From Spherical Harmonics to Gaussian Beampatterns
Abstract
:1. Introduction
2. Theory
3. Results
4. Discussion and Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Goldsmith, P.F. Gaussian beam propagation. In Quasioptical Systems: Gaussian Beam Quasioptical Propogation and Applications; IEEE: New York, NY, USA, 1998; pp. 9–38. [Google Scholar]
- Bracewell, R.N. The Fourier Transform and Its Applications, 1st ed.; McGraw-Hill: New York, NY, USA, 1965. [Google Scholar]
- Papoulis, A. The Fourier Integral and Its Applications; McGraw-Hill: New York, NY, USA, 1987. [Google Scholar]
- Du, G.; Breazeale, M.A. The ultrasonic field of a gaussian transducer. J. Acoust. Soc. Am. 1985, 78, 2083–2086. [Google Scholar] [CrossRef]
- Huang, D.; Breazeale, M.A. An ultrasonic Gaussian transducer and its diffraction field: Theory and practice. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2006, 53, 1018–1027. [Google Scholar] [CrossRef] [PubMed]
- Moore, N.J.; Alonso, M.A. Closed form formula for Mie scattering of nonparaxial analogues of Gaussian beams. Opt. Express 2008, 16, 5926–5933. [Google Scholar] [CrossRef] [PubMed]
- Moore, N.J.; Alonso, M.A. Mie scattering of highly focused, scalar fields: An analytic approach. J. Opt. Soc. Am. A Opt. Image Sci. Vis. 2016, 33, 1236–1243. [Google Scholar] [CrossRef] [PubMed]
- Gutiérrez-Cuevas, R.; Moore, N.J.; Alonso, M.A. Lorenz-Mie scattering of focused light via complex focus fields: An analytic treatment. Phys. Rev. A 2018, 97, 053848. [Google Scholar] [CrossRef]
- Alonso, M.A.; Moore, N.J. Basis expansions for monochromatic field propagation in free space. In Mathematical Optics: Classical, Quantum, and Computational Methods; Lakshminarayanan, V., Calvo, M.L., Alieva., T., Eds.; CRC Press: Boca Raton, Fl, USA, 2013; pp. 98–141. [Google Scholar]
- Kravtsov, Y.A. Complex rays and complex caustics. Radiophys. Quantum El 1967, 10, 719–730. [Google Scholar] [CrossRef]
- Deschamps, G.A. Gaussian beam as a bundle of complex rays. Electron. Lett. 1971, 7, 684–685. [Google Scholar] [CrossRef]
- Felsen, L.B. Evanescent waves. J. Opt. Soc. Am. 1976, 66, 751–760. [Google Scholar] [CrossRef]
- Cullen, A.L.; Yu, P.K. Complex source-point theory of the electromagnetic open resonator. P. Roy. Soc. Lond. A Mat. 1979, 366, 155–171. [Google Scholar] [CrossRef]
- Lindell, I.V. Exact-image method for gaussian-beam problems involving a planar interface. J. Opt. Soc. Am. A 1987, 4, 2185–2190. [Google Scholar] [CrossRef]
- Parker, K.J.; Alonso, M.A. The spherical harmonic family of beampatterns. Acoustics 2022, 4, 958–966. [Google Scholar] [CrossRef]
- Abramowitz, M.; Stegun, I.A. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables; U.S. Govt. Print. Off.: Washington, DC, USA, 1964. [Google Scholar]
- Kaplan, W. Fourier-Bessel series. In Advanced Calculus, 4th ed.; Addison-Wesley: Reading, MA, USA, 1992; pp. 512–518. [Google Scholar]
- Stevenson, G. Expansions of the Neumann type in terms of products of Bessel functions. Am. J. Math. 1928, 50, 569–590. [Google Scholar] [CrossRef]
- Watson, G.N. Chapter 16. In A Treatise on the Theory of Bessel Functions, 2nd ed.; Cambridge University Press: London, UK, 1944. [Google Scholar]
- Erdélyi, A.; Magnus, W.; Oberhettinger, F.; Tricomi, F.G. Higher Transcendental Functions/Vol. 1; McGraw-Hill: New York, NY, USA; London, UK, 1953. [Google Scholar]
- Williams, E.G. Fourier Acoustics: Sound Radiation and Nearfield Acoustical Holography; Academic Press: San Diego, CA, USA, 1999. [Google Scholar]
- Parker, K.J.; Alonso, M.A. The Concentrated Toroidal Wave. arXiv 2024, arXiv:2410.11700. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Parker, K.J.; Alonso, M.A. From Spherical Harmonics to Gaussian Beampatterns. Acoustics 2025, 7, 14. https://doi.org/10.3390/acoustics7010014
Parker KJ, Alonso MA. From Spherical Harmonics to Gaussian Beampatterns. Acoustics. 2025; 7(1):14. https://doi.org/10.3390/acoustics7010014
Chicago/Turabian StyleParker, Kevin J., and Miguel A. Alonso. 2025. "From Spherical Harmonics to Gaussian Beampatterns" Acoustics 7, no. 1: 14. https://doi.org/10.3390/acoustics7010014
APA StyleParker, K. J., & Alonso, M. A. (2025). From Spherical Harmonics to Gaussian Beampatterns. Acoustics, 7(1), 14. https://doi.org/10.3390/acoustics7010014