Serv. Ind. J. 1994, 14, 542–576. [Google Scholar] [CrossRef]
- Torrens, P.M. Where in the world? Exploring the factors driving place location knowledge among secondary level students in Dublin, Ireland. J. Geog. 2001, 100, 49–61. [Google Scholar] [CrossRef]
- Dolega, L.; Lord, A. Exploring the geography of retail success and decline: A case study of the Liverpool City Region. Cities 2020, 96, 102456. [Google Scholar] [CrossRef]
- Peterson, H. The Retail Apocalypse Has Officially Descended on America. Available online: https://www.businessinsider.com/the-retail-apocalypse-has-officially-descended-on-america-2017-3 (accessed on 5 August 2021).
- Bunting, T.E.; Millward, H. A tale of two CBDs I: The decline and revival (?) of downtown retailing in Halifax and Kitchener. Can. J. Urban Res. 1998, 7, 139–166. [Google Scholar]
- Duany, A.; Plater-Zyberk, E.; Speck, J. Suburban Nation: The Rise of Sprawl and the Decline of the American Dream; North Point Press: New York, NY, USA, 2000. [Google Scholar]
- Filion, P.; Hammond, K. When planning fails: Downtown malls in mid-size cities. Can. J. Urban Res. 2008, 17, 1–27. [Google Scholar]
- Morris, R.L.; Zisman, S.B. The pedestrian, downtown, and the planner. J. Am. Inst. Plann. 1962, 28, 152–158. [Google Scholar] [CrossRef]
- Robertson, K.A. Downtown retail activity in large American cities 1954-1977. Geogr. Rev. 1983, 73, 314–323. [Google Scholar] [CrossRef]
- Robertson, K.A. Downtown retail revitalization: A review of American development strategies. Plan. Perspect. 1997, 12, 383–401. [Google Scholar] [CrossRef]
- Robertson, K.A. Can small-city downtowns remain viable? J. Am. Plann. Assoc. 1999, 65, 270–283. [Google Scholar] [CrossRef]
- Sternlieb, G. The future of retailing in the downtown core. J. Am. Inst. Plann. 1963, 29, 102–112. [Google Scholar] [CrossRef]
- Weisbrod, G.; Pollakowski, H.O. Effects of downtown improvement projects on retail activity. J. Am. Plann. Assoc. 1984, 50, 148–161. [Google Scholar] [CrossRef]
- Zimmerman, A. Can retailers halt ‘showrooming’? Stores test new services, selection; it’s about price. The Wall Street Journal, 11 April 2012. Available online: https://www.wsj.com/articles/SB10001424052702304587704577334370670243032(accessed on 23 July 2021).
- Heynen, N.; Kurtz, H.E.; Trauger, A. Food justice, hunger and the city. Geogr. Compass 2012, 6, 304–311. [Google Scholar] [CrossRef]
- Barwitz, N.; Maas, P. Understanding the omnichannel customer journey: Determinants of interaction choice. J. Interact. Mark. 2018, 43, 116–133. [Google Scholar] [CrossRef]
- Ieva, M.; Ziliani, C. Mapping touchpoint exposure in retailing: Implications for developing an omnichannel customer experience. Int. J. Retail. Distrib. Manag. 2018, 46, 304–322. [Google Scholar] [CrossRef]
- Iftikhar, R.; Pourzolfaghar, Z.; Helfert, M. Omnichannel value chain: Mapping digital technologies for channel integration activities. In Advances in Information Systems Development: Information Systems Beyond 2020. ISD 2019. Lecture Notes in Information Systems and Organisation; Siarheyeva, A., Barry, C., Lang, M., Linger, H., Schneider, C., Eds.; Springer International Publishing: Cham, Switzerland, 2020; Volume 39, pp. 74–92. [Google Scholar]
- Torrens, P.M. Data science for pedestrian and high street retailing as a framework for advancing urban informatics to individual scales. Urban Inform. 2022, 1, 9. [Google Scholar] [CrossRef]
- Liu, X.; Chen, M.; Claramunt, C.; Batty, M.; Kwan, M.-P.; Senousi, A.M.; Cheng, T.; Strobl, J.; Arzu, C.; Wilson, J.; et al. Geographic information science in the era of geospatial big data: A cyberspace perspective. The Innovation 2022, 3, 100279. [Google Scholar] [CrossRef]
- Crooks, A.T.; Schechtner, K.; Dey, A.K.; Hudson-Smith, A. Creating smart buildings and cities. IEEE Pervas. Comput. 2017, 16, 23–25. [Google Scholar] [CrossRef]
- Batty, M. Big data, smart cities and city planning. Dialogues Hum. Geogr. 2013, 3, 274–279. [Google Scholar] [CrossRef] [PubMed]
- Curzon, J.; Almehmadi, A.; El-Khatib, K. A survey of privacy enhancing technologies for smart cities. Pervasive Mob. Comput. 2019, 55, 76–95. [Google Scholar] [CrossRef]
- Nara, A.; Torrens, P.M. Spatial and temporal analysis of pedestrian egress behavior and efficiency. In Association of Computing Machinery (ACM) Advances in Geographic Information Systems; Samet, H., Shahabi, C., Schneider, M., Eds.; Association of Computing Machinery: New York, NY, USA, 2007; pp. 284–287. [Google Scholar]
- Torrens, P.M. Agent models of customer journeys on retail high streets. J. Econ. Interact. Coord. 2022. [Google Scholar] [CrossRef] [PubMed]
- Torrens, P.M. Artificial intelligence and behavioral geography. In Handbook of Behavioral and Cognitive Geography; Montello, D.R., Ed.; Edward Elgar Publishing: Cheltnam, UK, 2018; pp. 357–372. [Google Scholar]
- Weiser, M. The Computer for the 21st Century. Sci. Am. 1991, 265, 94–104. [Google Scholar] [CrossRef]
- Weiser, M. Some computer science problems in ubiquitous computing. Commun. ACM 1993, 36, 74–83. [Google Scholar] [CrossRef]
- Berendes, C.I.; Bartelheimer, C.; Betzing, J.H.; Beverungen, D. Data-driven customer journey mapping in local high streets: A domain-specific modeling language. In Proceedings of the 39th International Conference on Information Systems (ICIS 2018): Bridging the Internet of People, Data, and Things, San Francisco, CA, USA, 13–18 December 2018; Baskerville, R., Nickerson, R., Eds.; Curran Associates, Inc.: Red Hook, NY, USA, 2018; pp. 218–227. [Google Scholar]
- Bartelheimer, C.; Betzing, J.H.; Berende, C.I.; Beverungen, D. Designing multi-sided community platforms for local high street retail. In Proceedings of the 26th European Conference on Information Systems (ECIS 2018), Portsmouth, UK, 23–28 June 2018; Bednar, P.M., Frank, U., Kautz, K., Eds.; Association for Information Systems: Atlanta, GA, USA, 2018; p. 140. [Google Scholar]
- Berendes, C.I. Towards analyzing high street customer trajectories—A data-driven case study. In Lecture Notes in Business Information, Proceedings of the Business Information Systems Workshops. BIS 2019 International Workshops, Seville, Spain, 26–28 June 2019. Revised Papers; Abramowicz, W., Corchuelo, R., Eds.; Springer Nature: Cham, Switzerland, 2019; pp. 313–324. [Google Scholar]
- Croitoru, A.; Wayant, N.; Crooks, A.; Radzikowski, J.; Stefanidis, A. Linking cyber and physical spaces through community detection and clustering in social media feeds. Comput. Environ. Urban Syst. 2015, 53, 47–64. [Google Scholar] [CrossRef]
- Janowicz, K.; Gao, S.; McKenzie, G.; Hu, Y.; Bhaduri, B. GeoAI: Spatially explicit artificial intelligence techniques for geographic knowledge discovery and beyond. Int. J. Geogr. Inf. Sci. 2020, 34, 625–636. [Google Scholar] [CrossRef]
- Terziyan, V.; Kaykova, O. Towards “Executable Reality”: Business intelligence on top of Linked Data. In Proceedings of the BUSTECH 2011: The First International Conference on Business Intelligence and Technology, Rome, Italy, 25–30 September 2011; International Academy, Research, and Industry Association (IARIA): Rome, Italy, 2011; pp. 26–33. [Google Scholar]
- Bizer, C.; Heath, T.; Berners-Lee, T. Linked data: The story so far. Int. J. Semant. Web Inf. 2011, 5, 205–227. [Google Scholar]
- Townsend, A.M. Life in the real-time city: Mobile telephones and urban metabolism. J. Urban Technol. 2000, 7, 85–104. [Google Scholar] [CrossRef]
- Fessenden, R.A. Apparatus for Wireless Telegraphy. U.S. Patent US706736A, 12 August 1902. [Google Scholar]
- Grant, J. Experiments and results in wireless telephony. Am. Teleph. J. 1907, 26, 49–51. [Google Scholar]
- Torrens, P.M. Wi-Fi geographies. Ann. Assoc. Am. Geogr. 2008, 98, 59–84. [Google Scholar] [CrossRef] [Green Version]
- Hong, L.; Fu, C.; Torrens, P.M.; Frias-Martinez, V. Understanding citizens’ and local governments’ digital communications during natural disasters: The case of snowstorms. In Proceedings of the 2017 Association for Computing Machinery Web Science Conference, Troy, NY, USA, 26–28 June 2017; pp. 141–150. [Google Scholar]
- He, J.; Hong, L.; Frias-Martinez, V.; Torrens, P.M. Uncovering social media reaction pattern to protest events: A spatiotemporal dynamics perspective of Ferguson unrest. In Lecture Notes in Computer Science 9471. Social Informatics. Proceedings of the 7th International Conference, SocInfo 2015, Beijing, China, 9–12 December 2015; Liu, T.-Y., Scollon, N.C., Zhu, W., Eds.; Springer: Berlin/Heidelberg, Germany, 2015; pp. 67–81. [Google Scholar]
- Vieira, M.R.; Frías-Martínez, V.; Oliver, N.; Frías-Martínez, E. Characterizing dense urban areas from mobile phone-call data: Discovery and social dynamics. In Proceedings of the 2010 IEEE Second International Conference on Social Computing (SocialCom), Minneapolis, MN, USA, 20–22 August 2010; Pentland, A.S., Ed.; IEEE: Los Alamitos, CA, USA, 2010; pp. 241–248. [Google Scholar]
- Li, R.; Zhao, Z.; Zhou, X.; Ding, G.; Chen, Y.; Wang, Z.; Zhang, H. Intelligent 5G: When cellular networks meet artificial intelligence. IEEE Wirel. Commun. 2017, 24, 175–183. [Google Scholar] [CrossRef]
- Frías-Martínez, V.; Soguero, C.; Frías-Martínez, E. Estimation of urban commuting patterns using cellphone network data. In Proceedings of the 2012 ACM SIGKDD International Workshop on Urban Computing, Beijing, China, 12–16 August 2012; Yang, Q., Ed.; ACM: New York, NY, USA, 2012; pp. 9–16. [Google Scholar]
- Frías-Martínez, V.; Virseda, J. Cell phone analytics: Scaling human behavior studies into the millions. Inf. Technol. Dev. 2013, 9, 35–50. [Google Scholar]
- Torrens, P.M. Exploring behavioral regions in agents’ mental maps. Ann. Reg. Sci. 2016, 57, 309–334. [Google Scholar] [CrossRef]
- Torrens, P.M. Slipstreaming human geosimulation in virtual geographic environments. Ann. GIS 2015, 21, 325–344. [Google Scholar] [CrossRef]
- Torrens, P.M. High-fidelity behaviours for model people on model streetscapes. Ann. GIS 2014, 20, 139–157. [Google Scholar] [CrossRef]
- He, Z.; Wilson, J. Path intelligence GSM Sensor: A novel enabling technology for retail mobile location analytics. In Proceedings of the 2016 IEEE 83rd Vehicular Technology Conference (VTC Spring), Nanjing, China, 15–18 May 2016; You, X., Fan, P., Li, S., Eds.; IEEE: Los Alamitos, CA, USA, 2016; pp. 1–5. [Google Scholar]
- Jeffus, B.; Zeltmann, S.; Griffin, K.; Chen, A. The future of mobile electronic payments. J. Compet. Stud. 2017, 25, 216–222. [Google Scholar]
- Anderson, R.; Murdoch, S.J. EMV: Why payment systems fail. Commun. ACM 2014, 57, 24–28. [Google Scholar] [CrossRef]
- Ondrus, J.; Pigneur, Y. Near field communication: An assessment for future payment systems. Inf. Syst. E-Bus. Manag. 2009, 7, 347–361. [Google Scholar] [CrossRef]
- Basili, A.; Liguori, W.; Palumbo, F. NFC smart tourist card: Combining mobile and contactless technologies towards a smart tourist experience. In Proceedings of the 2014 IEEE 23rd International Conference on Enabling Technologies, Infrastructure for Collaborative Enterprises (WETICE), Emilia Romagna, Italy, 23–25 June 2014; Bergenti, F., Cabri, G., Eds.; IEEE: Los Alamitos, CA, USA, 2014; pp. 249–254. [Google Scholar]
- Jadhav, S.; Kamath, S.; Yadav, S.; Rajput, A.; Sakure, P. Smart shopping application using NFC. Int. J. Eng. Res. Technol. 2018, 5, 1521–1524. [Google Scholar]
- Resatsch, F.; Karpischek, S.; Sandner, U.; Hamacher, S. Mobile sales assistant: NFC for retailers. In Proceedings of the MobileHCI07: 9th International Conference in Human Computer Interaction with Mobile Devices and Services, Singapore, 9–12 September 2007; Cheok, A.D., Chittaro, L., Eds.; Association for Computing Machinery: New York, NY, USA, 2007; pp. 313–316. [Google Scholar]
- Karjol, S.; Holla, A.K.; Abhilash, C.B.; Amrutha, P.V.; Manohar, Y.V. An IOT based smart shopping cart for smart shopping. In Cognitive Computing and Information Processing. CCIP 2017. Communications in Computer and Information Science; Nagabhushan, T.N., Aradhya, V.N.M., Jagadeesh, P., Shukla, S., Chayadevi, M.L., Eds.; Springer: Singapore, 2018; Volume 801, pp. 373–385. [Google Scholar]
- Reades, J.; Zhong, C.; Manley, E.; Milton, R.; Batty, M. Finding pearls in London’s oysters. Built Environ. 2016, 42, 365–381. [Google Scholar] [CrossRef] [Green Version]
- Roth, C.; Kang, S.M.; Batty, M.; Barthélemy, M. Structure of urban movements: Polycentric activity and entangled hierarchical flows. PLoS ONE 2011, 6, e15923. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mishra, S.; Welch, T.F.; Torrens, P.M.; Fu, C.; Zhu, H.; Knaap, E. A tool for measuring and visualizing connectivity of transit stop, route and transfer center in a multimodal transportation network. Public Transp. 2015, 7, 77–99. [Google Scholar] [CrossRef]
- Alavi, A.H.; Jiao, P.; Buttlar, W.G.; Lajnef, N. Internet of Things-enabled smart cities: State-of-the-art and future trends. Measurement 2018, 129, 589–606. [Google Scholar] [CrossRef]
- Di Martino, S.; Rossi, S. An architecture for a mobility recommender system in smart cities. Procedia Comput. Sci. 2016, 98, 425–430. [Google Scholar] [CrossRef] [Green Version]
- Hudson-Smith, A.; Gray, S.; Ross, C.; Barthel, R.; Jode Md Warwick, C.; Terras, M. Experiments with the Internet of Things in museum space: QRator. In Proceedings of the UBICOMP’12: The 2012 ACM Conference on Ubiquitous Computing, Pittsburgh, PA, USA, 5–8 September 2012; Chu, H.-H., Hayes, G., Eds.; Association for Computing Machinery: New York, NY, USA, 2012; pp. 1183–1184. [Google Scholar]
- Dourish, P. The Internet of urban things. In Code and the City; Routledge: London, UK, 2016; pp. 27–46. [Google Scholar]
- Hudson-Smith, A.; Wilson, D.; Gray, S.; Dawkins, O. Urban IoT: Advances, Challenges, and Opportunities for Mass Data Collection, Analysis, and Visualization. In Urban Informatics; Shi, W., Goodchild, M.F., Batty, M., Kwan, M.-P., Zhang, A., Eds.; Springer: Singapore, 2021; pp. 701–719. [Google Scholar]
- Spandonidis, C.C.; Giannopoulos, F.; Sedikos, E.; Reppas, D.; Theodoropoulos, P. Development of a MEMS-based IoV system for augmenting road traffic survey. IEEE Trans. Instrum. Meas. 2022, 71, 1–8. [Google Scholar] [CrossRef]
- Hunkeler, U.; Truong, H.L.; Stanford-Clark, A. MQTT-S—A publish/subscribe protocol for Wireless Sensor Networks. In Proceedings of the Third International Conference on Communication Systems Software and Middleware and Workshops (COMSWARE’08), Bangalore, India, 6–10 January 2008; Choi, S., Kurose, J., Ramamritham, K., Eds.; IEEE: New York, NY, USA, 2008; pp. 791–798. [Google Scholar]
- Shahrour, I.; Xie, X. Role of Internet of Things (IoT) and crowdsourcing in smart city projects. Smart Cities 2021, 4, 1276–1292. [Google Scholar] [CrossRef]
- Syed, A.S.; Sierra-Sosa, D.; Kumar, A.; Elmaghraby, A. IoT in smart cities: A survey of technologies, practices and challenges. Smart Cities 2021, 4, 429–475. [Google Scholar] [CrossRef]
- Zanella, A.; Bui, N.; Castellani, A.; Vangelista, L.; Zorzi, M. Internet of Things for smart cities. IEEE Internet Things J. 2014, 1, 22–32. [Google Scholar] [CrossRef]
- Mehmood, Y.; Ahmad, F.; Yaqoob, I.; Adnane, A.; Imran, M.; Guizani, S. Internet-of-Things-based smart cities: Recent advances and challenges. IEEE Commun. Mag. 2017, 55, 16–24. [Google Scholar] [CrossRef]
- Rosa, L.; Silva, F.; Analide, C. Mobile networks and Internet of Things infrastructures to characterize smart human mobility. Smart Cities 2021, 4, 894–918. [Google Scholar] [CrossRef]
- Iqbal, A.; Olariu, S. A Survey of enabling technologies for smart communities. Smart Cities 2021, 4, 54–77. [Google Scholar] [CrossRef]
- Zualkernan, I.A.; Pasquier, M.; Shahriar, S.; Towheed, M.; Sujith, S. Using BLE beacons and machine learning for personalized customer experience in smart cafés. In Proceedings of the 2020 International Conference on Electronics, Information, and Communication (ICEIC), Barcelona, Spain, 19–22 January 2020; IEEE: Los Alamitos, CA, USA, 2020; pp. 1–6. [Google Scholar]
- Potdar, K.; Torrens, P.M. Modelling spatio-temporal patterns in pedestrian behavior at the edge with Jetson SOMs. In Proceedings of the NVIDIA GPU Technology Conference (GTC), Washington, DC, USA, 4–6 November 2019; p. DCP91291. [Google Scholar]
- Borriello, G.; Chalmers, M.; LaMarca, A.; Nixon, P. Delivering real-world ubiquitous location systems. Commun. ACM 2005, 48, 36–41. [Google Scholar] [CrossRef] [Green Version]
- Soundararaj, B.; Cheshire, J.; Longley, P. Estimating real-time high-street footfall from Wi-Fi probe requests. Int. J. Geogr. Inf. Sci. 2020, 34, 325–343. [Google Scholar] [CrossRef]
- Trasberg, T.; Soundararaj, B.; Cheshire, J. Using Wi-Fi probe requests from mobile phones to quantify the impact of pedestrian flows on retail turnover. Comput. Environ. Urban Syst. 2021, 87, 101601. [Google Scholar] [CrossRef]
- Souiden, N.; Chaouali, W.; Baccouche, M. Consumers’ attitude and adoption of location-based coupons: The case of the retail fast food sector. J. Retail. Consum. Serv. 2019, 47, 116–132. [Google Scholar] [CrossRef]
- Melià-Seguí, J.; Pous, R.; Carreras, A.; Morenza-Cinos, M.; Parada, R.; Liaghat, Z.; Porrata-Doria, R.D. Enhancing the shopping experience through RFID in an actual retail store. In Proceedings of the 2013 ACM Conference on Pervasive and Ubiquitous Computing, Zurich, Switzerland, 8–12 September 2013; Canny, J.F., Langheinrich, M., Rekimoto, J., Eds.; Association for Computing Machinery: New York, NY, USA, 2013; pp. 1029–1036. [Google Scholar]
- Li, S.; Arslan, M.; Khojastepour, A.; Krishnamurthy, S.V.; Rangarajan, S. Deeptrack: Grouping rfid tags based on spatio-temporal proximity in retail spaces. In Proceedings of the IEEE INFOCOM 2020-IEEE Conference on Computer Communications, Toronto, ON, Canada, 6–9 July 2020; Li, B., Liang, B., Eds.; IEEE: Los Alamitos, CA, USA, 2020; pp. 1271–1280. [Google Scholar]
- Ali, K.; Liu, A.X.; Chai, E.; Sundaresan, K. Monitoring browsing behavior of customers in retail stores via RFID imaging. IEEE Trans. Mob. Comput. 2020, 21, 1034–1048. [Google Scholar] [CrossRef]
- Cha, M.K.; Kim, J.O.; Lee, W.H.; Yu, K.Y. A mobile object tracking scheme by wired/wireless integrated street lights with RFID. J. Korean Soc. Geospat. Inf. Sci. 2016, 24, 25–35. [Google Scholar] [CrossRef]
- Djuknic, G.M.; Richton, R.E. Geolocation and assisted GPS. Computer 2001, 34, 123–125. [Google Scholar] [CrossRef] [Green Version]
- Ponis, S.; Aretoulaki, E.; Plakas, G.; Agalianos, K.; Maroutas, T.N. Zero-touch customer order fulfillment to support the new normal of retail in the 21st Century. In Intelligent Systems and Applications. Proceedings of the 2021 Intelligent Systems Conference (IntelliSys) Volume 2. (Lecture Notes in Networks and Systems, Volume 295.), Amsterdam, 1–2 Septembr 2022; Arai, K., Ed.; Springer International Publishing: Cham, Switzerland, 2022; pp. 1–10. [Google Scholar]
- Ghose, A.; Li, B.; Liu, S. Mobile targeting using customer trajectory patterns. Manag. Sci. 2019, 65, 5027–5049. [Google Scholar] [CrossRef]
- Sarwat, M.; Eldawy, A.; Mokbel, M.F.; Riedl, J. PLUTUS: Leveraging location-based social networks to recommend potential customers to venues. In Proceedings of the 2013 IEEE 14th International Conference on Mobile Data Management, Milan, Italy, 3–6 June 2013; IEEE: Los Alamitos, CA, USA, 2013; pp. 26–35. [Google Scholar]
- Spandonidis, C.C.; Spyropoulos, D.; Galiatsatos, N.; Giannopoulos, F.; Karageorgiou, D. Design of smart glasses that enable computer vision for the improvement of autonomy of the visually impaired. J. Eng. Sci. Technol. Rev. 2021, 14, 113–118. [Google Scholar] [CrossRef]
- McNabola, A.; Broderick, B.M.; Gill, L.W. Relative exposure to fine particulate matter and VOCs between transport microenvironments in Dublin: Personal exposure and uptake. Atmos. Environ. 2008, 42, 6496–6512. [Google Scholar] [CrossRef]
- Li, K.; Peng, Z.; Crittenden, J.; Guhathakurta, S.; Sawhney, A.; Fernando, H.; McCartney, P.; Grimm, N.; Joshi, H.; Konjevod, G.; et al. Development of a framework for quantifying the environmental impacts of urban development and construction practices. Environ. Sci. Technol. 2007, 41, 5130–5136. [Google Scholar] [CrossRef]
- Zhao, L.; Wang, X.; He, Q.; Wang, H.; Sheng, G.; Chan, L.; Fu, J.; Blake, D. Exposure to hazardous volatile organic compounds, PM10 and CO while walking along streets in urban Guangzhou, China. Atmos. Environ. 2004, 38, 6177–6184. [Google Scholar] [CrossRef] [Green Version]
- Greaves, S.; Issarayangyun, T.; Liu, Q. Exploring variability in pedestrian exposure to fine particulates (PM2. 5) along a busy road. Atmos. Environ. 2008, 42, 1665–1676. [Google Scholar] [CrossRef]
- Kaur, S.; Nieuwenhuijsen, M.; Colvile, R. Personal exposure of street canyon intersection users to PM2.5, ultrafine particle counts and carbon monoxide in Central London, UK. Atmos. Environ. 2005, 39, 3629–3641. [Google Scholar] [CrossRef]
- O’Brien, D.T.; Gridley Msui, B.; Trlica, A.; Wang, J.A.; Shrivastava, A. Urban heat islets: Street segments, land surface temperatures, and medical emergencies during heat advisories. Am. J. Public Health 2020, 110, 994–1001. [Google Scholar] [CrossRef]
- McNabola, A.; Broderick, B.M.; Gill, L.W. A numerical investigation of the impact of low boundary walls on pedestrian exposure to air pollutants in urban street canyons. Sci. Total Environ. 2009, 407, 760–769. [Google Scholar] [CrossRef] [PubMed]
- Anguelov, D.; Dulong, C.; Filip, D.; Frueh, C.; Lafon, S.; Lyon, R.; Ogale, A.; Vincent, L.; Weaver, J. Google Street View: Capturing the world at street level. Computer 2010, 43, 32–38. [Google Scholar] [CrossRef]
- Zahiri, Z.; Laefer, D.F.; Kurz, T.; Buckley, S.; Gowen, A. A comparison of ground-based hyperspectral imaging and red-edge multispectral imaging for façade material classification. Automat. Constr. 2022, 136, 104164. [Google Scholar] [CrossRef]
- Qamar, F.; Dobler, G. Pixel-wise classification of high-resolution ground-based urban hyperspectral images with convolutional neural networks. Remote Sens. 2020, 12, 2540. [Google Scholar] [CrossRef]
- Del Pozo, S.; Herrero-Pascual, J.; Felipe-García, B.; Hernández-López, D.; Rodríguez-Gonzálvez, P.; González-Aguilera, D. Multispectral radiometric analysis of façades to detect pathologies from active and passive remote sensing. Remote Sens. 2016, 8, 80. [Google Scholar] [CrossRef] [Green Version]
- Zahiri, Z.; Laefer, D.F.; Gowen, A. Characterizing building materials using multispectral imagery and LiDAR intensity data. J. Build. Eng. 2021, 44, 102603. [Google Scholar] [CrossRef]
- Negied, N.K.; Hemayed, E.E.; Fayek, M.B. Pedestrians’ detection in thermal bands—Critical survey. J. Electr. Syst. Inf. Technol. 2015, 2, 141–148. [Google Scholar] [CrossRef] [Green Version]
- Li, C.; Song, D.; Tong, R.; Tang, M. Illumination-aware faster R-CNN for robust multispectral pedestrian detection. Pattern Recognit. 2019, 85, 161–171. [Google Scholar] [CrossRef] [Green Version]
- Watson, B.; Pomerantz, D. The Heat Camera Is on: Retailers Turn to Sensors for Insight. Available online: https://www.ge.com/news/reports/heat-camera-retailers-turn-sensors-insight (accessed on 14 February 2022).
- Zhao, X.; Luo, Y.; He, J. Analysis of the thermal environment in pedestrian space using 3D thermal imaging. Energies 2020, 13, 3674. [Google Scholar] [CrossRef]
- Li, W.; Zheng, D.; Zhao, T.; Yang, M. An effective approach to pedestrian detection in thermal imagery. In Proceedings of the 2012 IEEE 8th International Conference on Natural Computation, Chongqing, China, 29–31 May 2012; IEEE: Los Alamitos, CA, USA, 2012; pp. 325–329. [Google Scholar]
- Kieu, M.; Bagdanov, A.D.; Bertini, M.; del Bimbo, A. Task-conditioned domain adaptation for pedestrian detection in thermal imagery. In Computer Vision—ECCV 2020; Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 546–562. [Google Scholar]
- Hwang, S.; Park, J.; Kim, N.; Choi, Y.; So Kweon, I. Multispectral pedestrian detection: Benchmark dataset and baseline. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA, 7–12 June 2015; Mortensen, E., Fidler, S., Eds.; IEEE: Los Alamitos, CA, USA, 2015; pp. 1037–1045. [Google Scholar]
- Ma, Y.; Wu, X.; Yu, G.; Xu, Y.; Wang, Y. Pedestrian detection and tracking from low-resolution unmanned aerial vehicle thermal imagery. Sensors 2016, 16, 446. [Google Scholar] [CrossRef]
- Lin, C.-F.; Chen, C.-S.; Hwang, W.-J.; Chen, C.-Y.; Hwang, C.-H.; Chang, C.-L. Novel outline features for pedestrian detection system with thermal images. Pattern Recognit. 2015, 48, 3440–3450. [Google Scholar] [CrossRef]
- King, E.A.; Murphy, E.; McNabola, A. Reducing pedestrian exposure to environmental pollutants: A combined noise exposure and air quality analysis approach. Transp. Res. D Transp. Environ. 2009, 14, 309–316. [Google Scholar] [CrossRef]
- Boles, W.E.; Hayward, S.C. Effects of urban noise and sidewalk density upon pedestrian cooperation and tempo. J. Soc. Psychol. 1978, 104, 29–35. [Google Scholar] [CrossRef]
- Echevarria Sanchez, G.M.; Van Renterghem, T.; Thomas, P.; Botteldooren, D. The effect of street canyon design on traffic noise exposure along roads. Build. Environ. 2016, 97, 96–110. [Google Scholar] [CrossRef] [Green Version]
- Camacho, A.; Ruiz Blais, S.; Fonseca Solís, J.M. Automatic recognition of accessible pedestrian signals. J. Acoust. Soc. Am. 2017, 141, 3913–3914. [Google Scholar] [CrossRef]
- Schmidt, A.; Beigl, M.; Gellersen, H.-W. There is more to context than location. Comput. Graph. 1999, 23, 893–901. [Google Scholar] [CrossRef] [Green Version]
- de Godoy, D.; Islam, B.; Xia, S.; Islam, M.T.; Chandrasekaran, R.; Chen, Y.-C.; Nirjon, S.; Kinget, P.R.; Jiang, X. PAWS: A wearable acoustic system for pedestrian safety. In Proceedings of the 2018 IEEE/ACM Third International Conference on Internet-of-Things Design and Implementation (IoTDI), Orlando, FL, USA, 17–20 April 2018; Lu, C., Ed.; IEEE: Los Alamitos, CA, USA, 2018; pp. 237–248. [Google Scholar]
- Liu, Q.; Li, Z.; Yuan, S.; Zhu, Y.; Li, X. Review on vehicle detection technology for unmanned ground vehicles. Sensors 2021, 21, 1354. [Google Scholar] [CrossRef] [PubMed]
- Pech, A.H.; Nauth, P.M.; Michalik, R. A new approach for pedestrian detection in vehicles by ultrasonic signal analysis. In Proceedings of the IEEE EUROCON 2019—18th International Conference on Smart Technologies, Novi Sad, Serbia, 8–11 July 2019; Dumnić, B., Katić, V., Eds.; IEEE: Los Alamitos, CA, USA, 2019; pp. 1–5. [Google Scholar]
- Song, K.-T.; Chen, C.-H.; Huang, C.-H.C. Design and experimental study of an ultrasonic sensor system for lateral collision avoidance at low speeds. In Proceedings of the IEEE Intelligent Vehicles Symposium (IV2004), Parma, Italy, 14–17 June 2004; Broggi, A., Ed.; IEEE: Los Alamitos, CA, USA, 2004; pp. 647–652. [Google Scholar]
- Dimitrievski, M.; Veelaert, P.; Philips, W. Behavioral pedestrian tracking using a camera and lidar sensors on a moving vehicle. Sensors 2019, 19, 391. [Google Scholar] [CrossRef] [Green Version]
- Hnat, T.W.; Griffiths, E.; Dawson, R.; Whitehouse, K. Doorjamb: Unobtrusive room-level tracking of people in homes using doorway sensors. In Proceedings of the 10th ACM Conference on Embedded Network Sensor Systems (SenSys ‘12), Toronto, ON, Canada, 6–9 November 2012; Eskicioglu, R., Ed.; Association for Computing Machinery: New York, NY, USA, 2012; pp. 309–322. [Google Scholar]
- Charreyron, S.; Jackson, S.; Miranda-Moreno, L.F. Toward a flexible system for pedestrian data collection with a Microsoft Kinect motion-sensing device. Transp. Res. Record 2013, 2339, 80–89. [Google Scholar] [CrossRef]
- Potter, M.V.; Ojeda, L.V.; Perkins, N.C.; Cain, S.M. Effect of IMU design on IMU-derived stride metrics for running. Sensors 2019, 19, 2601. [Google Scholar] [CrossRef]
- Huang, C.; Zhang, F.; Xu, Z.; Wei, J. The Diverse Gait Dataset: Gait segmentation using inertial sensors for pedestrian localization with different genders, heights and walking speeds. Sensors 2022, 22, 1678. [Google Scholar] [CrossRef]
- Sarshar, M.; Polturi, S.; Schega, L. Gait phase estimation by using LSTM in IMU-based gait analysis—Proof of concept. Sensors 2021, 21, 5749. [Google Scholar] [CrossRef]
- Skog, I.; Nilsson, J.-O.; Händel, P. Pedestrian tracking using an IMU array. In Proceedings of the 2014 IEEE International Conference on Electronics, Computing and Communication Technologies (CONECCT), Bangalore, India, 6–7 January 2014; Curran Associates: Red Hook, NY, USA, 2014; pp. 1–4. [Google Scholar]
- Yu, Y.; Qin, X.; Hussain, S.; Hou, W.; Weis, T. Pedestrian counting based on piezoelectric vibration sensor. Appl. Sci. 2022, 12, 1920. [Google Scholar] [CrossRef]
- Li, F.; Clemente, J.; Valero, M.; Tse, Z.; Li, S.; Song, W. Smart home monitoring system via footstep-induced vibrations. IEEE Syst. J. 2020, 14, 3383–3389. [Google Scholar] [CrossRef]
- Clemente, J.; Li, F.; Valero, M.; Song, W. Smart seismic sensing for indoor fall detection, location, and notification. IEEE J. Biomed. Health Inform. 2019, 24, 524–532. [Google Scholar] [CrossRef] [PubMed]
- Akiyama, S.; Yoshida, M.; Moriyama, Y.; Suwa, H.; Yasumoto, K. Estimation of walking direction with vibration sensor based on piezoelectric device. In Proceedings of the 2020 IEEE International Conference on Pervasive Computing and Communications Workshops (PerCom Workshops), Austin, TX, USA, 23–27 March 2020; Murphy, A.L., Thomaz, E., Eds.; IEEE: Los Alamitos, CA, USA, 2020; pp. 1–6. [Google Scholar]
- Hans, D.; Gandhar, S.; Aggarwal, A.; Batra, I.; Singh, K.H. A review on piezoelectric energy for smart street and traffic lights. J. Inf. Optim. Sci. 2022, 43, 17–24. [Google Scholar] [CrossRef]
- Premebida, C.; Ludwig, O.; Nunes, U. LIDAR and vision-based pedestrian detection system. J. Field Robot. 2009, 26, 696–711. [Google Scholar] [CrossRef]
- Wang, H.; Wang, B.; Liu, B.; Meng, X.; Yang, G. Pedestrian recognition and tracking using 3D LiDAR for autonomous vehicle. Robot. Auton. Syst. 2017, 88, 71–78. [Google Scholar] [CrossRef]
- Zhao, J.; Xu, H.; Liu, H.; Wu, J.; Zheng, Y.; Wu, D. Detection and tracking of pedestrians and vehicles using roadside LiDAR sensors. Transp. Res. Part C Emerg. Technol. 2019, 100, 68–87. [Google Scholar] [CrossRef]
- Swan, M. Sensor mania! The Internet of Things, wearable computing, objective metrics, and the Quantified Self 2.0. J. Sens. Actuator Netw. 2012, 1, 217–253. [Google Scholar] [CrossRef]
- Shull, P.B.; Jirattigalachote, W.; Hunt, M.A.; Cutkosky, M.R.; Delp, S.L. Quantified self and human movement: A review on the clinical impact of wearable sensing and feedback for gait analysis and intervention. Gait Posture 2014, 40, 11–19. [Google Scholar] [CrossRef]
- Vaidogaite, S.; Sun, D. Wearable technology clothing-the potential to adapt and succeed in the fashion retail. J. Text. Eng. Fash. Technol. 2019, 5, 193–195. [Google Scholar]
- Öksüz, N.; Maass, W. A situation-specific smart retail service based on vital signs. In Proceedings of the 2020 International Conference on Information Systems, Hyderabad, India, 13–16 December 2020; Karahanna, E., Sarker, S., Oestreicher-Singer, G., Eds.; AIS eLibrary: Chicago, IL, USA, 2020; pp. 1–17. [Google Scholar]
- El Mawass, N.; Kanjo, E. A supermarket stress map. In Proceedings of the 2013 ACM conference on Pervasive and Ubiquitous Computing: Adjunct Publication, Zurich, Switzerland, 8–12 September 2013; Canny, J.F., Langheinrich, M., Rekimoto, J., Eds.; Association for Computing Machinery: New York, NY, USA, 2013; pp. 1043–1046. [Google Scholar]
- Hays, J.; Efros, A.A. Scene completion using millions of photographs. ACM Trans. Graph. 2007, 26, 4-es. [Google Scholar] [CrossRef]
- Ullman, S. The interpretation of structure from motion. Proc. Royal Soc. B 1979, 203, 405–426. [Google Scholar]
- Crooks, A.; See, L. Leveraging street level imagery for urban planning. Environ. Plan. B Urban Anal. City Sci. 2022, 49, 773–776. [Google Scholar] [CrossRef]
- Yin, L.; Cheng, Q.; Wang, Z.; Shao, Z. ‘Big data’ for pedestrian volume: Exploring the use of Google Street View images for pedestrian counts. Appl. Geogr. 2015, 63, 337–345. [Google Scholar] [CrossRef]
- Chen, L.; Lu, Y.; Sheng, Q.; Ye, Y.; Wang, R.; Liu, Y. Estimating pedestrian volume using Street View images: A large-scale validation test. Comput. Environ. Urban Syst. 2020, 81, 101481. [Google Scholar] [CrossRef]
- Hara, K.; Azenkot, S.; Campbell, M.; Bennett, C.L.; Le, V.; Pannella, S.; Moore, R.; Minckler, K.; Ng, R.H.; Froehlich, J.E. Improving public transit accessibility for blind riders by crowdsourcing bus stop landmark locations with Google street view. In Proceedings of the 15th International ACM SIGACCESS Conference on Computers and Accessibility, Bellevue, WA, USA, 21–23 October 2013; Lewis, C., Ladner, R., Eds.; ACM: New York, NY, USA, 2013; pp. 1–8. [Google Scholar]
- Hara, K.; Sun, J.; Chazan, J.; Jacobs, D.; Froehlich, J.E. An initial study of automatic curb ramp detection with crowdsourced verification using Google Street View images. In Proceedings of the First AAAI Conference on Human Computation and Crowdsourcing, Palm Springs, CA, USA, 7–9 November 2013; Hartman, B., Horvitz, E., Eds.; Association for the Advancement of Artificial Intelligence: Menlo Park, CA, USA, 2013; pp. 32–33. [Google Scholar]
- Rundle, A.G.; Bader, M.D.; Richards, C.A.; Neckerman, K.M.; Teitler, J.O. Using Google Street View to audit neighborhood environments. Am. J. Prev. Med. 2011, 40, 94–100. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kelly, C.M.; Wilson, J.S.; Baker, E.A.; Miller, D.K.; Schootman, M. Using Google Street View to audit the built environment: Inter-rater reliability results. Ann. Behav. Med. 2013, 45 (Suppl. 1), S108–S112. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, R.; Liu, Y.; Lu, Y.; Zhang, J.; Liu, P.; Yao, Y.; Grekousis, G. Perceptions of built environment and health outcomes for older Chinese in Beijing: A big data approach with street view images and deep learning technique. Comput. Environ. Urban Syst. 2019, 78, 101386. [Google Scholar] [CrossRef]
- Li, Y.; Chen, Y.; Rajabifard, A.; Khoshelham, K.; Aleksandrov, M. Estimating building age from Google street view images using deep learning (short paper). In Proceedings of the 10th International Conference on Geographic Information Science (GIScience 2018), Melbourne, Australia, 28–31 August 2018; Winter, S., Griffin, A., Sester, M., Eds.; Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik: Dagstuhl, Germany, 2018; pp. 40:1–40:7. [Google Scholar]
- Mooney, S.J.; DiMaggio, C.J.; Lovasi, G.S.; Neckerman, K.M.; Bader, M.D.; Teitler, J.O.; Sheehan, D.M.; Jack, D.W.; Rundle, A.G. Use of Google Street View to assess environmental contributions to pedestrian injury. Am. J. Public Health 2016, 106, 462–469. [Google Scholar] [CrossRef]
- Pollefeys, M.; Gool, L.V. From images to 3D models. Commun. ACM 2002, 45, 50–55. [Google Scholar] [CrossRef]
- Agarwal, S.; Furukawa, Y.; Snavely, N.; Curless, B.; Seitz, S.M.; Szeliski, R. Reconstructing Rome. Computer 2010, 43, 40–47. [Google Scholar] [CrossRef]
- Agarwal, S.; Furukawa, Y.; Snavely, N.; Simon, I.; Curless, B.; Seitz, S.M.; Szeliski, R. Building rome in a day. Commun. ACM 2011, 54, 105–112. [Google Scholar] [CrossRef]
- Snavely, N.; Seitz, S.M.; Szeliski, R. Photo tourism: Exploring photo collections in 3D. ACM Trans. Graph. 2006, 25, 835–846. [Google Scholar] [CrossRef] [Green Version]
- Rematas, K.; Liu, A.; Srinivasan, P.P.; Barron, J.T.; Tagliasacchi, A.; Funkhouser, T.; Ferrari, V. Urban radiance fields. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR 2022), New Orleans, LA, USA, 21–24 June 2022; Chellappa, R., Matas, J., Quan, L., Shah, M., Eds.; IEEE: Los Alamitos, CA, USA, 2022; pp. 12932–12942. [Google Scholar]
- Cao, Z.; Simon, T.; Wei, S.-E.; Sheikh, Y. Realtime multi-person 2D pose estimation using Part Affinity Fields. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR 17), Honolulu, HI, USA, 21–26 July 2017; Chellappa, R., Zhang, Z., Hoogs, A., Eds.; IEEE: Los Alamitos, CA, USA, 2017; pp. 7291–7299. [Google Scholar]
- Neuhold, G.; Ollmann, T.; Rota Bulo, S.; Kontschieder, P. The mapillary vistas dataset for semantic understanding of street scenes. In Proceedings of the IEEE International Conference on Computer Vision (ICCV), Venice, Italy, 22–29 October 2017; Ikeuchi, K., Medioni, G., Pelillo, M., Eds.; IEEE: Los Alamitos, CA, USA, 2017; pp. 4990–4999. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2016), Las Vegas, NV, USA, 26 June–1 July 2016; Agapito, L., Berg, T., Kosecka, J., Zelnik-Manor, L., Eds.; IEEE: Los Alamitos, CA, USA, 2016; pp. 770–778. [Google Scholar]
- Guo, J.; He, H.; He, T.; Lausen, L.; Li, M.; Lin, H.; Shi, X.; Wang, C.; Xie, J.; Zha, S. GluonCV and GluonNLP: Deep learning in computer vision and natural language processing. J. Mach. Learn. Res. 2020, 21, 1–7. [Google Scholar]
- Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You only look once: Unified, real-time object detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 26 June–1 July 2016; Li, F.-F., Bajcsy, R., Tuytelaars, T., Eds.; IEEE: Los Alamitos, CA, USA, 2016; pp. 779–788. [Google Scholar]
- Wang, P.; Li, W.; Ogunbona, P.; Wan, J.; Escalera, S. RGB-D-based human motion recognition with deep learning: A survey. Comput. Vis. Image Und. 2018, 171, 118–139. [Google Scholar] [CrossRef] [Green Version]
- Cusumano, M. Cloud computing and SaaS as new computing platforms. Commun. ACM 2010, 53, 27–29. [Google Scholar] [CrossRef]
- Merkel, D. Docker: Lightweight linux containers for consistent development and deployment. Linux J. 2014, 2014, 2–5. [Google Scholar]
- Bernstein, D. Containers and cloud: From LXC to docker to kubernetes. IEEE Cloud Comput. 2014, 1, 81–84. [Google Scholar] [CrossRef]
- Kurtzer, G.M.; Sochat, V.; Bauer, M.W. Singularity: Scientific containers for mobility of compute. PLoS ONE 2017, 12, e0177459. [Google Scholar] [CrossRef]
- Greengard, S. AI on edge. Commun. ACM 2020, 63, 18–20. [Google Scholar] [CrossRef]
- Sugianto, N.; Tjondronegoro, D.; Stockdale, R.; Yuwono, E.I. Privacy-Preserving AI-Enabled Video Surveillance for Social Distancing: Responsible Design and Deployment for Public Spaces. Available online: https://www.emerald.com/insight/content/doi/10.1108/ITP-07-2020-0534/full/html (accessed on 1 October 2022).
- Brown, P.J.B. Exploring geodemographics. In Handling Geographical Information: Methodology and Potential Applications; Masser, I., Blakemore, M.J., Eds.; Longman: London, UK, 1991; pp. 221–258. [Google Scholar]
- Flowerdew, R.; Goldstein, W. Geodemographics in practice: Developments in North America. Environ. Plann. A 1989, 21, 605–616. [Google Scholar] [CrossRef]
- Beaumont, J.R.; Inglis, K. Geodemographics in practice: Developments in Britain and Europe. Environ. Plann. A 1989, 21, 587–604. [Google Scholar] [CrossRef]
- Batey, P.W.J.; Brown, P.J.B. From human ecology to customer targeting: The evolution of geodemographics. In GIS for Business and Service Planning; Longley, P.A., Clarke, G., Eds.; Geolnformation International: Cambridge, UK, 1995; pp. 77–103. [Google Scholar]
- Johnson, M. The application of geodemographics to retailing: Meeting the needs of the catchment. Int. J. Market Res. 1997, 39, 201. [Google Scholar]
- Beaumont, J.R. An overview of market analysis: Who? What? Where? and Why? Int. J. Inform. Manag. 1989, 9, 51–62. [Google Scholar] [CrossRef]
- Longley, P.A.; Harris, R.J. Towards a new digital data infrastructure for urban analysis and modelling. Environ. Plann. B. 1999, 26, 855–878. [Google Scholar] [CrossRef]
- Orcutt, G.; Greenberger, M.; Korbel, J.; Rivlin, A. Microanalysis of Socioeconomic Systems: A Simulation Study; Harper & Row: New York, NY, USA, 1961. [Google Scholar]
- Moser, C.A.; Scott, W. British Towns. A Statistical Study of Their Social and Economic Differences; Oliver and Boyd: Edinburgh, UK, 1961. [Google Scholar]
- Clarke, G.P. Microsimulation for Urban and Regional Policy Analysis; Pion: London, UK, 1996. [Google Scholar]
- Openshaw, S. Making geodemographics more sophisticated. J. Market Res. Soc. 1989, 31, 111–131. [Google Scholar]
- Bracken, I.; Martin, D. The generation of spatial population distributions from census centroid data. Environ. Plann. A 1989, 21, 537–543. [Google Scholar] [CrossRef] [PubMed]
- Birkin, M.; Clarke, G. GIS, geodemographics, and spatial modeling in the UK financial service industry. J. Hous. Res. 1998, 9, 87–111. [Google Scholar] [CrossRef]
- Harris, R.; Sleight, P.; Webber, R. Geodemographics, GIS and Neighbourhood Targeting; John Wiley & Sons: Chichester, UK, 2005. [Google Scholar]
- Collins, A. Store location planning: Its role in marketing strategy. Environ. Plann. A 1989, 21, 625–628. [Google Scholar] [CrossRef]
- Brown, P.J.B. A Super Profile based affluence ranking of OPCS Urban Areas. Built Environ. 1988, 14, 118–134. [Google Scholar]
- Tong, S.; Luo, X.; Xu, B. Personalized mobile marketing strategies. J. Acad. Market. Sci. 2020, 48, 64–78. [Google Scholar] [CrossRef]
- Dubé, J.-P.; Fang, Z.; Fong, N.; Luo, X. Competitive price targeting with smartphone coupons. Market. Sci. 2017, 36, 944–975. [Google Scholar] [CrossRef]
- Choi, H.; Mela, C.F. Monetizing online marketplaces. Market. Sci. 2019, 38, 948–972. [Google Scholar] [CrossRef]
- Wang, W.; Li, G.; Fung, R.Y.K.; Cheng, T.C.E. Mobile Advertising and Traffic Conversion: The Effects of Front Traffic and Spatial Competition. J. Interact. Mark. 2019, 47, 84–101. [Google Scholar] [CrossRef]
- Fong, N.M.; Fang, Z.; Luo, X. Geo-Conquesting: Competitive locational targeting of mobile promotions. J. Mark. Res. 2015, 52, 726–735. [Google Scholar] [CrossRef]
- Chen, B.-W.; Ji, W. Intelligent marketing in smart cities: Crowdsourced data for geo-conquesting. IT Prof. 2016, 18, 18–24. [Google Scholar] [CrossRef]
- Ladhari, R.; Hudon, T.; Massa, E.; Souiden, N. The determinants of women’s redemption of geo-targeted m-coupons. J. Retail. Consum. Serv. 2022, 66, 102891. [Google Scholar] [CrossRef]
- Unni, R.; Harmon, R. Perceived effectiveness of push vs. pull mobile location based advertising. J. Interact. Adv. 2007, 7, 28–40. [Google Scholar] [CrossRef]
- Lian, S.; Cha, T.; Xu, Y. Enhancing geotargeting with temporal targeting, behavioral targeting and promotion for comprehensive contextual targeting. Decis. Support Syst. 2019, 117, 28–37. [Google Scholar] [CrossRef]
- Perlich, C.; Dalessandro, B.; Raeder, T.; Stitelman, O.; Provost, F. Machine learning for targeted display advertising: Transfer learning in action. Mach. Learn. 2014, 95, 103–127. [Google Scholar] [CrossRef]
- Provost, F.; Martens, D.; Murray, A. Finding similar mobile consumers with a privacy-friendly geosocial design. Inform. Syst. Res. 2015, 26, 243–265. [Google Scholar] [CrossRef] [Green Version]
- Hill, S.; Provost, F.; Volinsky, C. Network-based marketing: Identifying likely adopters via consumer networks. Stat. Sci. 2006, 21, 256–276. [Google Scholar] [CrossRef] [Green Version]
- Crandall, D.J.; Backstrom, L.; Cosley, D.; Suri, S.; Huttenlocher, D.; Kleinberg, J. Inferring social ties from geographic coincidences. Proc. Natl. Acad. Sci. USA 2010, 107, 22436–22441. [Google Scholar] [CrossRef] [Green Version]
- McPherson, M.; Smith-Lovin, L.; Cook, J.M. Birds of a feather: Homophily in social networks. Annu. Rev. Soc. 2001, 27, 415–444. [Google Scholar] [CrossRef] [Green Version]
- Brockman, D.; Hufnagel, L.; Geisel, T. The scaling laws of human travel. Nature 2006, 439, 462–465. [Google Scholar] [CrossRef]
- Cezar, A.; Raghunathan, S. Competitive location-based and trajectory-based mobile targeting. Decis. Sci. 2021; in press. [Google Scholar] [CrossRef]
- Crooks, A.; Croitoru, A.; Lu, X.; Wise, S.; Irvine, J.M.; Stefanidis, A. Walk this way: Improving pedestrian agent-based models through scene activity analysis. ISPRS Int. J. Geo-Inf. 2015, 4, 1627–1656. [Google Scholar] [CrossRef] [Green Version]
- Bernritter, S.F.; Ketelaar, P.E.; Sotgiu, F. Behaviorally targeted location-based mobile marketing. J. Acad. Market. Sci. 2021, 49, 677–702. [Google Scholar] [CrossRef]
- Schweidel, D.A.; Bart, Y.; Inman, J.J.; Stephen, A.T.; Libai, B.; Andrews, M.; Rosario, A.B.; Chae, I.; Chen, Z.; Kupor, D.; et al. How consumer digital signals are reshaping the customer journey. J. Acad. Market. Sci. 2022, 50, 1257–1276. [Google Scholar] [CrossRef]
- Hudson-Smith, A.; Hügel, S.; Roumpani, F. Self-monitoring, analysis and reporting technologies: Smart cities and real-time data. In The Routledge Companion to Smart Cities; Willis, K.S., Aurigi, A., Eds.; Routledge: London, UK, 2020; pp. 383–394. [Google Scholar]
- Matveev, I.; Karpov, K.; Chmielewski, I.; Siemens, E.; Yurchenko, A. Fast object detection using dimensional based features for public street environments. Smart Cities 2020, 3, 93–111. [Google Scholar] [CrossRef] [Green Version]
- Anagnostopoulos, C.; Aladwani, T.; Alghamdi, I.; Kolomvatsos, K. Data-driven analytics task management reasoning mechanism in edge computing. Smart Cities 2022, 5, 562–582. [Google Scholar] [CrossRef]
- Townsend, A.M. Ghost Road: Beyond the Driverless Car; W.W. Norton & Company: New York, NY, USA, 2020. [Google Scholar]
- Goodchild, M.F. GIScience for a driverless age. Int. J. Geogr. Inf. Sci. 2018, 32, 849–855. [Google Scholar] [CrossRef]
- Khayyam, H.; Javadi, B.; Jalili, M.; Jazar, R.N. Artificial intelligence and internet of things for autonomous vehicles. In Nonlinear Approaches in Engineering Applications; Jazar, R.N., Dai, L., Eds.; Springer: Cham, Switzerland, 2020; pp. 39–68. [Google Scholar]
- Gu, T.; Fang, Z.; Yang, Z.; Hu, P.; Mohapatra, P. MmSense: Multi-person detection and identification via mmWave sensing. In Proceedings of the 3rd ACM Workshop on Millimeter-wave Networks and Sensing Systems: MobiCom ‘19: The 25th Annual International Conference on Mobile Computing and Networking, Los Cabos, Mexico, 25 October 2019; Simić, L., Pathak, P., Eds.; ACM: New York, NY, USA, 2019; pp. 45–50. [Google Scholar]
- Okazaki, S.; Peng, Y. 5G mobile targeting ads. In Media and Change Management: Creating a Path for New Content Formats, Business Models, Consumer Roles, and Business Responsibility; Karmasin, M., Diehl, S., Koinig, I., Eds.; Springer International Publishing: Cham, Switzerland, 2022; pp. 479–489. [Google Scholar]
- Mitola, J.; Maguire, G.Q. Cognitive radio: Making software radios more personal. IEEE Pers. Commun. 1999, 6, 13–18. [Google Scholar] [CrossRef] [Green Version]
- Abreha, H.G.; Hayajneh, M.; Serhani, M.A. Federated learning in edge computing: A systematic survey. Sensors 2022, 22, 450. [Google Scholar] [CrossRef]
- Wang, X.; Han, Y.; Wang, C.; Zhao, Q.; Chen, X.; Chen, M. In-edge AI: Intelligentizing mobile edge computing, caching and communication by federated learning. IEEE Network 2019, 33, 156–165. [Google Scholar] [CrossRef]
- Drechsler, P. Spatial morphology of an Australian high street: A century of retail change in Subiaco town centre. Aust. Geogr. 2020, 51, 105–124. [Google Scholar] [CrossRef]
- Lu, J.; Wu, D.; Mao, M.; Wang, W.; Zhang, G. Recommender system application developments: A survey. Decis. Support Syst. 2015, 74, 12–32. [Google Scholar] [CrossRef]
- Yuan, N.J.; Zheng, Y.; Zhang, L.; Xie, X. T-Finder: A recommender system for finding passengers and vacant taxis. IEEE Trans. Knowl. Data Eng. 2013, 25, 2390–2403. [Google Scholar] [CrossRef]
- Sarker, A.A.; Mishra, S.; Welch, T.F.; Golias, M.M.; Torrens, P.M. A model framework for analyzing public transit connectivity and its application in a large-scale multi-modal transit network (15–3279). In Proceedings of the Transportation Research Board 94th Annual Meeting, Washington DC, USA, 11–15 January 2015; Transportation Research Board of the National Academies: Washington, DC, USA, 2015; pp. 13–20. [Google Scholar]
- Gavalas, D.; Konstantopoulos, C.; Mastakas, K.; Pantziou, G. Mobile recommender systems in tourism. J. Netw. Comput. Appl. 2014, 39, 319–333. [Google Scholar] [CrossRef]
- Sasaki, W.; Takama, Y. Walking route recommender system considering SAW criteria. In Proceedings of the 2013 International Conference on Technologies and Applications of Artificial Intelligence (TAAI), Bangkok, Thailand, 2–5 December 2013; Hsu, J.Y.-J., Liu, C.-L., Eds.; IEEE: Los Alamitos, CA, USA, 2013; pp. 246–251. [Google Scholar]
- Betzing, J.H.; Bartelheimer, C.; Niemann, M.; Berendes, C.I.; Beverungen, D. Quantifying the impact of geospatial recommendations: A field experiment in high street retail. In Proceedings of the Twnety-Seventh European Conference on Information Systems (ECIS 2019), Stockholm and Uppsala, Sweden, 8–14 June 2019; Johannesson, P., Ågerfalk, P., Helms, R., Eds.; Association for Information Systems: Chicago, IL, USA, 2019; pp. 1–11. [Google Scholar]
- Ester, M.; Kriegel, H.-P.; Sander, J.; Xu, X. A density-based algorithm for discovering clusters in large spatial databases with noise. In Proceedings of the Second International Conference on Knowledge Discovery and Data Mining (KDD-96), Portland, OR, USA, 2–4 August 1996; Simoudis, E., Han, J., Fayyad, U.M., Eds.; AAAI Press: Palo Alto, CA, USA, 1996; pp. 226–231. [Google Scholar]
- O’Brien, D.T. The Urban Commons: How Data and Technology Can Rebuild our Communities; Harvard University Press: Cambridge, MA, USA, 2018. [Google Scholar]
- O’Brien, D.T. Lamp lighters and sidewalk smoothers: How individual residents contribute to the maintenance of the urban commons. Am. J. Commun. Psychol. 2016, 58, 391–409. [Google Scholar]
- Choe, S.T.; Pitman, G.A.; Collins, F.D. Proactive retail strategies based on consumer attitudes towards the community. Int. J. Retail. Distrib. Manag. 1997, 25, 365–371. [Google Scholar] [CrossRef]
- Lund, D.J.; Hansen, J.D.; Robicheaux, R.A.; Cid Oreja, C. The direct and interactive effects of retail community engagement. Eur. J. Mark. 2021, 55, 3250–3276. [Google Scholar] [CrossRef]
- Peters, C.; Bodkin, C.D. Retail store community and its impact on store success. Int. J. Retail. Distrib. Manag. 2021, 49, 735–751. [Google Scholar] [CrossRef]
- Lyu, J.; Kim, J. Antecedents of social media–induced retail commerce activities: Impact of brand–consumer relationships and psychological sense of community. J. Interact. Adv. 2020, 20, 119–132. [Google Scholar] [CrossRef]
- Hagiu, A.; Wright, J. Multi-sided platforms. Int. J. Ind. Organ. 2015, 43, 162–174. [Google Scholar] [CrossRef]
- Evans, D.S.; Hagiu, A.; Schmalensee, R. Invisible Engines: How Software Platforms Drive Innovation and Transform Industries; The MIT Press: Cambridge, MA, USA, 2006. [Google Scholar]
- Keegan, S.; O’Hare, G.M.; O’Grady, M.J. Easishop: Ambient intelligence assists everyday shopping. Inform. Sci. 2008, 178, 588–611. [Google Scholar] [CrossRef]
- Fano, A.E. Shopper’s eye: Using location-based filtering for a shopping agent in the physical world. In Proceedings of the AGENTS ‘98: The Second International Conference on Autonomous agents, Minneapolis, MN, USA, 10–13 May 1998; Association for Computing Machinery: New York, NY, USA, 1998; pp. 416–421. [Google Scholar]
- Tewari, G.; Youll, J.; Maes, P. Personalized location-based brokering using an agent-based intermediary architecture. Decis. Support Syst. 2003, 34, 127–137. [Google Scholar] [CrossRef]
- Muthukrishnan, S. AdX: A model for ad exchanges. ACM SIGECOM Exch. 2009, 8, 1–2. [Google Scholar] [CrossRef]
- Sayedi, A. Real-time bidding in online display advertising. Market. Sci. 2018, 37, 553–568. [Google Scholar] [CrossRef]
- Mansour, Y.; Muthukrishnan, S.; Nisan, N. Doubleclick ad exchange auction. arXiv 2012, arXiv:1204.0535. [Google Scholar]
- Clarke, R. The digital persona and its application to data surveillance. Inform. Soc. 1994, 10, 77–92. [Google Scholar] [CrossRef]
- Edelman, D.C.; Singer, M. Competing on customer journeys. Harv. Bus. Rev. 2015, 93, 88–100. [Google Scholar]
- Voorhees, C.M.; Fombelle, P.W.; Gregoire, Y.; Bone, S.; Gustafsson, A.; Sousa, R.; Walkowiak, T. Service encounters, experiences and the customer journey: Defining the field and a call to expand our lens. J. Bus. Res. 2017, 79, 269–280. [Google Scholar] [CrossRef]
- Grewal, D.; Roggeveen, A.L. Understanding retail experiences and customer journey management. J. Retail. 2020, 96, 3–8. [Google Scholar] [CrossRef]
- Torrens, P.M. Computational streetscapes. Computation 2016, 4, 37. [Google Scholar] [CrossRef] [Green Version]
- Feng, Y.; Duives, D.; Daamen, W.; Hoogendoorn, S. Data collection methods for studying pedestrian behaviour: A systematic review. Build. Environ. 2020, 187, 107329. [Google Scholar] [CrossRef]
- Babin, B.J.; Darden, W.R.; Griffin, M. Work and/or fun: Measuring hedonic and utilitarian shopping value. J. Consum. Res. 1994, 20, 644–656. [Google Scholar] [CrossRef]
- Titus, P.A.; Everett, P.B. The consumer retail search process: A conceptual model and research agenda. J. Acad. Market. Sci. 1995, 23, 106–119. [Google Scholar] [CrossRef]
- Millonig, A.; Gartner, G. Identifying motion and interest patterns of shoppers for developing personalised wayfinding tools. J. Locat. Based Serv. 2011, 5, 3–21. [Google Scholar] [CrossRef]
- Lee, S.; Min, C.; Yoo, C.; Song, J. Understanding customer malling behavior in an urban shopping mall using smartphones. In Proceedings of the 2013 ACM Conference on Pervasive and Ubiquitous Computing (UbiComp ‘13 Adjunct Publication), Zurich, Switzerland, 8–12 September 2013; Friedemann, M., Santini, S., Eds.; Association for Computing Machinery: New York, NY, USA, 2013; pp. 901–910. [Google Scholar]
- Shostack, G.L. Service positioning through structural change. J. Mark. 1987, 51, 34–43. [Google Scholar] [CrossRef]
- Underhill, P. Call of the Mall: The Geography of Shopping; Simon and Schuster: New York, NY, USA, 2005. [Google Scholar]
- Underhill, P. Why We Buy: The Science of Shopping; Simon and Schuster: New York, NY, USA, 2009. [Google Scholar]
- Torrens, P.M. Intertwining agents and environments. Environ. Earth Sci. 2015, 74, 7117–7131. [Google Scholar] [CrossRef]
- Torrens, P.M.; Nara, A.; Li, X.; Zhu, H.; Griffin, W.A.; Brown, S.B. An extensible simulation environment and movement metrics for testing walking behavior in agent-based models. Comput. Environ. Urban Syst. 2012, 36, 1–17. [Google Scholar] [CrossRef]
- Nara, A.; Torrens, P.M. Trajectory data mining: Classification and spatio-temporal visualization of mobile objects. In Proceedings of the Geocomputation, London, UK, 20–22 July 2011; Cheng, T., Longley, P.A., Ellul, C., Chow, A., Eds.; Geocomputation: London, UK, 2011; pp. 338–345. [Google Scholar]
- Solanas, A.; Patsakis, C.; Conti, M.; Vlachos, I.S.; Ramos, V.; Falcone, F.; Postolache, O.; Perez-martinez, P.A.; Pietro, R.; Perrea, D.N.; et al. Smart health: A context-aware health paradigm within smart cities. IEEE Commun. Mag. 2014, 52, 74–81. [Google Scholar] [CrossRef]
- McCullough, M. Digital Ground: Architecture, Pervasive Computing, and Environmental Knowing; The MIT Press: Cambridge, MA, USA, 2004. [Google Scholar]
- Mitchell, W.J. City of Bits: Space, Place, and the Infobahn; The MIT Press: Cambridge, MA, USA, 1995. [Google Scholar]
- Augusto, J.C.; Callaghan, V.; Cook, D.; Kameas, A.; Satoh, I. Intelligent Environments: A manifesto. Hum.-Cent. Comput. Inf. Sci. 2013, 3, 12. [Google Scholar] [CrossRef] [Green Version]
- Barr, J.; Ge, J. Introduction to the special issue on agent-based models in urban economics. J. Econ. Interact. Coord. 2022, 1–4. [Google Scholar] [CrossRef]
- Torrens, P.M. Agent-based modeling and the spatial sciences. Geogr. Compass 2010, 4, 428–448. [Google Scholar] [CrossRef]
- Satoh, I. Context-aware information for smart retailers. In Proceedings of the DCAI 2020: Distributed Computing and Artificial Intelligence, 17th International Conference, L’Aquila, Italy, 17–19 June 2020; Dong, Y., Herrera-Viedma, E., Matsui, K., Omatsu, S., González Briones, A., Rodríguez González, S., Eds.; Springer International Publishing: Cham, Switzerland, 2021; pp. 71–80. [Google Scholar]
- Azuma, R.; Baillot, Y.; Behringer, R.; Feiner, S.; Julier, S.; MacIntyre, B. Recent advances in augmented reality. IEEE Comput. Graph. 2001, 21, 34–47. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Liang, B.; Chen, B.; Torrens, P.; Atashzar, S.F.; Lin, D.; Sun, Q. Force-aware interface via electromyography for natural VR/AR interaction. ACM Trans. Graph. 2022, 41, 1–18. [Google Scholar]
- Hudson-Smith, A. Incoming metaverses: Digital mirrors for urban planning. Urban Plan. 2022, 7, 343–354. [Google Scholar] [CrossRef]
- Ameen, N.; Hosany, S.; Tarhini, A. Consumer interaction with cutting-edge technologies: Implications for future research. Comput. Hum. Behav. 2021, 120, 106761. [Google Scholar] [CrossRef]
- Martínez-Navarro, J.; Bigné, E.; Guixeres, J.; Alcañiz, M.; Torrecilla, C. The influence of virtual reality in e-commerce. J. Bus. Res. 2019, 100, 475–482. [Google Scholar] [CrossRef]
- Pizzi, G.; Vannucci, V.; Aiello, G. Branding in the time of virtual reality: Are virtual store brand perceptions real? J. Bus. Res. 2020, 119, 502–510. [Google Scholar] [CrossRef]
- McLean, G.; Wilson, A. Shopping in the digital world: Examining customer engagement through augmented reality mobile applications. Comput. Hum. Behav. 2019, 101, 210–224. [Google Scholar] [CrossRef]
- Yim, M.Y.-C.; Chu, S.-C.; Sauer, P.L. Is augmented reality technology an effective tool for e-commerce? An interactivity and vividness perspective. J. Interact. Mark. 2017, 39, 89–103. [Google Scholar] [CrossRef]
- Javornik, A. Augmented reality: Research agenda for studying the impact of its media characteristics on consumer behaviour. J. Retail. Consum. Serv. 2016, 30, 252–261. [Google Scholar] [CrossRef] [Green Version]
- Barhorst, J.B.; McLean, G.; Shah, E.; Mack, R. Blending the real world and the virtual world: Exploring the role of flow in augmented reality experiences. J. Bus. Res. 2021, 122, 423–436. [Google Scholar] [CrossRef]
- Arghashi, V.; Yuksel, C.A. Interactivity, Inspiration, and Perceived Usefulness! How retailers’ AR-apps improve consumer engagement through flow. J. Retail. Consum. Serv. 2022, 64, 102756. [Google Scholar] [CrossRef]
- Hoffman, D.L.; Novak, T.P. Flow online: Lessons learned and future prospects. J. Interact. Mark. 2009, 23, 23–34. [Google Scholar] [CrossRef]
- van Noort, G.; Voorveld, H.A.M.; van Reijmersdal, E.A. Interactivity in brand Web sites: Cognitive, affective, and behavioral responses explained by consumers’ online flow experience. J. Interact. Mark. 2012, 26, 223–234. [Google Scholar] [CrossRef]
- de Ruyter, K.; Heller, J.; Hilken, T.; Chylinski, M.; Keeling, D.I.; Mahr, D. Seeing with the customer’s eye: Exploring the challenges and opportunities of AR advertising. J. Advertising 2020, 49, 109–124. [Google Scholar] [CrossRef]
- Chylinski, M.; Heller, J.; Hilken, T.; Keeling, D.; Mahr, D.; de Ruyter, K. Augmented reality marketing: A technology-enabled approach to situated customer experience. Australas. Mark. J. 2020, 28, 374–384. [Google Scholar] [CrossRef]
- The Drum Burger King: Burn That Ad by David SP. Available online: https://www.thedrum.com/creative-works/project/david-sp-burger-king-burn-ad (accessed on 25 September 2022).
- Grand Visual Unbelievable. Available online: https://grandvisual.com/work/pepsi-max-bus-shelter/ (accessed on 25 September 2022).
- Heller, J.; Chylinski, M.; de Ruyter, K.; Mahr, D.; Keeling, D.I. Let me imagine that for you: Transforming the retail frontline through augmenting customer mental imagery ability. J. Retail. 2019, 95, 94–114. [Google Scholar] [CrossRef]
- Ho, X.H.; Nguyen, D.P.; Cheng, J.M.S.; Le, A.N.H. Customer engagement in the context of retail mobile apps: A contingency model integrating spatial presence experience and its drivers. J. Retail. Consum. Serv. 2022, 66, 102950. [Google Scholar] [CrossRef]
- Hilken, T.; de Ruyter, K.; Chylinski, M.; Mahr, D.; Keeling, D.I. Augmenting the eye of the beholder: Exploring the strategic potential of augmented reality to enhance online service experiences. J. Acad. Market. Sci. 2017, 45, 884–905. [Google Scholar] [CrossRef] [Green Version]
- Zhao, M.; Hoeffler, S.; Zauberman, G. Mental simulation and product evaluation: The affective and cognitive dimensions of process versus outcome simulation. J. Mark. Res. 2011, 48, 827–839. [Google Scholar] [CrossRef]
- King, R. Augmented Reality Goes Mobile. Available online: https://www.bloomberg.com/news/articles/2009-11-03/augmented-reality-goes-mobilebusinessweek-business-news-stock-market-and-financial-advice (accessed on 25 September 2022).
- Torrens, P.M.; Gu, S. Real-time experiential geosimulation in virtual reality with immersion-emission. In Proceedings of the 4th ACM SIGSPATIAL International Workshop on GeoSpatial Simulation, Beijing, China, 2–5 November 2021; Association for Computing Machinery: New York, NY, USA, 2021; pp. 19–28. [Google Scholar]
- Bengio, Y.; Courville, A.; Vincent, P. Representation learning: A review and new perspectives. IEEE Trans. Pattern Anal. Mach. Intell. 2013, 35, 1798–1828. [Google Scholar] [CrossRef] [Green Version]
- LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [Google Scholar] [CrossRef]
- Gurney, K. An Introduction to Neural Networks; Routledge: London, UK, 1997. [Google Scholar]
- Liu, W.; Wang, Z.; Liu, X.; Zeng, N.; Liu, Y.; Alsaadi, F.E. A survey of deep neural network architectures and their applications. Neurocomputing 2017, 234, 11–26. [Google Scholar] [CrossRef]
- LeCun, Y.; Bengio, Y. Convolutional networks for images, speech, and time series. In The Handbook of Brain Theory and Neural Networks; Arbib, M.A., Ed.; MIT Press: Cambridge, MA, USA, 1995; pp. 276–285. [Google Scholar]
- LeCun, Y.; Bottou, L.; Bengio, Y.; Haffner, P. Gradient-based learning applied to document recognition. Proc. IEEE 1998, 86, 2278–2324. [Google Scholar] [CrossRef]
- Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.; Bengio, Y. Generative adversarial networks. Commun. ACM 2020, 63, 139–144. [Google Scholar] [CrossRef]
- Hochreiter, S.; Schmidhuber, J. Long Short-Term Memory. Neural Comput. 1997, 9, 1735–1780. [Google Scholar] [CrossRef]
- Broomhead, D.S.; Lowe, D. Multivariable functional interpolation and adaptive networks. Complex Syst. 1988, 2, 321–355. [Google Scholar]
- Rumelhart, D.E.; Hinton, G.E.; Williams, R.J. Learning representations by back-propagating errors. Nature 1986, 323, 533–536. [Google Scholar] [CrossRef]
- Wei, Y.; Tran, S.; Xu, S.; Kang, B.; Springer, M. Deep learning for retail product recognition: Challenges and techniques. Comput. Intell. Neurosci. 2020, 2020, 8875910. [Google Scholar] [CrossRef]
- Wu, B.-F.; Tseng, W.-J.; Chen, Y.-S.; Yao, S.-J.; Chang, P.-J. An intelligent self-checkout system for smart retail. In Proceedings of the 2016 International Conference on System Science and Engineering (ICSSE), Nantou, Taiwan, 7–9 July 2016; Huang, Y.-P., Lee, P.-J., Wang, W.-J., Su, S.-F., Eds.; IEEE: Los Alamitos, CA, USA, 2016; pp. 1–4. [Google Scholar]
- Zhang, H.; Li, D.; Ji, Y.; Zhou, H.; Wu, W.; Liu, K. Toward new retail: A benchmark dataset for smart unmanned vending machines. IEEE Trans. Industr. Inform. 2019, 16, 7722–7731. [Google Scholar] [CrossRef]
- Wajire, P.; Angadi, S.; Nagar, L. Image classification for retail. In Proceedings of the 2020 International Conference on Industry 4.0 Technology (I4Tech), Pune, India, 13–15 February 2020; Lohiya, B., Ed.; IEEE: Los Alamitos, CA, USA, 2020; pp. 23–28. [Google Scholar]
- Nogueira, V.; Oliveira, H.; Silva, J.A.; Vieira, T.; Oliveira, K. RetailNet: A deep learning approach for people counting and hot spots detection in retail stores. In Proceedings of the 2019 32nd SIBGRAPI conference on graphics, patterns and images (SIBGRAPI), Rio de Janeiro, Brazil, 28–30 October 2019; Pesco, S., Lopes, H., Laier, A., Eds.; IEEE: Los Alamitos, CA, USA, 2019; pp. 155–162. [Google Scholar]
- Wang, M. Pedestrians detection of offline retail stores based on computer vision. J. Phys. Conf. Ser. 2020, 1544, 012120. [Google Scholar] [CrossRef]
- Pathirana, P.; Senarath, S.; Meedeniya, D.; Jayarathna, S. Single-user 2D gaze estimation in retail environment using deep learning. In Proceedings of the 2022 2nd International Conference on Advanced Research in Computing (ICARC), Sabaragamuwa University of Sri Lanka, Belihuloya, Sri Lanka, 23–24 February 2022. [Google Scholar]
- Senarath, S.; Pathirana, P.; Meedeniya, D.; Jayarathna, S. Customer gaze estimation in retail using deep learning. IEEE Access 2022, 10, 64904–64919. [Google Scholar] [CrossRef]
- Karim, N.T.; Jain, S.; Moonrinta, J.; Dailey, M.N.; Ekpanyapong, M. Customer and target individual face analysis for retail analytics. In Proceedings of the 2018 International Workshop on Advanced Image Technology (IWAIT), Chiang Mai, Thailand, 7–9 January 2018; IEEE: Los Alamitos, CA, USA, 2018; pp. 1–4. [Google Scholar]
- Liu, L.; Lin, L.; Li, J. Research on human pose estimation and object detection in the field of unmanned retail. In Proceedings of the Cyberspace Data and Intelligence, and Cyber-Living, Syndrome, and Health: International 2020 Cyberspace Congress, CyberDI/CyberLife 2020, Beijing, China, 10–12 December 2020; Ning, H., Shi, F., Eds.; Springer: Singapore, 2020; pp. 131–141. [Google Scholar]
- Sharifi Noorian, S.; Qiu, S.; Psyllidis, A.; Bozzon, A.; Houben, G.-J. Detecting, classifying, and mapping retail storefronts using street-level imagery. In Proceedings of the 2020 International Conference on Multimedia Retrieval, Dublin, Ireland, 8–11 June 2020; Schoeffmann, K., Chen, P., O’Connor, N.E., Eds.; ACM: New York, NY, USA, 2020; pp. 495–501. [Google Scholar]
- Bochkarev, K.; Smirnov, E. Detecting advertising on building façades with computer vision. Procedia Comput. Sci. 2019, 156, 338–346. [Google Scholar] [CrossRef]
- Ives, B.; Cossick, K.; Adams, D. Amazon Go: Disrupting retail? J. Inf. Technol. Teach. Cases 2019, 9, 2–12. [Google Scholar] [CrossRef]
- Kim, N.L.; Im, H. Do liberals want curbside pickup more than conservatives? Contactless shopping as protectionary action against the COVID-19 pandemic. Int. J. Consum. Stud. 2022, 46, 589–600. [Google Scholar] [CrossRef]
- Seiders, K.; Berry, L.L.; Gresham, L.G. Attention, retailers! How convenient is your convenience strategy? Mit Sloan Manag. Rev. 2000, 41, 79. [Google Scholar]
- Lapoule, P. The French grocery retail company Intermarché develops the ‘Click and Drive’ model. South Asian J. Bus. Manag. Cases 2014, 3, 65–76. [Google Scholar] [CrossRef]
- Diebner, R.; Silliman, E.; Ungerman, K.; Vancauwenberghe, M. Adapting Customer Experience in the Time of Coronavirus. Available online: https://www.mckinsey.com/~/media/McKinsey/Business%20Functions/Marketing%20and%20Sales/Our%20Insights/Adapting%20customer%20experience%20in%20the%20time%20of%20coronavirus/Adapting-customer-experience-in-the-time-of-coronavirus.pdf (accessed on 1 November 2022).
- Hoekstra, J.C.; Leeflang, P.S.H. Marketing in the era of COVID-19. Ital. J. Mark. 2020, 2020, 249–260. [Google Scholar] [CrossRef]
- Pantano, E.; Pizzi, G.; Scarpi, D.; Dennis, C. Competing during a pandemic? Retailers’ ups and downs during the COVID-19 outbreak. J. Bus. Res. 2020, 116, 209–213. [Google Scholar] [CrossRef]
- Heins, C. The impact of COVID-19 on the grocery retail industry: Innovative approaches for contactless store concepts in Germany. Foresight, 2022; ahead-of-print. [Google Scholar] [CrossRef]
- Verhoef, P.C.; Noordhoff, C.S.; Sloot, L. Reflections and predictions on effects of COVID-19 pandemic on retailing. J. Serv. Manag. 2022; ahead-of-print. [Google Scholar] [CrossRef]
- Díaz-Martín, A.M.; Quinones, M.; Cruz-Roche, I. The post-COVID-19 shopping experience: Thoughts on the role of emerging retail technologies. In Marketing and Smart Technologies; Rocha, Á., Reis, J.L., Peter, M.K., Cayolla, R., Loureiro, S., Bogdanović, Z., Eds.; Springer: Singapore, 2021; pp. 55–67. [Google Scholar]
- Pantano, E.; Willems, K. Pandemic acceleration of retail phygitalization. In Retail in a New World; Emerald Publishing Limited: London, UK, 2022; pp. 57–75. [Google Scholar]
- Sahinaslan, O.; Sahinaslan, E.; Gunes, E. Review of the contributions of contactless payment technologies in the COVID-19 pandemic process. AIP Conf. Proc. 2021, 2334, 070002. [Google Scholar]
- Eriksson, N.; Gökhan, A.; Stenius, M. A qualitative study of consumer resistance to mobile payments for in-store purchases. Procedia Comput. Sci. 2021, 181, 634–641. [Google Scholar] [CrossRef]
- Bingham, N. Object-Ions: From Technological Determinism towards Geographies of Relations. Environ. Plann. D. 1996, 14, 635–657. [Google Scholar] [CrossRef]
- Martinez-Balleste, A.A.; Perez-martinez, P.A.; Solanas, A. The pursuit of citizens’ privacy: A privacy-aware smart city is possible. IEEE Commun. Mag. 2013, 51, 136–141. [Google Scholar] [CrossRef]
- Martin, K.D.; Kim, J.J.; Palmatier, R.W.; Steinhoff, L.; Stewart, D.W.; Walker, B.A.; Wang, Y.; Weaven, S.K. Data privacy in retail. J. Retail. 2020, 96, 474–489. [Google Scholar] [CrossRef]
- Pal, R.; Crowcroft, J. Privacy trading in the surveillance capitalism age viewpoints on ‘privacy-preserving’ societal value creation. SIGCOMM Comput. Commun. Rev. 2019, 49, 26–31. [Google Scholar] [CrossRef]
- Elnahla, N.; Neilson, L.C. Retaillance: A conceptual framework and review of surveillance in retail. Int. Rev. Retail. Distrib. Consum. Res. 2021, 31, 330–357. [Google Scholar] [CrossRef]
- Coletta, C.; Kitchin, R. Algorhythmic governance: Regulating the ‘heartbeat’ of a city using the Internet of Things. Big Data Soc. 2017, 4, 2053951717742418. [Google Scholar] [CrossRef] [Green Version]
- Kitchin, R. Continuous Geosurveillance in the “Smart City”. Available online: http://dismagazine.com/dystopia/73066/rob-kitchin-spatial-big-data-and-geosurveillance/ (accessed on 14 February 2021).
- Thrift, N. The ‘sentient’ city and what it may portend. Big Data Soc. 2014, 1, 2053951714532241. [Google Scholar] [CrossRef] [Green Version]
- Curry, M. The digital individual and the private realm. Ann. Assoc. Am. Geogr. 1997, 87, 681–699. [Google Scholar] [CrossRef]
- Meyerowitz, J.; Choudhury, R.R. Hiding stars with fireworks: Location privacy through camouflage. In Proceedings of the 15th Annual International Conference on Mobile Computing and Networking, Beijing, China, 20–25 September 2009; Bagrodia, R., Govindan, R., Eds.; Association for Computing Machinery: New York, NY, USA, 2009; pp. 345–356. [Google Scholar]
- Shao, J.; Lu, R.; Lin, X. FINE: A fine-grained privacy-preserving location-based service framework for mobile devices. In Proceedings of the IEEE Annual Joint Conference: INFOCOM, IEEE Computer and Communications Societies, Toronto, ON, Canada, 27 April–2 May 2014; Bianchi, G., Fang, Y., Shen, X., Eds.; IEEE: Los Alamitos, CA, USA, 2014; pp. 244–252. [Google Scholar]
- Kwan, M.-P.; Casas, I.; Schmitz, B. Protection of geoprivacy and accuracy of spatial information: How effective are geographical masks? Cartogr. Int. J. Geogr. Inf. Geovisualization 2004, 39, 15–28. [Google Scholar] [CrossRef]
- Armstrong, M.P.; Ruggles, A.J. Geographic information technologies and personal privacy. Cartogr. Int. J. Geogr. Inf. Geovisualization 2005, 40, 63–73. [Google Scholar] [CrossRef] [Green Version]
- Domingo-Ferrer, J.; Sramka, M.; Trujillo-Rasúa, R. Privacy-preserving publication of trajectories using microaggregation. In Proceedings of the 3rd ACM SIGSPATIAL International Workshop on Security and Privacy in GIS and LBS (SPRINGL 10), San Jose, CA, USA, 2–5 November 2010; Bertino, E., Ed.; Association for Computing Machinery: New York, NY, USA, 2010; pp. 26–33. [Google Scholar]
- Lu, R.; Lin, X.; Shi, Z.; Shao, J. PLAM: A privacy-preserving framework for local-area mobile social networks. In Proceedings of the IEEE INFOCOM 2014—IEEE Conference on Computer Communications, Toronto, ON, Canada, 27 April–2 May 2014; Bianchi, G., Fang, Y., Shen, X., Eds.; IEEE: Los Alamitos, CA, USA, 2014; pp. 763–771. [Google Scholar]
- Jiang, H.; Wang, H.; Zheng, Z.; Xu, Q. Privacy preserved wireless sensor location protocols based on mobile edge computing. Comput. Secur. 2019, 84, 393–401. [Google Scholar] [CrossRef]
- Fitwi, A.; Chen, Y.; Zhu, S.; Blasch, E.; Chen, G. Privacy-preserving surveillance as an edge service based on lightweight video protection schemes using face de-identification and window masking. Electronics 2021, 10, 236. [Google Scholar] [CrossRef]
- Pizzi, G.; Scarpi, D. Privacy threats with retail technologies: A consumer perspective. J. Retail. Consum. Serv. 2020, 56, 102160. [Google Scholar] [CrossRef]
- Inman, J.J.; Nikolova, H. Shopper-facing retail technology: A retailer adoption decision framework incorporating shopper attitudes and privacy concerns. J. Retail. 2017, 93, 7–28. [Google Scholar] [CrossRef]
- Marriott, H.R.; Williams, M.D.; Dwivedi, Y.K. Risk, privacy and security concerns in digital retail. Mark. Rev. 2017, 17, 337–365. [Google Scholar] [CrossRef]
- Lin, H.; Batty, M.; Jørgensen, S.E.; Fu, B.; Konecny, M.; Voinov, A.; Torrens, P.M.; Lu, G.; Zhu, A.-X.; Wilson, J.P.; et al. Virtual environments begin to embrace process-based geographic analysis. Trans. GIS 2015, 19, 493–498. [Google Scholar] [CrossRef]
- Kitchin, R.; Dodge, M. Code/Space: Software and Everyday Life; MIT Press: Cambridge, MA, USA, 2011. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Torrens, P.M. Smart and Sentient Retail High Streets. Smart Cities 2022, 5, 1670-1720. https://doi.org/10.3390/smartcities5040085
Torrens PM. Smart and Sentient Retail High Streets. Smart Cities. 2022; 5(4):1670-1720. https://doi.org/10.3390/smartcities5040085
Chicago/Turabian StyleTorrens, Paul M. 2022. "Smart and Sentient Retail High Streets" Smart Cities 5, no. 4: 1670-1720. https://doi.org/10.3390/smartcities5040085
APA StyleTorrens, P. M. (2022). Smart and Sentient Retail High Streets. Smart Cities, 5(4), 1670-1720. https://doi.org/10.3390/smartcities5040085