Determinants of Smart City Commitment among Citizens from a Middle City in Argentina
Abstract
:1. Introduction
2. Theoretical Framework
2.1. SC Activities or SC Commitment
2.2. ICT Use and SC Activities
2.3. Awareness of the SC Concept and SC Activities
2.4. Trust and SC Activities
2.5. Sociodemographic Factors and SC Activities
3. Methodology
Variables
4. Results
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Di Nauta, P.; Merola, B.; Caputo, F.; Evangelista, F. Reflections on the role of university to face the challenges of knowledge society for the local economic development. J. Knowl. Econ. 2015, 9, 180–198. [Google Scholar] [CrossRef]
- Lee, J.H.; Hancock, M.G.; Hu, M.-C. Towards an effective framework for building smart cities: Lessons from Seoul and San Francisco. Technol. Forecast. Soc. Chang. 2014, 89, 80–99. [Google Scholar] [CrossRef]
- Piro, G.; Cianci, I.; Grieco, L.; Boggia, G.; Camarda, P. Information centric services in Smart Cities. J. Syst. Softw. 2014, 88, 169–188. [Google Scholar] [CrossRef]
- Yigitcanlar, T.; Lee, S.H. Korean ubiquitous-eco-city: A smart-sustainable urban form or a branding hoax? Technol. Forecast. Soc. Chang. 2014, 89, 100–114. [Google Scholar] [CrossRef] [Green Version]
- Kunzmann, K.R. Smart Cities After Covid-19: Ten Narratives. Plan. Rev. 2020, 56, 20–31. [Google Scholar] [CrossRef]
- Yeh, H. The effects of successful ICT-based smart city services: From citizens’ perspectives. Gov. Inf. Q. 2017, 34, 556–565. [Google Scholar] [CrossRef]
- European Commission. European Innovation Partnership on Smart Cities and Communities–Strategic Implementation Plan; European Commission: Brussels, Belgium, 2013. [Google Scholar]
- Granier, B.; Kudo, H. How are citizens involved in smart cities? Analysing citizen participation in Japanese “Smart Communities”. Inf. Polity 2016, 21, 61–76. [Google Scholar] [CrossRef]
- Nam, T.; Pardo, T.A. Smart city as urban innovation: Focusing on management, policy and context. Trabajo presentado en ICEGOV2011. In Proceedings of the 5th International Conference on Theory and Practice of Electronic Govern-ance, Tallinn, Estonia, 26–29 September 2011; pp. 185–194. [Google Scholar]
- Polese, F.; Barile, S.; Caputo, F.; Carrubbo, L.; Waletzky, L. Determinants for Value Cocreation and Collaborative Paths in Complex Service Systems: A Focus on (Smart) Cities. Serv. Sci. 2018, 10, 397–407. [Google Scholar] [CrossRef]
- Cardullo, P.; Kitchin, R. Being a ‘citizen’ in the smart city: Up and down the scaffold of smart citizen participation in Dublin, Ireland. GeoJournal 2019, 84, 1–13. [Google Scholar] [CrossRef]
- Venkatesh, V.; Morris, M.G. Davis User Acceptance of Information Technology: Toward a Unified View. MIS Q. 2003, 27, 425. [Google Scholar] [CrossRef] [Green Version]
- Bhattacharya, T.R.; Bhattacharya, A.; Mclellan, B.; Tezuka, T. Sustainable smart city development framework for developing countries. Urban Res. Pract. 2018, 13, 180–212. [Google Scholar] [CrossRef]
- Vu, K.; Hartley, K. Promoting smart cities in developing countries: Policy insights from Vietnam. Telecommun. Policy 2018, 42, 845–859. [Google Scholar] [CrossRef]
- Quartuci, E. Gobierno Abierto e Innovación. El caso del gobierno de Bahía Blanca. In Gobierno Abierto E Innovación Publica: Los Pilares De La Nueva Agenda De Gobernabilidad; Herrrero, A., y Vila, J.M., Eds.; Ciudad de Buenos Aires: Buenos Aires, Argenitina, 2021. [Google Scholar]
- Instituto Nacional de Estadística y Censos (INDEC). Acceso y uso de tecnologías de la información y la comunicación. EPH. Cuarto Trimestre de 2018. Informes Técnicos. 2019, 3, 1–16. [Google Scholar]
- ITU. Measuring the Information Society Report: Volume 2; International Telecommunication Union: Geneva, Switzerland, 2017. [Google Scholar]
- Belissent, J.; Girón, F. Service Providers Accelerate Smart City Projects. In Forrester Research Report; Forrester Publication: Cambridge, MA, USA, 2013. [Google Scholar]
- Caragliu, A.; DEL Bo, C.F.M.; Nijkamp, P. Smart Cities in Europe. J. Urban Technol. 2011, 18, 65–82. [Google Scholar] [CrossRef]
- Washburn, D.; Sindhu, U.; Balaouras, S.; Dines, R.A.; Hayes, N.M.; Nelson, L.E. Helping CIOs Understand “Smart City” Initiatives: Defining the Smart City, Its Drivers, and the Role of the CIO; Forrester Research Inc.: Cambridge, MA, USA, 2010; Available online: http://public.dhe.ibm.com/partnerworld/pub/smb/smarterplanet/forr_help_cios_und_smart_city_initiatives.pdf (accessed on 29 May 2021).
- Paskaleva, K.A. Enabling the smart city: The progress of city e-governance in Europe. Int. J. Innov. Reg. Dev. 2009, 1, 405. [Google Scholar] [CrossRef]
- Albino, V.; Berardi, U.; Dangelico, R.M. Smart cities: Definitions. dimensions. Performance and initiatives. J. Urban Technol. 2015, 22, 3–21. [Google Scholar] [CrossRef]
- Winters, J. Why are Smart cities growing: Who moves and who stays. J. Reg. Sci. 2010, 51, 253–270. [Google Scholar] [CrossRef]
- Anthopoulos, L.; Fitsilis, P. From Digital to Ubiquitous Cities: Defining a Common Architecture for Urban Devel-opment. In Proceedings of the 6th International Conference on Intelligent Environments IE’10, Kuala Lumpur, Malaysia, 19–21 July 2010; pp. 301–306. [Google Scholar]
- Topetta, D. The Smart City Vision: How Innovation and ICT Can Build Smart, “Liveable”, Sustainable Cities. THINK! The Innovation Knowledge Foundation. Available online: https://inta-aivn.org/images/cc/Urbanism/background%20documents/Toppeta_Report_005_2010.pdf (accessed on 29 May 2021).
- Shapiro, J.M. Smart Cities: Quality of Life, Productivity, and the Growth Effects of Human Capital. Rev. Econ. Stat. 2006, 88, 324–335. [Google Scholar] [CrossRef]
- Macke, J.; Casagrande, R.M.; Sarate, J.A.R.; Silva, K. Smart city and quality of life: Citizens’ perception in a Brazilian case study. J. Clean. Prod. 2018, 182, 717–726. [Google Scholar] [CrossRef]
- Marsal-Llacuna, M.L.; Colomer-Llinàs, J.; Meléndez-Frigola, J. Lessons in urban monitoring taken from sustaina-ble and livable cities to better address the Smart Cities initiative. Technol. Forecast. Soc. Chang. 2015, 90, 611–622. [Google Scholar] [CrossRef]
- Rogers, E.M. Diffusion of Innovations; The Free Press: New York, NY, USA, 1962. [Google Scholar]
- Agarwal, R.; Prasad, J. The Role of Innovation Characteristics and Perceived Voluntariness in the Acceptance of Information Technologies. Decis. Sci. 1997, 28, 557–582. [Google Scholar] [CrossRef]
- Moore, G.C.; Benbasat, I. Development of an Instrument to Measure the Perceptions of Adopting an Information Technology Innovation. Inf. Syst. Res. 1991, 2, 192–222. [Google Scholar] [CrossRef] [Green Version]
- Novo Vázquez, A.N.; Vicente, M.R. Exploring the Determinants of e-Participation in Smart Cities. In E-Participation in Smart Cities: Technologies and Models of Governance for Citizen Engagement; Public Administration and Information Technology 34; Rodríguez Bolívar, M.P., Alcaide Muñoz, L., Eds.; Springer: Cham, Switzerland, 2019. [Google Scholar] [CrossRef]
- Caputo, F.; Formisano, V.; Buronova, B.; Walletzky, L. Beyond the digital ecosystems view: Insights from Smart Com-munities. In Innovation, Entrepreneurship and Digital Ecosystems; Vrontis, D., Weber, Y., Tsoukatos, E., Eds.; Eu-roMed Press: Cyprus, Greece, 2016; pp. 443–454. [Google Scholar]
- Caputo, F.; Walletzky, L.; Stepanek, P. How smart technologies and big data affect systems’ lives? Conceptual reflec-tions on the Smart City’ecosystem. In Cybernetics and Systems. Social and Business Decisions; Barile, S., Espejo, R., Perko, I., Saviano, M., Caputo, F., Eds.; Giappichelli-Routledge Press: London, UK, 2017; pp. 256–260. [Google Scholar]
- García Arias, C. Sistemas de indicadores de Smart Cities. Paper presented at XII Congreso de Ciencia Política y de la Administración, San Sebastián; Available online: https://aecpa.es/files/view/pdf/congress-papers/12-0/1139/ (accessed on 29 May 2021).
- Pereira, G.V.; Parycek, P.; Falco, E.; Kleinhans, R. Smart governance in the context of smart cities: A literature re-view. Inf. Polity 2018, 23, 143–162. [Google Scholar] [CrossRef] [Green Version]
- Bonte, D. Role of smart cities for economic development. ABI Res. 2018. Available online: https://www.chordant.io/download/5a5faa56cd829e1e2d00080c (accessed on 29 May 2021).
- Hodgkinson, S. Is Your City Smart Enough? Digitally Enabled Cities and Societies will Enhance Economic, Social, and Environmental Sustainability in the Urban Century. OVUM Report. 2011. Available online: https://www.cisco.com/c/dam/en_us/solutions/industries/docs/Is_your_city_smart_enough-Ovum_Analyst_Insights.pdf (accessed on 29 May 2021).
- Hargreaves, A. Teaching in the Knowledge Society; Teachers College Press: New York, NY, USA, 2003. [Google Scholar]
- Campbell, C.; Jane, B. Motivating children to learn: The role of technology education. Int. J. Technol. Des Educ. 2012, 22, 1–11. [Google Scholar] [CrossRef]
- Chourabi, H.; Nam, T.; Walker, S.; Gil-Garcia, J.R.; Mellouli, S.; Nahon, K.; Scholl, H.J. Understanding Smart Cities: An Integrative Framework. In Proceedings of the 45th Hawaii International Conference on System Sciences, Maui, HI, USA, 4–7 January 2012; pp. 2289–2297. [Google Scholar] [CrossRef]
- Liu, D.; Huang, R.; Wosinski, M. Smart Learning in Smart Cities; Springer Science and Business Media LLC: Singapore, 2017. [Google Scholar]
- IESE Business School. IESE Cities in Motion. IESE Business School: Pamplona, Spain, 2016. Available online: http://citiesinmotion.iese.edu/indicecim/ (accessed on 29 May 2021).
- Saxena, K.B. Towards excellence in e-governance. Int. J. Public Sect. Manag. 2005, 18, 498–513. [Google Scholar] [CrossRef]
- Stock, W.G. Informational cities: Analysis and construction of cities in the knowledge society. J. Am. Soc. Inf. Sci. Technol. 2011, 62, 963–986. [Google Scholar] [CrossRef]
- Mohammad, H.; Almarabeh, T.; Ali, A.A. E-government in Jordan. Eur. J. Sci. Res. 2009, 35, 188–197. [Google Scholar]
- Afzalan, N.; Sanchez, T.W.; Evans-Cowley, J. Creating smarter cities: Considerations for selecting online participatory tools. Cities 2017, 67, 21–30. [Google Scholar] [CrossRef]
- Neirotti, P.; De Marco, A.; Cagliano, A.C.; Mangano, G.; Scorrano, F. Current trends in Smart City initiatives: Some stylised facts. Cities 2014, 38, 25–36. [Google Scholar] [CrossRef] [Green Version]
- Peng, G.C.A.; Nunes, M.B.; Zheng, L. Impacts of low citizen awareness and usage in smart city services: The case of London’s smart parking system. Inf. Syst. E-Bus. Manag. 2017, 15, 845–876. [Google Scholar] [CrossRef]
- Khansari, N.; Mostashari, A.; Mansouri, M. Impacting sustainable behavior and planning in smart city. Int. J. Sustain. Land Use Urban Plan. 2014, 1, 46–61. [Google Scholar] [CrossRef]
- De Jong, M.; Joss, S.; Schraven, D.; Zhan, C.; Weijnen, M. Sustainable–smart–resilient–low carbon–eco–knowledge cities; making sense of a multitude of concepts promoting sustainable urbanization. J. Clean. Prod. 2015, 109, 25–38. [Google Scholar] [CrossRef] [Green Version]
- Belanche, D.; Casaló, L.V.; Orús, C. City attachment and use of urban services: Benefits for smart cities. Cities 2016, 50, 75–81. [Google Scholar] [CrossRef]
- Sovacool, B. What are we doing here? Analyzing fifteen years of energy scholarship and proposing a social science research agenda. Energy Res. Soc. Sci. 2014, 1, 1–29. [Google Scholar] [CrossRef]
- Bull, R.; Azennoud, M. Smart citizens for smart cities: Participating in the future. Proc. Inst. Civ. Eng. Energy 2016, 169, 93–101. [Google Scholar] [CrossRef] [Green Version]
- Bull, R.; Petts, J.; Evans, J. Social learning from public engagement: Dreaming the impossible? J. Environ. Plan. Manag. 2008, 51, 701–716. [Google Scholar] [CrossRef]
- Benevolo, C.; Dameri, R.P.; D’Auria, B. Smart Mobility in Smart City. In Empowering Organizations. Lecture Notes in Information Systems and Organisation; Torre, T., Braccini, A., Spinelli, R., Eds.; Springer: Cham, Switzerland, 2016; Volume 11. [Google Scholar]
- Khankhoje, D. Applications of information and communication technology to micro finance sector in developing countries: Issues and prospects. In Proceedings of the an Enterprise Odyssey, International Conference Proceedings, Zagreb, Croatia, 17–19 June 2004; pp. 687–697. [Google Scholar]
- Deakin, M. Smart Cities: The State-of-the-Art and Governance Challenge. Deakin Triple Helix. 2014. Available online: link.springer.com/article/10.1186/s40604-014-0007-9 (accessed on 29 May 2021).
- Makee, K.B.; Willy, M.; Atandi, F.G. Effect of mobile phone transfer services on performance of micro and small enterprises: A case of trans-Nzoia County, Kenya. Int. J. Acad. Res. Bus. Soc. Sci. 2014, 4, 111–123. [Google Scholar] [CrossRef]
- Veeckman, C.; van der Graaf, S. The city as living laboratory: Empowering citizens with the citadel toolkit. Technol. Innov. Manag. Rev. 2015, 5, 6–17. [Google Scholar] [CrossRef]
- Lytras, M.D.; Şerban, A.C. E-Government Insights to Smart Cities Research: European Union (EU) Study and the Role of Regulations. IEEE Access 2020, 8, 65313–65326. [Google Scholar] [CrossRef]
- Praharaja, S.; Hanb, J.H.; Hawkenc, S. Innovative civic engagement and digital urban infrastructure: Lessons from 100 Smart Cities Mission in India. Procedia Eng. 2017, 180, 1423–1432. [Google Scholar] [CrossRef]
- Dewan, S.; Ganley, D.; Kraemer, K.L. Complementarities in the Diffusion of Personal Computers and the Internet: Implications for the Global Digital Divide. Inf. Syst. Res. 2010, 21, 925–940. [Google Scholar] [CrossRef] [Green Version]
- Plouffe, C.R.; Vandenbosch, M.; Hulland, J. Intermediating technologies and multigroup adoption: A comparison of consumer and merchant adoption intentions toward a new electronic payment system. J. Prod. Innov. Manag. 2001, 18, 65–81. [Google Scholar] [CrossRef]
- Carter, L.; Bélanger, F. The utilization of e-government services: Citizen trust, innovation and acceptance factors. Inf. Syst. J. 2005, 15, 5–25. [Google Scholar] [CrossRef]
- Gilbert, D.; Balestrini, P.; Littleboy, D. Barriers and benefits in the adoption of egovernment. Int. J. Public Sect. Manag. 2004, 14, 286–301. [Google Scholar] [CrossRef] [Green Version]
- Shareef, M.A.; Kumar, U.; Kumar, V.; Dwivedi, Y.K. Identifying critical factors for adoption of e-government. Electron. Gov. Int. J. 2009, 6, 70–96. [Google Scholar] [CrossRef]
- Hosmer, L.T. Trust: The connection link between organizational theory and philosophical ethics. Acad. Manag. Rev. 1995, 20, 337–362. [Google Scholar] [CrossRef]
- Eid, M.I. Determinants of e-commerce customer satisfaction, trust, and loyalty in Saudi Arabia. J. Electron. Commer. Res. 2011, 12, 78–93. [Google Scholar]
- Webb, E.; Netuveli, G.; Milett, C. Free bus passes, use of public transport and obesity among older people in England. J. Epidemiol. Community Health 2012, 66, 176–180. [Google Scholar] [CrossRef]
- Gutiérrez, L.H.; Gamboa, L.F. Determinants of ICT usage among low-income groups in Colombia, Mexico and Peru. Inf. Soc. 2010, 26, 346–363. [Google Scholar] [CrossRef]
- Vicente, M.R.; Lopez-Menendez, A.J. Some empirical evidence on Internet diffusion in the new members states and candidate countries of the European Union. Appl. Econ. Lett. 2008, 15, 1015–1018. [Google Scholar] [CrossRef]
- Kiiski, S.; Pohjola, M. Cross-country diffusion of the Internet. Inf. Econ. Policy 2002, 14, 297–310. [Google Scholar] [CrossRef] [Green Version]
- Hargittai, E. Weaving the Western Web: Explaining differences in Internet connectivity among OECD countries. Telecommun. Policy 1999, 23, 701–718. [Google Scholar] [CrossRef]
- Chinn, M.D.; Fairlie, R.W. The determinants of the global digital divide: Across-country analysis of computer and internet penetration. Oxford Econ. Pap. 2007, 59, 16–44. [Google Scholar] [CrossRef] [Green Version]
- Mensah, I.K. Exploring the Impact of Demographic Factors on E-Government Services Adoption. Inf. Resour. Manag. J. 2018, 31, 1–16. [Google Scholar] [CrossRef]
- Tarhini, A.; Hone, K.; Liu, X. The effects of individual differences on e-learning users’ behavior in developing countries: A structural equation model. Comput. Hum. Behav. 2014, 41, 153–163. [Google Scholar] [CrossRef] [Green Version]
- Dwivedi, Y.K.; Williams, M.D. Demographic influence on UK citizens’ e-government adoption. Electron. Gov. 2008, 5, 261–274. [Google Scholar] [CrossRef]
- Al-Shafi, S.; Weerakoddy, V. Adoption and diffusion of free wireless internet parksin Qatar. Int. J. Value Chain. Manag. 2010, 4, 68–85. [Google Scholar] [CrossRef]
- Grazzi, M.; Vergara, S. Determinants of ICT access. In ICT in Latin America. A Microdata Analysis; Balboni, M., Rovira, S., Vergara, S., Eds.; United Nations: CEPAL: Santiago, Chile, 2011. [Google Scholar]
- Barrantes, R. Analysis of ICT demand: What is digital poverty and how to measure it? In Digital Poverty: Latin American and Caribbean Perspectives; Galperín, H., Mariscal, J., Eds.; Practical Action Publishing: Montevideo, Uruguay, 2007. [Google Scholar]
- Volmer, J.; Richter, S.; Syrek, C.J. Creative at Each Age: Age-Related Differences in Drivers of Workplace Creativity from an Experience Sampling Study. J. Creat. Behav. 2019, 53, 531–545. [Google Scholar] [CrossRef]
- Zhang, X. Income disparity and digital divide: The internet consumption model and cross-country empirical research. Telecommun. Policy 2013, 37, 515–529. [Google Scholar] [CrossRef]
- Alderete, M.V. Examining the drivers of Internet use among the poor: The case of Bahía Blanca city in Argentina. Technol. Soc. 2019, 59, 101179. [Google Scholar] [CrossRef]
- Instituto Nacional de Estadística y Censos (INDEC). Encuesta Nacional Sobre Acceso y Uso de Tecnologías de la Información y la Comunicación (ENTIC). Resultados del Tercer Trimestre de 2011. Available online: https://www.indec.gob.ar/uploads/informesdeprensa/entic_12_12.pdf (accessed on 29 May 2021).
- Weerakkody, V.; Irani, Z.; Lee, H.; Hindi, N.; Osman, I. Are U.K. Citizens Satisfied with E-Government Services? Identifying and Testing Antecedents of Satisfaction. Inf. Syst. Manag. 2016, 33, 331–343. [Google Scholar] [CrossRef]
- Alshehri, M.; Drew, S.; Alhussain, T.; Alghamdi, R. The Effects of Website Quality on Adoption of E-Government Service: An Empirical Study Applying UTAUT Model Using SEM. In Proceedings of the 23rd Australasian Conference on Information Systems, Geelong, VIC, Australia, 11 November 2012. [Google Scholar]
- Teo, T.S.; Srivastava, S.C.; Jiang, L. Trust and electronic government success: An empirical study. J. Manag. Inf. Syst. 2008, 25, 99–132. [Google Scholar] [CrossRef]
- Vázquez, R.; Trespalacios, J.A. Marketing: Estrategias y Aplicaciones Sectoriales, 3rd ed.; Civitas: Madrid, Spain, 2002. [Google Scholar]
- Matell, M.S.; Jacoby, J. Is There an Optimal Number of Alternatives for Likert Scale Items? Study I: Reliability and Validity. Educ. Psychol. Meas. 1971, 31, 657–674. [Google Scholar] [CrossRef]
- Noori, N.; De Jong, M.; Hoppe, T. Towards an Integrated Framework to Measure Smart City Readiness: The Case of Iranian Cities. Smart Cities 2020, 3, 676–704. [Google Scholar] [CrossRef]
- Ebbers, W.; Jansen, M.G.M.; van Deursen, A. Impact of the digital divide on e-government: Expanding from chan-nel choice to channel usage. Gov. Inf. Q. 2016, 33, 685–692. [Google Scholar] [CrossRef]
- Weerakkody, V.; El-Haddadeh, R.; Sabol, T.; Ghoneim, A.; Dzupka, P. E-goverment implementation strategies in developed and transition economies: A comparative study. Int. J. Inf. Manag. 2012, 32, 66–74. [Google Scholar] [CrossRef]
- Bernardes do Nacimento, J.C.; da Silva Macedo, M.A. Structural equation models using partial least squares: An example of the application of SmartPLS in accounting research. Revista de Educação e Pesquisa em Contabilidade. 2016, 10, 282–305. [Google Scholar]
- Hair, J.F.; Ringle, C.M.; Sarstedt, M. PLS-SEM: Indeed a silver bullet. J. Mark. Theory Pract. 2011, 19, 139–152. [Google Scholar] [CrossRef]
- Iacobucci, D. Structural equations modeling: Fit Indices, sample size, and advanced topics. J. Consum. Psychol. 2010, 20, 90–98. [Google Scholar] [CrossRef]
- Hu, L.; Bentler, P. Evaluating model fit. In Structural Equation Modeling. Concepts, Issues, and Applications; Hoyle, R.H., Ed.; Sage: London, UK, 1995; pp. 76–99. [Google Scholar]
- Olsson, U.H.; Foss, T.; Troye, S.V.; Howell, R.D. The Performance of ML, GLS, and WLS Estimation in Structural Equation Modeling Under Conditions of Misspecification and Nonnormality. Struct. Equ. Model. A Multidiscip. J. 2000, 7, 557–595. [Google Scholar] [CrossRef]
- Henseler, J.; Ringle, C.M.; Sinkovics, R.R. The use of partial least squares path modeling in international marketing. Adv. Int. Mark. 2009, 20, 277–319. [Google Scholar]
- Steiger, J.H. Structural Model Evaluation and Modification: An Interval Estimation Approach. Multivar. Behav. Res. 1990, 25, 173–180. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jöreskog, K.G.; Sörbom, D. PRELIS 2 User’s Reference Guide: A Program for Multivariate Data Screening and Data Summarization: A Preprocessor for LISREL; Scientific Software International: New York, NY, USA, 1996. [Google Scholar]
Smart-City Dimension | SC Activities | Initial | First Extraction | Second Extraction |
---|---|---|---|---|
Smart environment | Reduction of private transports (car, moto) | 1.000 | 0.597 | 0.607 |
Use of public transport | 1.000 | 0.698 | 0.699 | |
Use of bike lanes | 1.000 | 0.391 | ||
Recycle or classify waste | 1.000 | 0.606 | 0.760 | |
Rational water consumption | 1.000 | 0.723 | 0.742 | |
Smart government | Interaction with local government through internet (e-government) | 1.000 | 0.515 | 0.497 |
Smart economy | Electronic commerce (sale-buy through internet) | 1.000 | 0.495 | 0.509 |
Smart mobility | Use of SAMPEM Parking (parking app) | 1.000 | 0.562 | 0.586 |
Smart people | Home-banking or financial transaction online (i.e.,: pay taxes) | 1.000 | 0.738 | 0.739 |
E-learning | 1.000 | 0.617 | 0.652 |
Components | Initial Eigenvalues | Extraction Sums of Squared Loadings | Rotation Sums of Squared Loadings | ||||||
---|---|---|---|---|---|---|---|---|---|
Total | % of Variance | % Accumulated | Total | % of Variance | % Accumulated | Total | % of Variance | % Acummulated | |
1 | 2.021 | 22.459 | 22.459 | 2.021 | 22.459 | 22.459 | 1.919 | 21.321 | 21.321 |
2 | 1.521 | 16.903 | 39.362 | 1.521 | 16.903 | 39.362 | 1.609 | 17.874 | 39.195 |
3 | 1.222 | 13.579 | 52.941 | 1.222 | 13.579 | 52.941 | 1.166 | 12.956 | 52.152 |
4 | 1.026 | 11.403 | 64.343 | 1.026 | 11.403 | 64.343 | 1.097 | 12.192 | 64.343 |
5 | 0.847 | 9.417 | 73.760 | ||||||
6 | 0.754 | 8.375 | 82.135 | ||||||
7 | 0.662 | 7.358 | 89.493 | ||||||
8 | 0.530 | 5.890 | 95.383 | ||||||
9 | 0.415 | 4.617 | 100.000 |
Initial | First Extraction | Second Extraction | |
---|---|---|---|
Internet access at home | 1.000 | 0.862 | 0.868 |
Internet access at work | 1.000 | 0.581 | 0.702 |
Internet access in educational places | 1.000 | 0.572 | 0.571 |
Internet access in commercial places | 1.000 | 0.625 | 0.670 |
Internet access in public places | 1.000 | 0.701 | 0.736 |
Use computer to connect Internet | 1.000 | 0.656 | 0.689 |
Use mobile phones to connect Internet | 1.000 | 0.870 | 0.872 |
Use tablet to connect Internet | 1.000 | 0.363 | |
Use TV to connect Internet | 1.000 | 0.449 | 0.468 |
Use e-Reader to connect Internet | 1.000 | 0.487 | 0.478 |
Component | Initial Eigenvalues | Extraction Sums of Squared Loadings | Rotation Sums of Squared Loadings | ||||||
---|---|---|---|---|---|---|---|---|---|
Total | % of Variance | Accumulated% | Total | % of Variance | Accumulated% | Total | % of Variance | Accumulated% | |
1 | 1.948 | 21.646 | 21.646 | 1.948 | 21.646 | 21.646 | 1.714 | 19.048 | 19.048 |
2 | 1.684 | 18.715 | 40.362 | 1.684 | 18.715 | 40.362 | 1.651 | 18.347 | 37.395 |
3 | 1.302 | 14.469 | 54.830 | 1.302 | 14.469 | 54.830 | 1.382 | 15.357 | 52.752 |
4 | 1.120 | 12.446 | 67.277 | 1.120 | 12.446 | 67.277 | 1.307 | 14.524 | 67.277 |
5 | 0.936 | 10.398 | 77.675 | ||||||
6 | 0.751 | 8.339 | 86.014 | ||||||
7 | 0.571 | 6.340 | 92.354 | ||||||
8 | 0.434 | 4.824 | 97.178 | ||||||
9 | 0.254 | 2.822 | 100.000 |
Statistic | Value | Description |
---|---|---|
Likelihood Ratio | ||
Chi square_ms(6) | 6.405 | model vs. saturated |
p > chi square | 0.379 | |
Chi square_bs(13) | 23.281 | baseline vs. saturated |
p > chi square | 0.028 | |
Population Error | ||
RMSEA | 0.027 | root mean square error of approximation |
90% CI, lowerbound | 0.000 | |
upperbound | 0.139 | |
Pclose | 0.623 | RMSEA probability <= 0.05 |
Size of residuals SRMR | 0.038 | standardized root mean square residual |
Variable | Structural Equation SC Activities | Structural Equation ICT Use |
---|---|---|
ICT use | 0.2865806 ** | |
Trust | 0.0063282 ns | |
Awareness | 0.0492644 ** | |
Education | −0.0204209 ns | |
Labor_condition | 0.075872 ** | |
Age | −0.0029159 ** | |
Gender | 0.0039698 ns |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alderete, M.V. Determinants of Smart City Commitment among Citizens from a Middle City in Argentina. Smart Cities 2021, 4, 1113-1129. https://doi.org/10.3390/smartcities4030059
Alderete MV. Determinants of Smart City Commitment among Citizens from a Middle City in Argentina. Smart Cities. 2021; 4(3):1113-1129. https://doi.org/10.3390/smartcities4030059
Chicago/Turabian StyleAlderete, María Verónica. 2021. "Determinants of Smart City Commitment among Citizens from a Middle City in Argentina" Smart Cities 4, no. 3: 1113-1129. https://doi.org/10.3390/smartcities4030059
APA StyleAlderete, M. V. (2021). Determinants of Smart City Commitment among Citizens from a Middle City in Argentina. Smart Cities, 4(3), 1113-1129. https://doi.org/10.3390/smartcities4030059