Investigation of LASSO Regression Method as a Correction Measurements’ Factor for Low-Cost Air Quality Sensors
Abstract
:1. Introduction
2. Low-Cost Monitoring Stations and Data Collection
3. Least Absolute Shrinkage and Selection Operator (LASSO) Regression
- First, the measurements collected by the pollutant sensors were correlated with the reference measurements. By this procedure, both the deviations of the measurements through the time series and the correlation coefficient between the measurements from the scatter plot were displayed;
- Τhe value of the parameter λ was estimated by means of the cross-validation deviance between the measurements of each low-cost sensor with the corresponding reference measurements. The λ parameter was calculated from the average of the λ parameter of all sensors of each gas, through the cross-validation deviation between the measurements of each low-cost sensor and the corresponding reference measurements;
- The estimated value of the parameter λ was applied according to the LASSO regression to the measurements of the low-cost sensors from which the corrected measurements were obtained by Equation (5);
- The corrected measurements were correlated with the reference measurements in order to identify the improvement of both the deviation of the measurements through the time series and the improvement of the correlation coefficient through the scatter plots.
4. Results
4.1. NO2 Measurements
4.2. O3 Sensors
4.3. RMSE, MAD, and MAE Methods Evaluation
4.4. Methodology Scaling
4.5. Time Scaling
4.6. Seasonality Scale
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Gurjar, B.R.; Molina, L.T.; Ojha, C.S.P. Air Pollution: Health and Environmental Impacts; CRC Press: Boca Raton, FL, USA, 2010. [Google Scholar]
- Ambient (Outdoor) Air Pollution. Available online: www.who.int.https://www.who.int/news-room/fact-sheets/detail/ambient-(outdoor)-air-quality-and-health/ (accessed on 16 December 2023).
- Snyder, E.G.; Watkins, T.H.; Solomon, P.A.; Thoma, E.D.; Williams, R.W.; Hagler, G.S.W.; Shelow, D.; Hindin, D.A.; Kilaru, V.J.; Preuss, P.W. The Changing Paradigm of Air Pollution Monitoring. Environ. Sci. Technol. 2013, 47, 11369–11377. [Google Scholar] [CrossRef]
- Jiao, W.; Hagler, G.; Williams, R.; Sharpe, R.; Brown, R.; Garver, D.; Judge, R.; Caudill, M.; Rickard, J.; Davis, M.; et al. Community Air Sensor Network (CAIRSENSE) Project: Evaluation of Low-Cost Sensor Performance in a Suburban Environment in the Southeastern United States. Atmos. Meas. Tech. 2016, 9, 5281–5292. [Google Scholar] [CrossRef]
- Lewis, A.; Edwards, P. Validate Personal Air-Pollution Sensors. Nature 2016, 535, 29–31. [Google Scholar] [CrossRef]
- Clements, A.L.; Griswold, W.G.; RS, A.; Johnston, J.E.; Herting, M.M.; Thorson, J.; Collier-Oxandale, A.; Hannigan, M. Low-Cost Air Quality Monitoring Tools: From Research to Practice (a Workshop Summary). Sensors 2017, 17, 2478. [Google Scholar] [CrossRef]
- Rai, A.C.; Kumar, P.; Pilla, F.; Skouloudis, A.N.; Di Sabatino, S.; Ratti, C.; Yasar, A.; Rickerby, D. End-User Perspective of Low-Cost Sensors for Outdoor Air Pollution Monitoring. Sci. Total Environ. 2017, 607–608, 691–705. [Google Scholar] [CrossRef]
- Ahangar, F.; Freedman, F.; Venkatram, A. Using Low-Cost Air Quality Sensor Networks to Improve the Spatial and Temporal Resolution of Concentration Maps. Int. J. Environ. Res. Public Health 2019, 16, 1252. [Google Scholar] [CrossRef]
- Zheng, T.; Bergin, M.H.; Sutaria, R.; Tripathi, S.N.; Caldow, R.; Carlson, D.E. Gaussian Process Regression Model for Dynamically Calibrating and Surveilling a Wireless Low-Cost Particulate Matter Sensor Network in Delhi. Atmos. Meas. Tech. 2019, 12, 5161–5181. [Google Scholar] [CrossRef]
- Heimann, I.; Bright, V.B.; McLeod, M.W.; Mead, M.I.; Popoola, O.A.M.; Stewart, G.B.; Jones, R.L. Source Attribution of Air Pollution by Spatial Scale Separation Using High Spatial Density Networks of Low Cost Air Quality Sensors. Atmos. Environ. 2015, 113, 10–19. [Google Scholar] [CrossRef]
- Schneider, P.; Castell, N.; Vogt, M.; Dauge, F.R.; Lahoz, W.A.; Bartonova, A. Mapping Urban Air Quality in near Real-Time Using Observations from Low-Cost Sensors and Model Information. Environ. Int. 2017, 106, 234–247. [Google Scholar] [CrossRef]
- Austin, C.C.; Roberge, B.; Goyer, N. Cross-Sensitivities of Electrochemical Detectors Used to Monitor Worker Exposures to Airborne Contaminants: False Positive Responses in the Absence of Target Analytes. J. Environ. Monit. 2006, 8, 161–166. [Google Scholar] [CrossRef]
- Liu, D.; Zhang, Q.; Jiang, J.; Chen, D.-R. Performance Calibration of Low-Cost and Portable Particular Matter (PM) Sensors. J. Aerosol Sci. 2017, 112, 1–10. [Google Scholar] [CrossRef]
- Motlagh, N.H.; Lagerspetz, E.; Nurmi, P.; Li, X.; Varjonen, S.; Mineraud, J.; Siekkinen, M.; Rebeiro-Hargrave, A.; Hussein, T.; Petaja, T.; et al. Toward Massive Scale Air Quality Monitoring. IEEE Commun. Mag. 2020, 58, 54–59. [Google Scholar] [CrossRef]
- Borrego, C.; Costa, A.M.; Ginja, J.; Amorim, M.; Coutinho, M.; Karatzas, K.; Sioumis, T.; Katsifarakis, N.; Konstantinidis, K.; De Vito, S.; et al. Assessment of Air Quality Microsensors versus Reference Methods: The EuNetAir Joint Exercise. Atmos. Environ. 2016, 147, 246–263. [Google Scholar] [CrossRef]
- Han, P.; Mei, H.; Liu, D.; Zeng, N.; Tang, X.; Wang, Y.; Pan, Y. Calibrations of Low-Cost Air Pollution Monitoring Sensors for CO, NO2, O3, and SO2. Sensors 2021, 21, 256. [Google Scholar] [CrossRef] [PubMed]
- Christakis, I.; Hloupis, G.; Stavrakas, I.; Tsakiridis, O. Low Cost Sensor Implementation and Evaluation for Measuring NO2 and O3 Pollutants. In Proceedings of the 2020 9th International Conference on Modern Circuits and Systems Technologies (MOCAST), Bremen, Germany, 7–9 September 2020. [Google Scholar] [CrossRef]
- Yu, H.; Li, Q.; Wang, R.; Chen, Z.; Zhang, Y.; Geng, Y.; Zhang, L.; Cui, H.; Zhang, K. A Deep Calibration Method for Low-Cost Air Monitoring Sensors with Multilevel Sequence Modeling. IEEE Trans. Instrum. Meas. 2020, 69, 7167–7179. [Google Scholar] [CrossRef]
- Liang, L. Calibrating Low-Cost Sensors for Ambient Air Monitoring: Techniques, Trends, and Challenges. Environ. Res. 2021, 197, 111163. [Google Scholar] [CrossRef]
- Spinelle, L.; Gerboles, M.; Villani, M.G.; Aleixandre, M.; Bonavitacola, F. Field Calibration of a Cluster of Low-Cost Available Sensors for Air Quality Monitoring. Part A: Ozone and Nitrogen Dioxide. Sens. Actuators B Chem. 2015, 215, 249–257. [Google Scholar] [CrossRef]
- Spinelle, L.; Gerboles, M.; Villani, M.G.; Aleixandre, M.; Bonavitacola, F. Field Calibration of a Cluster of Low-Cost Commercially Available Sensors for Air Quality Monitoring. Part B: NO, CO and CO2. Sens. Actuators B Chem. 2017, 238, 706–715. [Google Scholar] [CrossRef]
- Barceló-Ordinas, J.M.; García-Vidal, J.; Doudou, M.; Rodrigo, S.; Cerezo-Llavero, A. Calibrating Low-Cost Air Quality Sensors Using Multiple Arrays of Sensors. In Proceedings of the 2018 IEEE Wireless Communications and Networking Conference (WCNC), Barcelona, Spain, 15–18 April 2018. [Google Scholar] [CrossRef]
- Lin, C.; Gillespie, J.; Schuder, M.D.; Duberstein, W.; Beverland, I.J.; Heal, M.R. Evaluation and Calibration of Aeroqual Series 500 Portable Gas Sensors for Accurate Measurement of Ambient Ozone and Nitrogen Dioxide. Atmos. Environ. 2015, 100, 111–116. [Google Scholar] [CrossRef]
- Christakis, I.; Sarri, E.; Tsakiridis, O.; Stavrakas, I. Identification of the Safe Variation Limits for the Optimization of the Measurements in Low-Cost Electrochemical Air Quality Sensors. Electrochem 2023, 5, 1–28. [Google Scholar] [CrossRef]
- Hong, G.-H.; Le, T.-C.; Tu, J.-W.; Wang, C.; Chang, S.-C.; Yu, J.-Y.; Lin, G.-Y.; Aggarwal, S.G.; Tsai, C.-J. Long-Term Evaluation and Calibration of Three Types of Low-Cost PM2.5 Sensors at Different Air Quality Monitoring Stations. J. Aerosol Sci. 2021, 157, 105829. [Google Scholar] [CrossRef]
- De Vito, S.; Esposito, E.; Salvato, M.; Popoola, O.; Formisano, F.; Jones, R.; Di Francia, G. Calibrating Chemical Multisensory Devices for Real World Applications: An In-Depth Comparison of Quantitative Machine Learning Approaches. Sens. Actuators B Chem. 2018, 255, 1191–1210. [Google Scholar] [CrossRef]
- Bigi, A.; Mueller, M.; Grange, S.K.; Ghermandi, G.; Hueglin, C. Performance of NO, NO2 Low Cost Sensors and Three Calibration Approaches within a Real World Application. Atmos. Meas. Tech. 2018, 11, 3717–3735. [Google Scholar] [CrossRef]
- Christakis, I.; Tsakiridis, O.; Kandris, D.; Stavrakas, I. A Kalman Filter Scheme for the Optimization of Low-Cost Gas Sensor Measurements. Electronics 2024, 13, 25. [Google Scholar] [CrossRef]
- Giordano, M.R.; Malings, C.; Pandis, S.N.; Presto, A.A.; McNeill, V.F.; Westervelt, D.M.; Beekmann, M.; Subramanian, R. From Low-Cost Sensors to High-Quality Data: A Summary of Challenges and Best Practices for Effectively Calibrating Low-Cost Particulate Matter Mass Sensors. J. Aerosol Sci. 2021, 158, 105833. [Google Scholar] [CrossRef]
- Mahajan, S.; Kumar, P. Evaluation of Low-Cost Sensors for Quantitative Personal Exposure Monitoring. Sustain. Cities Soc. 2020, 57, 102076. [Google Scholar] [CrossRef]
- Zimmerman, N.; Presto, A.A.; Kumar, S.P.N.; Gu, J.; Hauryliuk, A.; Robinson, E.S.; Robinson, A.L. A Machine Learning Calibration Model Using Random Forests to Improve Sensor Performance for Lower-Cost Air Quality Monitoring. Atmos. Meas. Tech. 2018, 11, 291–313. [Google Scholar] [CrossRef]
- Miskell, G.; Alberti, K.; Feenstra, B.; Henshaw, G.S.; Papapostolou, V.; Patel, H.; Polidori, A.; Salmond, J.A.; Weissert, L.; Williams, D.E. Reliable Data from Low Cost Ozone Sensors in a Hierarchical Network. Atmos. Environ. 2019, 214, 116870. [Google Scholar] [CrossRef]
- De Vito, S.; D’Elia, G.; Ferlito, S.; Di Francia, G.; Davidović, M.D.; Kleut, D.; Stojanović, D.; Jovaševic-Stojanović, M. A Global Multi-Unit Calibration as a Method for Large Scale IoT Particulate Matter Monitoring Systems Deployments. IEEE Trans. Instrum. Meas. 2024, 73, 1–16. [Google Scholar] [CrossRef]
- Sethi, J.K.; Mittal, M. An Efficient Correlation Based Adaptive LASSO Regression Method for Air Quality Index Prediction. Earth Sci. Inform. 2021, 14, 1777–1786. [Google Scholar] [CrossRef]
- Liu, B.; Jin, Y.; Xu, D.; Wang, Y.; Li, C. A Data Calibration Method for Micro Air Quality Detectors Based on a LASSO Regression and NARX Neural Network Combined Model. Sci. Rep. 2021, 11, 21173. [Google Scholar] [CrossRef]
- Sahu, R.; Nagal, A.; Dixit, K.K.; Unnibhavi, H.; Mantravadi, S.; Nair, S.; Simmhan, Y.; Mishra, B.; Zele, R.; Sutaria, R.; et al. Robust Statistical Calibration and Characterization of Portable Low-Cost Air Quality Monitoring Sensors to Quantify Real-Time O3 and NO2 Concentrations in Diverse Environments. Atmos. Meas. Tech. 2021, 14, 37–52. [Google Scholar] [CrossRef]
- Tibshirani, R. Regression Shrinkage and Selection via the Lasso. J. R. Stat. Soc. Ser. B (Methodol.) 1996, 58, 267–288. [Google Scholar] [CrossRef]
- Alphasense UK—Browse Gas Sensors & Air Quality Monitors. Alphasense. Available online: http://www.alphasense.com (accessed on 14 December 2023).
- PMS5003—Laser PM2.5 Sensor-Plantower Technology. Available online: https://www.plantower.com/en/products_33/74.html (accessed on 14 December 2023).
- Air Pollution Measurement Data. Ministry of Environment & Energy, Greece. Available online: https://ypen.gov.gr/perivallon/poiotita-tis-atmosfairas/dedomena-metriseon-atmosfairikis-rypansis/ (accessed on 14 December 2023).
- AAN. Alphasense Application Note AAN 104 How Electrochemical Gas Sensors Work. Available online: https://www.alphasense.com/wp-content/uploads/2013/07/AAN_104.pdf (accessed on 14 December 2023).
- Alphasense. Alphasense Application Note AAN 803-01 Correcting for Background Currents in Four Electrode Toxic Gas Sensors; Alphasense: Braintree, UK, 2014; Available online: https://zueriluft.ch/makezurich/AAN803.pdf (accessed on 14 December 2023).
- Christakis, I.; Tsakiridis, O.; Kandris, D.; Stavrakas, I. Air Pollution Monitoring via Wireless Sensor Networks: The Investigation and Correction of the Aging Behavior of Electrochemical Gaseous Pollutant Sensors. Electronics 2023, 12, 1842. [Google Scholar] [CrossRef]
NO2 Sensors | λ | Β |
---|---|---|
N1 | 0.55 | 0.2463 |
N2 | 0.55 | 0.2885 |
N3 | 0.55 | 0.1905 |
NO2 Sensors | Before LASSO Regression | After LASSO Regression | ||
---|---|---|---|---|
Linear Coefficient | R2 | Linear Coefficient | R2 | |
N1 | 0.8827 | 0.23 | 1.0396 | 0.27 |
N2 | 0.8598 | 0.22 | 0.9321 | 0.26 |
N3 | 0.9256 | −0.028 | 1.081 | 0.05 |
O3 Sensors | λ | Β |
---|---|---|
N1 | 1.4 | 0.8763 |
N2 | 1.4 | 0.7873 |
N3 | 1.4 | 0.7852 |
O3 Sensors | Before LASSO Regression | After LASSO Regression | ||
---|---|---|---|---|
Linear Coefficient | R2 | Linear Coefficient | R2 | |
N1 | 1.0385 | 0.60 | 1.0719 | 0.61 |
N2 | 0.9787 | 0.63 | 1.0007 | 0.65 |
N3 | 0.9067 | 0.57 | 0.9538 | 0.57 |
NO2 | |||||||||
---|---|---|---|---|---|---|---|---|---|
Method | MAD | MAE | RMSE | ||||||
Sensors | N1 | N2 | N3 | N1 | N2 | N3 | N1 | N2 | N3 |
Non-corrected | 2.29 | 3.47 | 2.57 | 11.78 | 12.89 | 10.16 | 0.90 | 1.04 | 1.45 |
Corrected | 2.34 | 1.89 | 2.60 | 12.59 | 11.78 | 12.77 | 1.05 | 1.09 | 1.49 |
O3 | |||||||||
---|---|---|---|---|---|---|---|---|---|
Sensors | N1 | N2 | N3 | N1 | N2 | N3 | N1 | N2 | N3 |
Method | MAD | MAE | RMSE | ||||||
Non-corrected | 16.21 | 19.30 | 16.16 | 19.94 | 23.18 | 21.37 | 1.52 | 1.74 | 0.10 |
Corrected | 13.78 | 15.98 | 14.92 | 17.03 | 19.59 | 20.05 | 1.54 | 1.69 | 0.13 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Christakis, I.; Sarri, E.; Tsakiridis, O.; Stavrakas, I. Investigation of LASSO Regression Method as a Correction Measurements’ Factor for Low-Cost Air Quality Sensors. Signals 2024, 5, 60-86. https://doi.org/10.3390/signals5010004
Christakis I, Sarri E, Tsakiridis O, Stavrakas I. Investigation of LASSO Regression Method as a Correction Measurements’ Factor for Low-Cost Air Quality Sensors. Signals. 2024; 5(1):60-86. https://doi.org/10.3390/signals5010004
Chicago/Turabian StyleChristakis, Ioannis, Elena Sarri, Odysseas Tsakiridis, and Ilias Stavrakas. 2024. "Investigation of LASSO Regression Method as a Correction Measurements’ Factor for Low-Cost Air Quality Sensors" Signals 5, no. 1: 60-86. https://doi.org/10.3390/signals5010004
APA StyleChristakis, I., Sarri, E., Tsakiridis, O., & Stavrakas, I. (2024). Investigation of LASSO Regression Method as a Correction Measurements’ Factor for Low-Cost Air Quality Sensors. Signals, 5(1), 60-86. https://doi.org/10.3390/signals5010004