Artificial Intelligence Techniques in Smart Grid: A Survey †
Abstract
:1. Introduction
2. Artificial Intelligence Techniques
- ES: A human expert in loop technique used for certain problems.
- Supervised learning: An AI paradigm in which the mapping of inputs and outputs has been studied to predict the outputs of new inputs.
- Unsupervised learning: An ML class in which the unlabeled data are used to capture the similarity and difference in the data.
- Reinforcement learning (RL): Differs from supervised and unsupervised learning, due to its intelligent agents strategy, which aims to maximize the notion of cumulative reward.
- Ensemble methods: Combine the results from several AI algorithms to overcome the limitations of one algorithm with better overall performance.
2.1. Expert Systems
2.2. Supervised Learning
2.3. Unsupervised Learning
2.4. Reinforcement Learning
2.5. Ensemble Methods
3. Artificial Intelligence Techniques in Smart Grids
3.1. Research Methodology
3.2. Load Forecasting
3.2.1. Short-Term Load Forecasting
3.2.2. Mid-Term Load Forecasting
3.2.3. Long-Term Load Forecasting
3.3. Power Grid Stability Assessment
Author (Ref.) | Year | Objective | Techniques |
---|---|---|---|
Shi et al. [78] | 2017 | STLF | RNN |
He et al. [79] | 2017 | STLF | DBN |
Zheng et al. [72] | 2017 | LTLF | LSTM |
Qiu et al. [75] | 2018 | STLF | Ensemble, statistic models |
Agrawal et al. [92] | 2018 | LTLF | LSTM |
Ali et al. [91] | 2018 | LTLF | Fuzzy, ANN |
Sangrody et al. [96] | 2018 | LTLF | ANN, SVM, RNN, KNN, GPR, GRNN |
Kumar et al. [94] | 2018 | LTLF | LSTM, GRU |
Jiang et al. [85] | 2019 | MTLF | DBN |
Askari et al. [86] | 2019 | MTLF | DNN |
Liu et al. [87] | 2019 | MTLF | DNN |
Nalcaci et al. [37] | 2019 | LTLF | MARS, ANN, LR |
Li et al. [76] | 2020 | STLF | Ensemble |
Moon et al. [67] | 2020 | STLF | CNN, Ensemble |
Hafeez et al. [43] | 2020 | STLF | FCRBM |
Aly [80] | 2020 | STLF | WNN, ANN |
Dong et al. [93] | 2020 | LTLF | LSTM, GRU |
Bouktif et al. [95] | 2020 | LTLF | LSTM, RNN |
Rai and De [88] | 2021 | MTLF | SVR |
Gul et al. [89] | 2021 | MTLF | CNN, LSTM |
Dudek et al. [90] | 2021 | MTLF | LSTM, ETS, Ensemble |
3.3.1. Transient Stability Assessment
3.3.2. Frequency Stability Assessment
3.3.3. Small-Signal Stability Assessment
3.3.4. Voltage Stability Assessment
3.4. Faults Detection
Author (Ref.) | Year | Objective | Techniques |
---|---|---|---|
Mahdi et al. [103] | 2017 | TSA | ANN |
Tang et al. [106] | 2017 | TSA | ELM, TF |
Tan et al. [108] | 2017 | TSA | CNN, SAEs |
Liu et al. [109] | 2017 | TSA | Ensemble, NN, ELM |
Ashraf et al. [115] | 2017 | VSA | ANN |
Amroune et al. [118] | 2017 | VSA | SVR, FL |
Baltas et al. [99] | 2018 | TSA | Decision tree, SVM, ANN |
Mosavi et al. [105] | 2018 | TSA | ANN |
Yu et al. [107] | 2018 | TSA | RNN, LSTM |
Amroune et al. [119] | 2018 | VSA | SVR |
Mohammadi et al. [116] | 2018 | VSA | SVM |
Hu et al. [104] | 2019 | TSA | SVM |
Wang et al. [14] | 2019 | FSA | ELM |
Kamari et al. [114] | 2019 | OSA | PSO |
Amroune et al. [122] | 2019 | VSA | Survey |
Wang et al. [110] | 2020 | TSA | DBN |
Shi et al. [111] | 2020 | TSA | CNN |
Shi et al. [111] | 2020 | OSA | CNN |
Xiao et al. [113] | 2020 | OSA | MRFR |
Yang et al. [120] | 2020 | VSA | Spectrum estimation method |
Meng et al. [117] | 2020 | VSA | Decision tree |
Liu et al. [121] | 2021 | VSA | Random Forest |
Author (Ref.) | Year | Objective | Techniques |
---|---|---|---|
Shafiullah et al. [123] | 2017 | FD | ELM |
Abdelgayed et al. [134] | 2017 | Microgrid FD | KNN, DT |
Garoudja et al. [136] | 2017 | PV FD | PNN |
Zhang et al. [129] | 2017 | Line trip FD | LSTM, SVM |
Sirojan et al. [127] | 2018 | HIFD | ANN |
Wang et al. [131] | 2018 | Line trip FD | AE, SVM |
Shafiullah et al. [132] | 2018 | Microgrid FD | ANN |
Helbing et al. [138] | 2018 | WT FD | ANN |
Baghaee et al. [135] | 2019 | FD | SVM |
Govar et al. [128] | 2019 | HIFD | ELM |
Jayamaha et al. [133] | 2019 | Microgrid FD | ANN |
Fazai et al. [124] | 2019 | PV FD | GPR |
Ashrafuzzaman et al. [125] | 2020 | FD | Ensemble |
Haq et al. [130] | 2020 | Line FD | ELM |
Hussain et al. [137] | 2020 | PV FD | ANN |
Niu et al. [126] | 2021 | FD | Ensemble |
Gunturi and Sarkar [139] | 2021 | Energy theft | Ensemble |
3.5. Smart Grid Security
Author (Ref.) | Year | Objective | Techniques |
---|---|---|---|
Wu et al. [149] | 2016 | Intrusion detection | FL, game theory, RL |
Kosek [148] | 2016 | Detect malicious voltage control actions | ANN |
Ozay et al. [154] | 2016 | Attack detection | KNN, SVM |
Tan et al. [143] | 2016 | Survey | Data-driven approach |
Zhou et al. [146] | 2018 | Attacks detection | SDAE |
Ahmed et al. [152] | 2018 | Detect covert cyber deception assault | SVM |
Zhang et al. [22] | 2018 | Survey | DL, RL |
Ni et al. [150] | 2019 | Attacks detection | RL |
Hossain et al. [144] | 2019 | Survey | Big data, ML |
Ahmed et al. [153] | 2019 | Detect covert cyber deception assault | Isolation forest |
Li et al. [155] | 2019 | Electricity theft detection | CNN, random forests |
Cui et al. [145] | 2020 | Survey | ML |
Ali et al. [4] | 2020 | Survey | AI |
Haghnegahdar et al. [147] | 2020 | Attacks detection | ANN |
Zhang et al. [151] | 2020 | Intrusion detection | Domain-Adversarial Learning |
4. Challenges of Artificial Intelligence in Smart Grids
- Integration of renewable energy. Highly integrated renewable energy is a key characteristic of smart grids. However, it presents several significant challenges due to the variability and unpredictability of renewable energy in which the power output can vary abruptly and frequently [157].
- Preserving data security and privacy: Taking into account the employment of massive different devices and two-way communication on smart grid systems, it is more prone to cyberattacks because it is directly exposed to malicious users compared with the traditional power systems. The previous section showed that many novel security techniques were developed to offer fast identifications of cyber risks, false data injection, systems data theft, electricity theft, and so on. However, network protocols, operating systems, and physical equipment in the current smart grid are still exposing the system to a wide variety of attacks. The current AI solutions for smart grid cybersecurity also have trade-offs between security and performance.
- Big data fast storage and analysis: Another significant challenge is how to continue improving the performance of storing and retrieving big smart grid data for AI applications robustly.
- Explainability of AI algorithms: Generally, AI algorithms have the black box problem, and they are not interpretable or explainable. This is a barrier that AI algorithms currently face. Ibrahim, Dong, and Yang [158] provide a comprehensive discussion about this topic.
- Limitations of AI algorithms: The development of AI technologies greatly influences the deployment of AI to smart grid systems. However, every method limitation should be considered before applying them to the smart grid.
5. Future of Artificial Intelligence in Smart Grids
- Integration with cloud computing: To achieve a fully self-learning smart grid system, the integration of AI with cloud computing—which can enhance security and robustness and minimize outages—will play a more important role in smart grid systems.
- Fog computing: Fog computing tries to preprocess the raw data locally rather than forward the raw data to a cloud. By providing on-demand resources for computing, fog computing has numerous advantages (e.g., energy-efficiency, scalability, flexibility). Some studies [159,160,161,162] have conducted tentative research for integrating fog computing to the smart grid. Fog computing will play a bigger role as the amount of data in the future smart grid increases.
- Transfer learning: The lack of label data is still one of the main challenges for smart grid analysis. Transfer learning reduces the requirements of training data, which motivate researchers to use them to solve the problem of insufficient data. In recent years, deep transfer learning tasks [163] have received more attention, and they could have widespread applications in smart grid systems.
- Consumer behaviors prediction: With the help of fog computing and the evolution of the 5G network, demand-side management is becoming a vital task for managing the participation of users in power systems. Learning patterns of consumer behavior and power consumption can greatly contribute to demand response tasks on the consumer side.
6. Limitations
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Smart Grid System Report, U.S. Department of Energy. Available online: https://www.energy.gov/sites/prod/files/2019/02/f59/Smart%20Grid%20System%20Report%20November%202018_1.pdf (accessed on 15 January 2021).
- Verma, P.; Sanyal, K.; Srinivasan, D.; Swarup, K.; Mehta, R. Computational intelligence techniques in smart grid planning and operation: A survey. In Proceedings of the 2018 IEEE Innovative Smart Grid Technologies-Asia (ISGT Asia), Singapore, 22–25 May 2018; pp. 891–896. [Google Scholar]
- Bose, B.K. Artificial intelligence techniques in smart grid and renewable energy systems—Some example applications. Proc. IEEE 2017, 105, 2262–2273. [Google Scholar] [CrossRef]
- Ali, S.S.; Choi, B.J. State-of-the-Art Artificial Intelligence Techniques for Distributed Smart Grids: A Review. Electronics 2020, 9, 1030. [Google Scholar] [CrossRef]
- Lytras, M.D.; Chui, K.T. The Recent Development of Artificial Intelligence for Smart and Sustainable Energy Systems and Applications. 2019. Available online: https://www.mdpi.com/1996-1073/12/16/3108 (accessed on 10 January 2021).
- Foruzan, E.; Soh, L.K.; Asgarpoor, S. Reinforcement learning approach for optimal distributed energy management in a microgrid. IEEE Trans. Power Syst. 2018, 33, 5749–5758. [Google Scholar] [CrossRef]
- Zhang, L.; Wang, G.; Giannakis, G.B. Real-time power system state estimation and forecasting via deep unrolled neural networks. IEEE Trans. Signal Process. 2019, 67, 4069–4077. [Google Scholar] [CrossRef] [Green Version]
- Jiang, H.; Zhang, J.J.; Gao, W.; Wu, Z. Fault detection, identification, and location in smart grid based on data-driven computational methods. IEEE Trans. Smart Grid 2014, 5, 2947–2956. [Google Scholar] [CrossRef]
- Karimipour, H.; Dehghantanha, A.; Parizi, R.M.; Choo, K.K.R.; Leung, H. A deep and scalable unsupervised machine learning system for cyber-attack detection in large-scale smart grids. IEEE Access 2019, 7, 80778–80788. [Google Scholar] [CrossRef]
- Li, J.; Zhao, Y.; Sun, C.; Bao, X.; Zhao, Q.; Zhou, H. A Survey of Development and Application of Artificial Intelligence in Smart Grid. In IOP Conference Series: Earth and Environmental Science; IOP Publishing: Bristol, UK, 2018; Volume 186, p. 012066. [Google Scholar]
- Kotsiantis, S.B.; Zaharakis, I.; Pintelas, P. Supervised machine learning: A review of classification techniques. Emerg. Artif. Intell. Appl. Comput. Eng. 2007, 160, 3–24. [Google Scholar]
- Kröse, B.; Krose, B.; van der Smagt, P.; Smagt, P. An Introduction to Neural Networks. 1993. Available online: http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.18.493 (accessed on 15 January 2021).
- Li, Y.; Yang, Z. Application of EOS-ELM with binary Jaya-based feature selection to real-time transient stability assessment using PMU data. IEEE Access 2017, 5, 23092–23101. [Google Scholar] [CrossRef]
- Wang, Q.; Li, F.; Tang, Y.; Xu, Y. Integrating model-driven and data-driven methods for power system frequency stability assessment and control. IEEE Trans. Power Syst. 2019, 34, 4557–4568. [Google Scholar] [CrossRef]
- Xu, Y.; Dong, Z.; Meng, K.; Zhang, R.; Wong, K. Real-time transient stability assessment model using extreme learning machine. IET Gener. Transm. Distrib. 2011, 5, 314–322. [Google Scholar] [CrossRef]
- Yang, L.; Li, Y.; Li, Z. Improved-ELM method for detecting false data attack in smart grid. Int. J. Electr. Power Energy Syst. 2017, 91, 183–191. [Google Scholar] [CrossRef]
- Xue, D.; Jing, X.; Liu, H. Detection of false data injection attacks in smart grid utilizing ELM-based OCON framework. IEEE Access 2019, 7, 31762–31773. [Google Scholar] [CrossRef]
- Li, Y.; Qiu, R.; Jing, S. Intrusion detection system using Online Sequence Extreme Learning Machine (OS-ELM) in advanced metering infrastructure of smart grid. PLoS ONE 2018, 13, e0192216. [Google Scholar] [CrossRef] [Green Version]
- Rumelhart, D.E.; Hinton, G.E.; Williams, R.J. Learning representations by back-propagating errors. Nature 1986, 323, 533–536. [Google Scholar] [CrossRef]
- Pinkus, A. Approximation theory of the MLP model. Acta Numer. 1999, 8, 143–195. [Google Scholar] [CrossRef]
- Mohebali, B.; Tahmassebi, A.; Meyer-Baese, A.; Gandomi, A.H. Probabilistic neural networks: A brief overview of theory, implementation, and application. In Handbook of Probabilistic Models; Elsevier: Amsterdam, The Netherlands, 2020; pp. 347–367. [Google Scholar]
- Zhang, D.; Han, X.; Deng, C. Review on the research and practice of deep learning and reinforcement learning in smart grids. CSEE J. Power Energy Syst. 2018, 4, 362–370. [Google Scholar] [CrossRef]
- Wei, L.; Gao, D.; Luo, C. False data injection attacks detection with deep belief networks in smart grid. In Proceedings of the 2018 Chinese Automation Congress (CAC), Xi’an, China, 30 November–2 December 2018; pp. 2621–2625. [Google Scholar]
- Li, L.; Ota, K.; Dong, M. Everything is image: CNN-based short-term electrical load forecasting for smart grid. In Proceedings of the 2017 14th International Symposium on Pervasive Systems, Algorithms and Networks & 2017 11th International Conference on Frontier of Computer Science and Technology & 2017 Third International Symposium of Creative Computing (ISPAN-FCST-ISCC), Exeter, UK, 21–23 June 2017; pp. 344–351. [Google Scholar]
- Abdel-Nasser, M.; Mahmoud, K. Accurate photovoltaic power forecasting models using deep LSTM-RNN. Neural Comput. Appl. 2019, 31, 2727–2740. [Google Scholar] [CrossRef]
- Ying, H.; Ouyang, X.; Miao, S.; Cheng, Y. Power message generation in smart grid via generative adversarial network. In Proceedings of the 2019 IEEE 3rd Information Technology, Networking, Electronic and Automation Control Conference (ITNEC), Chengdu, China, 15–17 March 2019; pp. 790–793. [Google Scholar]
- Ryu, S.; Kim, M.; Kim, H. Denoising autoencoder-based missing value imputation for smart meters. IEEE Access 2020, 8, 40656–40666. [Google Scholar] [CrossRef]
- Vapnik, V.; Bottou, L. Local algorithms for pattern recognition and dependencies estimation. Neural Comput. 1993, 5, 893–909. [Google Scholar] [CrossRef]
- Kim, M.; Park, S.; Lee, J.; Joo, Y.; Choi, J.K. Learning-based adaptive imputation methodwith kNN algorithm for missing power data. Energies 2017, 10, 1668. [Google Scholar] [CrossRef]
- Wang, F.; Zhen, Z.; Wang, B.; Mi, Z. Comparative study on KNN and SVM based weather classification models for day ahead short term solar PV power forecasting. Appl. Sci. 2018, 8, 28. [Google Scholar] [CrossRef] [Green Version]
- Erol-Kantarci, M.; Hussein, T.M. Prediction-based charging of PHEVs from the smart grid with dynamic pricing. In Proceedings of the IEEE Local Computer Network Conference, Denver, CO, USA, 10–14 October 2010; pp. 1032–1039. [Google Scholar]
- Jindal, A.; Dua, A.; Kaur, K.; Singh, M.; Kumar, N.; Mishra, S. Decision tree and SVM-based data analytics for theft detection in smart grid. IEEE Trans. Ind. Informatics 2016, 12, 1005–1016. [Google Scholar] [CrossRef]
- Tahir, A.; Khan, Z.A.; Javaid, N.; Hussain, Z.; Rasool, A.; Aimal, S. Load and price forecasting based on enhanced logistic regression in smart grid. In International Conference on Emerging Internetworking, Data & Web Technologies; Springer: Berlin/Heidelberg, Germany, 2019; pp. 221–233. [Google Scholar]
- Yip, S.C.; Wong, K.; Hew, W.P.; Gan, M.T.; Phan, R.C.W.; Tan, S.W. Detection of energy theft and defective smart meters in smart grids using linear regression. Int. J. Electr. Power Energy Syst. 2017, 91, 230–240. [Google Scholar] [CrossRef]
- Rahbari, O.; Omar, N.; Firouz, Y.; Rosen, M.A.; Goutam, S.; Van Den Bossche, P.; Van Mierlo, J. A novel state of charge and capacity estimation technique for electric vehicles connected to a smart grid based on inverse theory and a metaheuristic algorithm. Energy 2018, 155, 1047–1058. [Google Scholar] [CrossRef]
- Vrablecová, P.; Ezzeddine, A.B.; Rozinajová, V.; Šárik, S.; Sangaiah, A.K. Smart grid load forecasting using online support vector regression. Comput. Electr. Eng. 2018, 65, 102–117. [Google Scholar] [CrossRef]
- Nalcaci, G.; Özmen, A.; Weber, G.W. Long-term load forecasting: Models based on MARS, ANN and LR methods. Cent. Eur. J. Oper. Res. 2019, 27, 1033–1049. [Google Scholar] [CrossRef]
- Zhang, X.; Fang, F.; Liu, J. Weather-classification-MARS-based photovoltaic power forecasting for energy imbalance market. IEEE Trans. Ind. Electron. 2019, 66, 8692–8702. [Google Scholar] [CrossRef]
- He, Y.; Mendis, G.J.; Wei, J. Real-time detection of false data injection attacks in smart grid: A deep learning-based intelligent mechanism. IEEE Trans. Smart Grid 2017, 8, 2505–2516. [Google Scholar] [CrossRef]
- Chen, K.; Hu, J.; He, J. Detection and classification of transmission line faults based on unsupervised feature learning and convolutional sparse autoencoder. IEEE Trans. Smart Grid 2016, 9, 1748–1758. [Google Scholar] [CrossRef]
- Yang, H.; Qiu, R.C.; Shi, X.; He, X. Unsupervised feature learning for online voltage stability evaluation and monitoring based on variational autoencoder. Electr. Power Syst. Res. 2020, 182, 106253. [Google Scholar] [CrossRef] [Green Version]
- Mocanu, E.; Nguyen, P.H.; Kling, W.L.; Gibescu, M. Unsupervised energy prediction in a Smart Grid context using reinforcement cross-building transfer learning. Energy Build. 2016, 116, 646–655. [Google Scholar] [CrossRef] [Green Version]
- Hafeez, G.; Alimgeer, K.S.; Khan, I. Electric load forecasting based on deep learning and optimized by heuristic algorithm in smart grid. Appl. Energy 2020, 269, 114915. [Google Scholar] [CrossRef]
- Zheng, R.; Gu, J. Anomaly Detection for Power System Forecasting under Data Corruption Based on Variational Auto-Encoder. 2019. Available online: https://digital-library.theiet.org/content/conferences/10.1049/cp.2019.0461 (accessed on 12 January 2021).
- Menon, D.M.; Radhika, N. Anomaly detection in smart grid traffic data for home area network. In Proceedings of the 2016 International Conference on Circuit, Power and Computing Technologies (ICCPCT), Nagercoil, India, 18–19 March 2016; pp. 1–4. [Google Scholar]
- Zhang, L.; Deng, S.; Li, S. Analysis of power consumer behavior based on the complementation of K-means and DBSCAN. In Proceedings of the 2017 IEEE Conference on Energy Internet and Energy System Integration (EI2), Beijing, China, 26–28 November 2017; pp. 1–5. [Google Scholar]
- Dong, X.; Qian, L.; Huang, L. Short-term load forecasting in smart grid: A combined CNN and K-means clustering approach. In Proceedings of the 2017 IEEE International Conference on Big Data and Smart Computing (BigComp), Jeju, Korea, 13–16 February 2017; pp. 119–125. [Google Scholar]
- Kim, Y.I.; Ko, J.M.; Choi, S.H. Methods for generating TLPs (typical load profiles) for smart grid-based energy programs. In Proceedings of the 2011 IEEE Symposium on Computational Intelligence Applications in Smart Grid (CIASG), Paris, French Guiana, 11–15 April 2011; pp. 1–6. [Google Scholar]
- Kaur, D.; Aujla, G.S.; Kumar, N.; Zomaya, A.Y.; Perera, C.; Ranjan, R. Tensor-based big data management scheme for dimensionality reduction problem in smart grid systems: SDN perspective. IEEE Trans. Knowl. Data Eng. 2018, 30, 1985–1998. [Google Scholar] [CrossRef] [Green Version]
- Wang, K.; Xu, C.; Zhang, Y.; Guo, S.; Zomaya, A.Y. Robust big data analytics for electricity price forecasting in the smart grid. IEEE Trans. Big Data 2017, 5, 34–45. [Google Scholar] [CrossRef]
- Yu, Z.H.; Chin, W.L. Blind false data injection attack using PCA approximation method in smart grid. IEEE Trans. Smart Grid 2015, 6, 1219–1226. [Google Scholar] [CrossRef]
- Yan, J.; He, H.; Zhong, X.; Tang, Y. Q-learning-based vulnerability analysis of smart grid against sequential topology attacks. IEEE Trans. Inf. Forensics Secur. 2016, 12, 200–210. [Google Scholar] [CrossRef]
- Wang, Z.; Liu, Y.; Ma, Z.; Liu, X.; Ma, J. LiPSG: Lightweight Privacy-Preserving Q-Learning-Based Energy Management for the IoT-Enabled Smart Grid. IEEE Internet Things J. 2020, 7, 3935–3947. [Google Scholar] [CrossRef]
- Wang, F.Y.; Zhang, J.J.; Zheng, X.; Wang, X.; Yuan, Y.; Dai, X.; Zhang, J.; Yang, L. Where does AlphaGo go: From church-turing thesis to AlphaGo thesis and beyond. IEEE/CAA J. Autom. Sin. 2016, 3, 113–120. [Google Scholar]
- Wang, Z.; He, H.; Wan, Z.; Sun, Y. Coordinated topology attacks in smart grid using deep reinforcement learning. IEEE Trans. Ind. Informatics 2020, 17, 1407–1415. [Google Scholar] [CrossRef]
- Yang, Y.; Hao, J.; Sun, M.; Wang, Z.; Fan, C.; Strbac, G. Recurrent Deep Multiagent Q-Learning for Autonomous Brokers in Smart Grid. IJCAI 2018, 18, 569–575. [Google Scholar]
- Wei, F.; Wan, Z.; He, H. Cyber-attack recovery strategy for smart grid based on deep reinforcement learning. IEEE Trans. Smart Grid 2019, 11, 2476–2486. [Google Scholar] [CrossRef]
- Chung, H.M.; Maharjan, S.; Zhang, Y.; Eliassen, F. Distributed deep reinforcement learning for intelligent load scheduling in residential smart grid. IEEE Trans. Ind. Informatics 2020, 17, 2752–2763. [Google Scholar] [CrossRef]
- Liu, Y.; Guan, X.; Li, J.; Sun, D.; Ohtsuki, T.; Hassan, M.M.; Alelaiwi, A. Evaluating smart grid renewable energy accommodation capability with uncertain generation using deep reinforcement learning. Future Gener. Comput. Syst. 2020, 110, 647–657. [Google Scholar] [CrossRef]
- Son, M.; Moon, J.; Jung, S.; Hwang, E. A short-term load forecasting scheme based on auto-encoder and random forest. In International Conference on Applied Physics, System Science and Computers; Springer: Berlin/Heidelberg, Germany, 2018; pp. 138–144. [Google Scholar]
- Otoum, S.; Kantarci, B.; Mouftah, H.T. Mitigating False Negative intruder decisions in WSN-based Smart Grid monitoring. In Proceedings of the 2017 13th International wireless Communications and Mobile Computing Conference (IWCMC), Valencia, Spain, 26–30 June 2017; pp. 153–158. [Google Scholar]
- Primartha, R.; Tama, B.A. Anomaly detection using random forest: A performance revisited. In Proceedings of the 2017 International Conference on Data and Software Engineering (ICoDSE), Palembang, Indonesia, 1–2 November 2017; pp. 1–6. [Google Scholar]
- Su, H.Y.; Liu, T.Y. Enhanced-online-random-forest model for static voltage stability assessment using wide area measurements. IEEE Trans. Power Syst. 2018, 33, 6696–6704. [Google Scholar] [CrossRef]
- Hu, C.; Yan, J.; Wang, C. Advanced cyber-physical attack classification with extreme gradient boosting for smart transmission grids. In Proceedings of the 2019 IEEE Power & Energy Society General Meeting (PESGM), Atlanta, GA, USA, 4–8 August 2019; pp. 1–5. [Google Scholar]
- Agrawal, R.K.; Muchahary, F.; Tripathi, M.M. Ensemble of relevance vector machines and boosted trees for electricity price forecasting. Appl. Energy 2019, 250, 540–548. [Google Scholar] [CrossRef]
- Wang, J.; Li, P.; Ran, R.; Che, Y.; Zhou, Y. A short-term photovoltaic power prediction model based on the gradient boost decision tree. Appl. Sci. 2018, 8, 689. [Google Scholar] [CrossRef] [Green Version]
- Moon, J.; Jung, S.; Rew, J.; Rho, S.; Hwang, E. Combination of short-term load forecasting models based on a stacking ensemble approach. Energy Build. 2020, 216, 109921. [Google Scholar] [CrossRef]
- Ouyang, Z.; Sun, X.; Chen, J.; Yue, D.; Zhang, T. Multi-view stacking ensemble for power consumption anomaly detection in the context of industrial internet of things. IEEE Access 2018, 6, 9623–9631. [Google Scholar] [CrossRef]
- Hu, C.; Yan, J.; Wang, C. Robust feature extraction and ensemble classification against cyber-physical attacks in the smart grid. In Proceedings of the 2019 IEEE Electrical Power and Energy Conference (EPEC), Montreal, QC, Canada, 16–18 October 2019; pp. 1–6. [Google Scholar]
- Tranfield, D.; Denyer, D.; Smart, P. Towards a methodology for developing evidence-informed management knowledge by means of systematic review. Br. J. Manag. 2003, 14, 207–222. [Google Scholar] [CrossRef]
- Tong, C.; Li, J.; Lang, C.; Kong, F.; Niu, J.; Rodrigues, J.J. An efficient deep model for day-ahead electricity load forecasting with stacked denoising auto-encoders. J. Parallel Distrib. Comput. 2018, 117, 267–273. [Google Scholar] [CrossRef]
- Zheng, J.; Xu, C.; Zhang, Z.; Li, X. Electric load forecasting in smart grids using long-short-term-memory based recurrent neural network. In Proceedings of the 2017 51st Annual Conference on Information Sciences and Systems (CISS), Baltimore, MD, USA, 22–24 March 2017; pp. 1–6. [Google Scholar]
- Almalaq, A.; Edwards, G. A review of deep learning methods applied on load forecasting. In Proceedings of the 2017 16th IEEE International Conference on Machine Learning and Applications (ICMLA), Cancun, Mexico, 18–21 December 2017; pp. 511–516. [Google Scholar]
- Khatoon, S.; Singh, A.K. Effects of various factors on electric load forecasting: An overview. In Proceedings of the 2014 6th IEEE Power India International Conference (PIICON), Delhi, India, 5–7 December 2014; pp. 1–5. [Google Scholar]
- Qiu, X.; Suganthan, P.N.; Amaratunga, G.A. Ensemble incremental learning random vector functional link network for short-term electric load forecasting. Knowl.-Based Syst. 2018, 145, 182–196. [Google Scholar] [CrossRef]
- Li, T.; Qian, Z.; He, T. Short-term load forecasting with improved CEEMDAN and GWO-based multiple kernel ELM. Complexity 2020, 2020, 1209547. [Google Scholar] [CrossRef]
- Arif, A.; Javaid, N.; Anwar, M.; Naeem, A.; Gul, H.; Fareed, S. Electricity load and price forecasting using machine learning algorithms in smart grid: A survey. In Workshops of the International Conference on Advanced Information Networking and Applications; Springer: Berlin/Heidelberg, Germany, 2020; pp. 471–483. [Google Scholar]
- Shi, H.; Xu, M.; Li, R. Deep learning for household load forecasting—A novel pooling deep RNN. IEEE Trans. Smart Grid 2017, 9, 5271–5280. [Google Scholar] [CrossRef]
- He, Y.; Deng, J.; Li, H. Short-term power load forecasting with deep belief network and copula models. In Proceedings of the 2017 9th International Conference on Intelligent Human-Machine Systems and Cybernetics (IHMSC), Hangzhou, China, 26–27 August 2017; Volume 1, pp. 191–194. [Google Scholar]
- Aly, H.H. A proposed intelligent short-term load forecasting hybrid models of ANN, WNN and KF based on clustering techniques for smart grid. Electr. Power Syst. Res. 2020, 182, 106191. [Google Scholar] [CrossRef]
- Khuntia, S.R.; Rueda, J.L.; van Der Meijden, M.A. Forecasting the load of electrical power systems in mid-and long-term horizons: A review. IET Gener. Transm. Distrib. 2016, 10, 3971–3977. [Google Scholar] [CrossRef] [Green Version]
- Box, G.E.; Jenkins, G.M.; Reinsel, G.C.; Ljung, G.M. Time Series Analysis: Forecasting and Control; John Wiley & Sons: Hoboken, NJ, USA, 2015. [Google Scholar]
- Xia, C.; Wang, J.; McMenemy, K. Short, medium and long term load forecasting model and virtual load forecaster based on radial basis function neural networks. Int. J. Electr. Power Energy Syst. 2010, 32, 743–750. [Google Scholar] [CrossRef] [Green Version]
- Robinson, P.J. Modeling utility load and temperature relationships for use with long-lead forecasts. J. Appl. Meteorol. Climatol. 1997, 36, 591–598. [Google Scholar] [CrossRef]
- Jiang, W.; Tang, H.; Wu, L.; Huang, H.; Qi, H. Parallel processing of probabilistic models-based power supply unit mid-term load forecasting with apache spark. IEEE Access 2019, 7, 7588–7598. [Google Scholar] [CrossRef]
- Askari, M.; Keynia, F. Mid-term electricity load forecasting by a new composite method based on optimal learning MLP algorithm. IET Gener. Transm. Distrib. 2019, 14, 845–852. [Google Scholar] [CrossRef]
- Liu, Z.; Sun, X.; Wang, S.; Pan, M.; Zhang, Y.; Ji, Z. Midterm power load forecasting model based on kernel principal component analysis and back propagation neural network with particle swarm optimization. Big Data 2019, 7, 130–138. [Google Scholar] [CrossRef] [Green Version]
- Rai, S.; De, M. Analysis of classical and machine learning based short-term and mid-term load forecasting for smart grid. Int. J. Sustain. Energy 2021, 1–19. [Google Scholar] [CrossRef]
- Gul, M.J.; Urfa, G.M.; Paul, A.; Moon, J.; Rho, S.; Hwang, E. Mid-term electricity load prediction using CNN and Bi-LSTM. J. Supercomput. 2021, 1–17. [Google Scholar] [CrossRef]
- Dudek, G.; Pełka, P.; Smyl, S. A Hybrid Residual Dilated LSTM and Exponential Smoothing Model for Midterm Electric Load Forecasting. IEEE Trans. Neural Networks Learn. Syst. 2021. [Google Scholar] [CrossRef]
- Ali, D.; Yohanna, M.; Ijasini, P.M.; Garkida, M.B. Application of fuzzy–Neuro to model weather parameter variability impacts on electrical load based on long-term forecasting. Alex. Eng. J. 2018, 57, 223–233. [Google Scholar] [CrossRef]
- Agrawal, R.K.; Muchahary, F.; Tripathi, M.M. Long term load forecasting with hourly predictions based on long-short-term-memory networks. In Proceedings of the 2018 IEEE Texas Power and Energy Conference (TPEC), College Station, TX, USA, 8–9 February 2018; pp. 1–6. [Google Scholar]
- Dong, M.; Grumbach, L. A hybrid distribution feeder long-term load forecasting method based on sequence prediction. IEEE Trans. Smart Grid 2019, 11, 470–482. [Google Scholar] [CrossRef] [Green Version]
- Kumar, S.; Hussain, L.; Banarjee, S.; Reza, M. Energy load forecasting using deep learning approach-LSTM and GRU in spark cluster. In Proceedings of the 2018 Fifth International Conference on Emerging Applications of Information Technology (EAIT), Kolkata, India, 12–13 January 2018; pp. 1–4. [Google Scholar]
- Bouktif, S.; Fiaz, A.; Ouni, A.; Serhani, M.A. Multi-sequence LSTM-RNN deep learning and metaheuristics for electric load forecasting. Energies 2020, 13, 391. [Google Scholar] [CrossRef] [Green Version]
- Sangrody, H.; Zhou, N.; Tutun, S.; Khorramdel, B.; Motalleb, M.; Sarailoo, M. Long term forecasting using machine learning methods. In Proceedings of the 2018 IEEE Power and Energy Conference at Illinois (PECI), Champaign, IL, USA, 22–23 February 2018; pp. 1–5. [Google Scholar]
- Xu, Y.; Dong, Z.Y.; Zhao, J.H.; Zhang, P.; Wong, K.P. A reliable intelligent system for real-time dynamic security assessment of power systems. IEEE Trans. Power Syst. 2012, 27, 1253–1263. [Google Scholar] [CrossRef]
- You, S.; Zhao, Y.; Mandich, M.; Cui, Y.; Li, H.; Xiao, H.; Fabus, S.; Su, Y.; Liu, Y.; Yuan, H.; et al. A Review on Artificial Intelligence for Grid Stability Assessment. In Proceedings of the 2020 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm), Tempe, AZ, USA, 11–13 November 2020; pp. 1–6. [Google Scholar]
- Baltas, N.G.; Mazidi, P.; Ma, J.; de Asis Fernandez, F.; Rodriguez, P. A comparative analysis of decision trees, support vector machines and artificial neural networks for on-line transient stability assessment. In Proceedings of the 2018 International Conference on Smart Energy Systems and Technologies (SEST), Seville, Spain, 10–12 September 2018; pp. 1–6. [Google Scholar]
- Bergen, A.R.; Hill, D.J. A structure preserving model for power system stability analysis. IEEE Trans. Power Appar. Syst. 1981, PAS-100, 25–35. [Google Scholar] [CrossRef]
- Chiang, H.D.; Wu, F.; Varaiya, P. Foundations of direct methods for power system transient stability analysis. IEEE Trans. Circuits Syst. 1987, 34, 160–173. [Google Scholar] [CrossRef]
- Vittal, E.; O’Malley, M.; Keane, A. A steady-state voltage stability analysis of power systems with high penetrations of wind. IEEE Trans. Power Syst. 2009, 25, 433–442. [Google Scholar] [CrossRef]
- Mahdi, M.; Genc, V.I. Artificial neural network based algorithm for early prediction of transient stability using wide area measurements. In Proceedings of the 2017 5th International Istanbul Smart Grid and Cities Congress and Fair (ICSG), Istanbul, Turkey, 19–21 April 2017; pp. 17–21. [Google Scholar]
- Hu, W.; Lu, Z.; Wu, S.; Zhang, W.; Dong, Y.; Yu, R.; Liu, B. Real-time transient stability assessment in power system based on improved SVM. J. Mod. Power Syst. Clean Energy 2019, 7, 26–37. [Google Scholar] [CrossRef] [Green Version]
- Mosavi, A.B.; Amiri, A.; Hosseini, H. A learning framework for size and type independent transient stability prediction of power system using twin convolutional support vector machine. IEEE Access 2018, 6, 69937–69947. [Google Scholar] [CrossRef]
- Tang, Y.; Li, F.; Wang, Q.; Xu, Y. Hybrid method for power system transient stability prediction based on two-stage computing resources. IET Gener. Transm. Distrib. 2017, 12, 1697–1703. [Google Scholar] [CrossRef]
- James, J.; Hill, D.J.; Lam, A.Y.; Gu, J.; Li, V.O. Intelligent time-adaptive transient stability assessment system. IEEE Trans. Power Syst. 2017, 33, 1049–1058. [Google Scholar]
- Tan, B.; Yang, J.; Pan, X.; Li, J.; Xie, P.; Zeng, C. Representational learning approach for power system transient stability assessment based on convolutional neural network. J. Eng. 2017, 2017, 1847–1850. [Google Scholar] [CrossRef]
- Liu, R.; Verbič, G.; Xu, Y. A new reliability-driven intelligent system for power system dynamic security assessment. In Proceedings of the 2017 Australasian Universities Power Engineering Conference (AUPEC), Melbourne, VIC, Australia, 19–22 November 2017; pp. 1–6. [Google Scholar]
- Wang, H.; Chen, Q.; Zhang, B. Transient stability assessment combined model framework based on cost-sensitive method. IET Gener. Transm. Distrib. 2020, 14, 2256–2262. [Google Scholar] [CrossRef]
- Shi, Z.; Yao, W.; Zeng, L.; Wen, J.; Fang, J.; Ai, X.; Wen, J. Convolutional neural network-based power system transient stability assessment and instability mode prediction. Appl. Energy 2020, 263, 114586. [Google Scholar] [CrossRef]
- Kundur, P.; Paserba, J.; Ajjarapu, V.; Andersson, G.; Bose, A.; Canizares, C.; Hatziargyriou, N.; Hill, D.; Stankovic, A.; Taylor, C.; et al. Definition and classification of power system stability IEEE/CIGRE joint task force on stability terms and definitions. IEEE Trans. Power Syst. 2004, 19, 1387–1401. [Google Scholar]
- Xiao, H.; Fabus, S.; Su, Y.; You, S.; Zhao, Y.; Li, H.; Zhang, C.; Liu, Y.; Yuan, H.; Zhang, Y.; et al. Data-Driven Security Assessment of Power Grids Based on Machine Learning Approach; Technical Report; National Renewable Energy Lab.(NREL): Golden, CO, USA, 2020.
- Kamari, N.; Musirin, I.; Ibrahim, A.; Halim, S. Intelligent swarm-based optimization technique for oscillatory stability assessment in power system. IAES Int. J. Artif. Intell. 2019, 8, 342. [Google Scholar] [CrossRef]
- Ashraf, S.M.; Gupta, A.; Choudhary, D.K.; Chakrabarti, S. Voltage stability monitoring of power systems using reduced network and artificial neural network. Int. J. Electr. Power Energy Syst. 2017, 87, 43–51. [Google Scholar] [CrossRef]
- Mohammadi, H.; Khademi, G.; Dehghani, M.; Simon, D. Voltage stability assessment using multi-objective biogeography-based subset selection. Int. J. Electr. Power Energy Syst. 2018, 103, 525–536. [Google Scholar] [CrossRef]
- Meng, X.; Zhang, P.; Xu, Y.; Xie, H. Construction of decision tree based on C4. 5 algorithm for online voltage stability assessment. Int. J. Electr. Power Energy Syst. 2020, 118, 105793. [Google Scholar] [CrossRef]
- Amroune, M.; Musirin, I.; Bouktir, T.; Othman, M.M. The amalgamation of SVR and ANFIS models with synchronized phasor measurements for on-line voltage stability assessment. Energies 2017, 10, 1693. [Google Scholar] [CrossRef]
- Amroune, M.; Bouktir, T.; Musirin, I. Power system voltage stability assessment using a hybrid approach combining dragonfly optimization algorithm and support vector regression. Arab. J. Sci. Eng. 2018, 43, 3023–3036. [Google Scholar] [CrossRef]
- Yang, F.; Ling, Z.; Wei, M.; Mi, T.; Yang, H.; Qiu, R.C. Real-time static voltage stability assessment in large-scale power systems based on spectrum estimation of phasor measurement unit data. Int. J. Electr. Power Energy Syst. 2021, 124, 106196. [Google Scholar] [CrossRef]
- Liu, S.; Shi, R.; Huang, Y.; Li, X.; Li, Z.; Wang, L.; Mao, D.; Liu, L.; Liao, S.; Zhang, M.; et al. A data-driven and data-based framework for online voltage stability assessment using partial mutual information and iterated random forest. Energies 2021, 14, 715. [Google Scholar] [CrossRef]
- Amroune, M. Machine learning techniques applied to on-line voltage stability assessment: A review. Arch. Comput. Methods Eng. 2019, 28, 273–287. [Google Scholar] [CrossRef]
- Shafiullah, M.; Abido, M.A.; Al-Hamouz, Z. Wavelet-based extreme learning machine for distribution grid fault location. IET Gener. Transm. Distrib. 2017, 11, 4256–4263. [Google Scholar] [CrossRef]
- Fazai, R.; Abodayeh, K.; Mansouri, M.; Trabelsi, M.; Nounou, H.; Nounou, M.; Georghiou, G.E. Machine learning-based statistical testing hypothesis for fault detection in photovoltaic systems. Sol. Energy 2019, 190, 405–413. [Google Scholar] [CrossRef]
- Ashrafuzzaman, M.; Das, S.; Chakhchoukh, Y.; Shiva, S.; Sheldon, F.T. Detecting stealthy false data injection attacks in the smart grid using ensemble-based machine learning. Comput. Secur. 2020, 97, 101994. [Google Scholar] [CrossRef]
- Niu, H.; Omitaomu, O.A.; Cao, Q.C. Machine Committee Framework for Power Grid Disturbances Analysis Using Synchrophasors Data. Smart Cities 2021, 4, 1–16. [Google Scholar] [CrossRef]
- Sirojan, T.; Lu, S.; Phung, B.; Zhang, D.; Ambikairajah, E. Sustainable deep learning at grid edge for real-time high impedance fault detection. IEEE Trans. Sustain. Comput. 2018. [Google Scholar] [CrossRef]
- AsghariGovar, S.; Pourghasem, P.; Seyedi, H. High impedance fault protection scheme for smart grids based on WPT and ELM considering evolving and cross-country faults. Int. J. Electr. Power Energy Syst. 2019, 107, 412–421. [Google Scholar] [CrossRef]
- Zhang, S.; Wang, Y.; Liu, M.; Bao, Z. Data-based line trip fault prediction in power systems using LSTM networks and SVM. IEEE Access 2017, 6, 7675–7686. [Google Scholar] [CrossRef]
- Haq, E.U.; Jianjun, H.; Li, K.; Ahmad, F.; Banjerdpongchai, D.; Zhang, T. Improved performance of detection and classification of 3-phase transmission line faults based on discrete wavelet transform and double-channel extreme learning machine. Electr. Eng. 2020, 103, 953–963. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, M.; Bao, Z.; Zhang, S. Stacked sparse autoencoder with PCA and SVM for data-based line trip fault diagnosis in power systems. Neural Comput. Appl. 2019, 31, 6719–6731. [Google Scholar] [CrossRef]
- Shafiullah, M.; Abido, M. S-transform based FFNN approach for distribution grids fault detection and classification. IEEE Access 2018, 6, 8080–8088. [Google Scholar] [CrossRef]
- Jayamaha, D.; Lidula, N.; Rajapakse, A.D. Wavelet-multi resolution analysis based ANN architecture for fault detection and localization in DC microgrids. IEEE Access 2019, 7, 145371–145384. [Google Scholar] [CrossRef]
- Abdelgayed, T.S.; Morsi, W.G.; Sidhu, T.S. Fault detection and classification based on co-training of semisupervised machine learning. IEEE Trans. Ind. Electron. 2017, 65, 1595–1605. [Google Scholar] [CrossRef]
- Baghaee, H.R.; Mlakić, D.; Nikolovski, S.; Dragicević, T. Support vector machine-based islanding and grid fault detection in active distribution networks. IEEE J. Emerg. Sel. Top. Power Electron. 2019, 8, 2385–2403. [Google Scholar] [CrossRef]
- Garoudja, E.; Chouder, A.; Kara, K.; Silvestre, S. An enhanced machine learning based approach for failures detection and diagnosis of PV systems. Energy Convers. Manag. 2017, 151, 496–513. [Google Scholar] [CrossRef] [Green Version]
- Hussain, M.; Dhimish, M.; Titarenko, S.; Mather, P. Artificial neural network based photovoltaic fault detection algorithm integrating two bi-directional input parameters. Renew. Energy 2020, 155, 1272–1292. [Google Scholar] [CrossRef]
- Helbing, G.; Ritter, M. Deep Learning for fault detection in wind turbines. Renew. Sustain. Energy Rev. 2018, 98, 189–198. [Google Scholar] [CrossRef]
- Gunturi, S.K.; Sarkar, D. Ensemble machine learning models for the detection of energy theft. Electr. Power Syst. Res. 2021, 192, 106904. [Google Scholar] [CrossRef]
- Foley, A.M.; Leahy, P.G.; Marvuglia, A.; McKeogh, E.J. Current methods and advances in forecasting of wind power generation. Renew. Energy 2012, 37, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Jokar, P.; Arianpoo, N.; Leung, V.C. A survey on security issues in smart grids. Secur. Commun. Netw. 2016, 9, 262–273. [Google Scholar] [CrossRef]
- El Mrabet, Z.; Kaabouch, N.; El Ghazi, H.; El Ghazi, H. Cyber-security in smart grid: Survey and challenges. Comput. Electr. Eng. 2018, 67, 469–482. [Google Scholar] [CrossRef] [Green Version]
- Tan, S.; De, D.; Song, W.Z.; Yang, J.; Das, S.K. Survey of security advances in smart grid: A data driven approach. IEEE Commun. Surv. Tutorials 2016, 19, 397–422. [Google Scholar] [CrossRef]
- Hossain, E.; Khan, I.; Un-Noor, F.; Sikander, S.S.; Sunny, M.S.H. Application of big data and machine learning in smart grid, and associated security concerns: A review. IEEE Access 2019, 7, 13960–13988. [Google Scholar] [CrossRef]
- Cui, L.; Qu, Y.; Gao, L.; Xie, G.; Yu, S. Detecting false data attacks using machine learning techniques in smart grid: A survey. J. Netw. Comput. Appl. 2020, 170, 102808. [Google Scholar] [CrossRef]
- Zhou, L.; Ouyang, X.; Ying, H.; Han, L.; Cheng, Y.; Zhang, T. Cyber-attack classification in smart grid via deep neural network. In Proceedings of the 2nd International Conference on Computer Science and Application Engineering, Hohhot, China, 22–24 October 2018; pp. 1–5. [Google Scholar]
- Haghnegahdar, L.; Wang, Y. A whale optimization algorithm-trained artificial neural network for smart grid cyber intrusion detection. Neural Comput. Appl. 2020, 32, 9427–9441. [Google Scholar] [CrossRef]
- Kosek, A.M. Contextual anomaly detection for cyber-physical security in smart grids based on an artificial neural network model. In Proceedings of the 2016 Joint Workshop on Cyber-Physical Security and Resilience in Smart Grids (CPSR-SG), Vienna, Austria, 12–12 April 2016; pp. 1–6. [Google Scholar]
- Wu, J.; Ota, K.; Dong, M.; Li, J.; Wang, H. Big data analysis-based security situational awareness for smart grid. IEEE Trans. Big Data 2016, 4, 408–417. [Google Scholar] [CrossRef] [Green Version]
- Ni, Z.; Paul, S. A multistage game in smart grid security: A reinforcement learning solution. IEEE Trans. Neural Netw. Learn. Syst. 2019, 30, 2684–2695. [Google Scholar] [CrossRef]
- Zhang, Y.; Yan, J. Semi-Supervised Domain-Adversarial Training for Intrusion Detection against False Data Injection in the Smart Grid. In Proceedings of the 2020 International Joint Conference on Neural Networks (IJCNN), Glasgow, UK, 19–24 July 2020; pp. 1–7. [Google Scholar]
- Ahmed, S.; Lee, Y.; Hyun, S.H.; Koo, I. Feature selection–based detection of covert cyber deception assaults in smart grid communications networks using machine learning. IEEE Access 2018, 6, 27518–27529. [Google Scholar] [CrossRef]
- Ahmed, S.; Lee, Y.; Hyun, S.H.; Koo, I. Unsupervised machine learning-based detection of covert data integrity assault in smart grid networks utilizing isolation forest. IEEE Trans. Inf. Forensics Secur. 2019, 14, 2765–2777. [Google Scholar] [CrossRef]
- Ozay, M.; Esnaola, I.; Vural, F.T.Y.; Kulkarni, S.R.; Poor, H.V. Machine learning methods for attack detection in the smart grid. IEEE Trans. Neural Netw. Learn. Syst. 2015, 27, 1773–1786. [Google Scholar] [CrossRef] [Green Version]
- Li, S.; Han, Y.; Yao, X.; Yingchen, S.; Wang, J.; Zhao, Q. Electricity theft detection in power grids with deep learning and random forests. J. Electr. Comput. Eng. 2019, 2019, 4136874. [Google Scholar] [CrossRef]
- Ibrahim, M.S.; Dong, W.; Yang, Q. Machine learning driven smart electric power systems: Current trends and new perspectives. Appl. Energy 2020, 272, 115237. [Google Scholar] [CrossRef]
- Yoldaş, Y.; Önen, A.; Muyeen, S.; Vasilakos, A.V.; Alan, İ. Enhancing smart grid with microgrids: Challenges and opportunities. Renew. Sustain. Energy Rev. 2017, 72, 205–214. [Google Scholar] [CrossRef]
- Arrieta, A.B.; Díaz-Rodríguez, N.; Del Ser, J.; Bennetot, A.; Tabik, S.; Barbado, A.; García, S.; Gil-López, S.; Molina, D.; Benjamins, R.; et al. Explainable Artificial Intelligence (XAI): Concepts, taxonomies, opportunities and challenges toward responsible AI. Inf. Fusion 2020, 58, 82–115. [Google Scholar] [CrossRef] [Green Version]
- Ferrag, M.A.; Babaghayou, M.; Yazici, M.A. Cyber security for fog-based smart grid SCADA systems: Solutions and challenges. J. Inf. Secur. Appl. 2020, 52, 102500. [Google Scholar] [CrossRef]
- Gilbert, G.M.; Naiman, S.; Kimaro, H.; Bagile, B. A critical review of edge and fog computing for smart grid applications. In International Conference on Social Implications of Computers in Developing Countries; Springer: Berlin/Heidelberg, Germany, 2019; pp. 763–775. [Google Scholar]
- Zahoor, S.; Javaid, S.; Javaid, N.; Ashraf, M.; Ishmanov, F.; Afzal, M.K. Cloud–fog–based smart grid model for efficient resource management. Sustainability 2018, 10, 2079. [Google Scholar] [CrossRef] [Green Version]
- Tang, B.; Chen, Z.; Hefferman, G.; Pei, S.; Wei, T.; He, H.; Yang, Q. Incorporating intelligence in fog computing for big data analysis in smart cities. IEEE Trans. Ind. Informatics 2017, 13, 2140–2150. [Google Scholar] [CrossRef]
- Tan, C.; Sun, F.; Kong, T.; Zhang, W.; Yang, C.; Liu, C. A survey on deep transfer learning. In International Conference on Artificial Neural Networks; Springer: Berlin/Heidelberg, Germany, 2018; pp. 270–279. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Omitaomu, O.A.; Niu, H. Artificial Intelligence Techniques in Smart Grid: A Survey. Smart Cities 2021, 4, 548-568. https://doi.org/10.3390/smartcities4020029
Omitaomu OA, Niu H. Artificial Intelligence Techniques in Smart Grid: A Survey. Smart Cities. 2021; 4(2):548-568. https://doi.org/10.3390/smartcities4020029
Chicago/Turabian StyleOmitaomu, Olufemi A., and Haoran Niu. 2021. "Artificial Intelligence Techniques in Smart Grid: A Survey" Smart Cities 4, no. 2: 548-568. https://doi.org/10.3390/smartcities4020029
APA StyleOmitaomu, O. A., & Niu, H. (2021). Artificial Intelligence Techniques in Smart Grid: A Survey. Smart Cities, 4(2), 548-568. https://doi.org/10.3390/smartcities4020029