Previous Article in Journal
Toward Earlier Detection: Revisiting Colorectal Cancer Screening Age in the U.S. and Europe
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Review

Genetic Predisposition and Nutritional Interactions in Gastroenterology: A Review of European Clinical Recommendations

by
Vaios Svolos
1,2,*,
Anastasia Triantafyllou
1,
Georgios Charmantzis
1,
Maria Delliou
1,
Maria-Nikoletta Nanti
1,
Melina Moustaka
1,
Eleni Bakasieta
1,
Evanthia Balafa
1,
Dimitra Eleftheria Strongylou
1 and
Odysseas Androutsos
1
1
Laboratory of Clinical Nutrition and Dietetics, Department of Nutrition and Dietetics, School of Physical Education, Sports Science and Dietetics, University of Thessaly, 42100 Trikala, Greece
2
School of Medicine, Dentistry and Nursing, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QF, UK
*
Author to whom correspondence should be addressed.
Gastrointest. Disord. 2025, 7(4), 67; https://doi.org/10.3390/gidisord7040067
Submission received: 1 September 2025 / Revised: 6 October 2025 / Accepted: 10 October 2025 / Published: 17 October 2025

Abstract

Background/Objectives: Despite the growing understanding of the relationship between the genome and nutrition, clearly defined and evidence-based clinical guidelines remain insufficient. The objective of this review was to identify and compile all available European guidelines related to the impact of genetic predisposition on nutritional recommendations in the field of gastroenterology. Methods: A review of guidelines and position papers issued by four European organisations [the European Crohn’s and Colitis Organisation (ECCO), the European Society for Paediatric Gastroenterology, Hepatology and Nutrition (ESPGHAN), the European Society for Clinical Nutrition and Metabolism (ESPEN), and United European Gastroenterology (UEG)] was conducted for the past ten years. Results: Out of 5196 recommendations and statements extracted from 124 manuscripts, only 13 highlighted a link between genetic predisposition and dietary factors in clinical gastroenterology. From the available guidelines, there is no clear trend indicating an increased focus on genetic background and its association with nutrition in recent years. Conclusions: There is a critical opportunity for European organisations to develop an evidence-based information framework, guided by clinical protocols, in order to integrate the large volume of genetic data into clinical practice and personalised care of individuals with gastrointestinal disorders.

Graphical Abstract

1. Introduction

The complex interplay between genetic predisposition and nutritional factors acts as a catalyst in the development, diagnosis, and management of many gastrointestinal (GI) disorders. Advances in genomic research have revealed that individual genetic variations can influence susceptibility to GI diseases [1,2], modulate immune responses [3] and affect metabolism and absorption of nutrients [4,5,6]. These genetic influences are increasingly recognised as important determinants of disease phenotype and patient outcomes.
In conditions such as inflammatory bowel disease (IBD), coeliac disease (CoD), irritable bowel syndrome (IBS), colorectal cancer, and lactose intolerance, genetic factors contribute to diagnosis but also to individual variability in clinical presentation and treatment response. For instance, specific human leukocyte antigen (HLA) genotypes (HLA-DQ2 and HLA-DQ8) are central to the diagnosis of CoD, guiding decisions on gluten exclusion and monitoring. In IBD, gene variants like NOD2 have been linked to disease behaviour and complications, that in turn, can affect nutritional strategies to manage inflammation and maintain remission [7,8,9,10,11,12].
At the same time, two fields emerged at the intersection of genomics and nutrition that underpin precision nutrition: nutrigenetics and nutrigenomics. Nutrigenetics focuses on how genetic variants influence the absorption, metabolism, and utilisation of nutrients, thereby explaining interindividual variability in dietary requirements and responses [13,14]. An example of nutrigenetics is the lactase persistence polymorphism, where variation in the LCT gene determines whether lactose can be digested in adulthood [15]. In contrast, nutrigenomics explores how diet and food components regulate gene expression, protein synthesis, and metabolic pathways, thereby modulating physiological and pathological processes [13,14].
In GI disorders, these approaches form the basis of precision nutrition, which clarifies the impact of individuals’ genetic and metabolic characteristics in the effectiveness of dietary therapies [16,17]. For example, in IBS, sucrase-isomaltase mutations and distinct metabolomic or microbial signatures can predict responsiveness to a low-FODMAP diet, while in paediatric Crohn’s disease, exclusive enteral nutrition (EEN) demonstrates therapeutic benefit that may be optimised by integrating host genetics, microbiome composition, and metabolic biomarkers. At the same time, nutrigenomic research highlights the importance of preventing adverse effects of restrictive diets, such as nutrient deficiencies, by guiding reintroduction strategies and targeted supplementation [16,18,19]. Collectively, these advances point out the significance of tailoring dietary recommendations to individual genetic and microbial profiles. As such, enhancing treatment outcomes and establishing precision nutrition are presented as central to both therapeutic and preventative strategies in GI health.
European clinical guidelines developed by expert societies incorporate current evidence to standardise diagnosis and treatment. These guidelines increasingly acknowledge genetic factors as part of precision medicine approaches in gastroenterology and nutrition. However, the extent to which genetics informs nutritional recommendations across different GI disorders in these guidelines remains unclear. A thorough assessment of guidelines concerning genome–nutrition interactions is crucial for understanding existing approaches in clinical practice and identifying opportunities to integrate genetics into personalised care.
This review aimed at systematically identifying and synthesising European guideline statements that address genetic predisposition and host genome influence in the nutritional management of GI diseases. By collating and analysing these recommendations, we seek to clarify how genetics is currently incorporated into clinical nutrition for GI conditions and stress out gaps for future research and guideline development. Although advances in nutrigenetics and nutrigenomics show promise for personalising nutrition in GI disorders, their translation into European guidelines has been slow. A few initiatives have explored gene–diet applications, but limited reproducible evidence, uncertainty about clinical utility, and practical barriers to genetic testing have hindered formal recommendations.

2. Results

2.1. Distribution of Total, Nutrition, and Genetic Related Statements per European Organisation

A total of 124 manuscripts were identified issued by four European organisations: the European Crohn’s and Colitis Organisation (ECCO), the European Society for Paediatric Gastroenterology, Hepatology and Nutrition (ESPGHAN), the European Society for Clinical Nutrition and Metabolism (ESPEN), and United European Gastroenterology (UEG). The identified manuscripts included 42 ECCO [20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61], 52 ESPGHAN [61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112], 14 UEG [112,113,114,115,116,117,118,119,120,121,122,123,124,125] and 16 ESPEN manuscripts [112,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140] (Table 1).
A total of 5196 statements were extracted (Supplementary Table S1). ECCO provided 1363 statements, with 13.1% addressing nutrition and 1.5% referring to genetic factors. ESPGHAN issued 1639 statements, of which 36.9% focused on nutrition and 2.7% on genetics. UEG provided 873 statements, including 15.7% nutrition-related and 1.8% genetics-related content. ESPEN contributed 1321 statements, 67.5% of which had nutrition guidelines, while only 0.2% referred to genetic factors (Table 1). The UEG and ESPGHAN organisations had five and six statements linking genetics with nutrition, respectively, while ESPEN had much fewer and ECCO had none. The results show considerable variability among organisations in the extent to which they have incorporated nutrition and genetics into gastroenterology guidelines.

2.2. Number of Total Statements per European Organisation and Publication Year

The data, organised by European organisation and year of publication, provide an overview of the volume and focus of the extracted information. Over the ten-year study period, ECCO demonstrates the most consistent output of relevant statements, providing a steady number of publications. In contrast, two of the other organisations, UEG and ESPEN, seem to have a more recent involvement, since their first relevant publications appear after 2019 (Table 2).
A total of 1363 statements were extracted from ECCO publications between 2015 and 2025. The number of statements extracted each year varies, with the highest number observed in 2017 (194 statements) and the lowest in 2025 (85 statements).
The data for ESPGHAN does not maintain a consistent stream of publications over the decade. Unlike ECCO, which has a more stable output, ESPGHAN’s activity is characterised by significant variability. The number of extracted statements ranges from a low of just seven in 2015 to a remarkable peak of 476 in 2018 and 418 in 2024. A stable trend is observed in the remaining years.
The data for UEG indicate a later start to its publishing activity on the topics of nutrition and genetic factors compared to the remaining organisations. From 2015 to 2018, there are no relevant statements extracted (0%). In 2019, the number of statements is 80 and it increases significantly in 2020 (265 statements). This peak in 2020 is followed by a slight decrease in the following years.
The data for the ESPEN reveals a pattern of activity that began in 2019, with no relevant statements extracted from 2016 to 2018. The organisation has only three statements in 2015 but has a significant increase in output, particularly in 2020 (352 statements) and 2022 (270 statements). While ESPEN did not consistently publish on these topics throughout the entire decade, its activity from 2019 onwards shows an important focus, with a consistently high number of extracted statements in the later years of the study. The total number of statements is lower in 2025; however, it should be noted that the relevant research was conducted only up until the end of July 2025.

2.3. Distribution of Total, Nutrition, and Genetic Related Statements per Publication Year

The analysis of the total number of extracted statements related to nutrition from all four organisations from 2015 to 2025 reveals a fluctuating pattern (Table 3). The number of nutrition-related statements varies significantly, ranging from a low of 18 in 2015 to a high of 308 in 2023. A notable increase in activity is observed since 2018, with a peak in 2023, where 59.3% of the total extracted statements for that year were related to nutrition. While the total number of relevant statements shows some year-to-year variation, the overall trend suggests a growing focus on nutrition-related topics in the publications of these European organisations, especially in the later years of the study period.
The analysis of statements with genetic-related content reveals a significantly different pattern compared to those with nutrition content. Across all four organisations, the volume of genetic-related statements is considerably lower and exhibits less consistency. Over the decade, the total number of statements on this topic did not exceed 20 in any single year between 2015 and 2019. Despite a slight increase in 2020, the overall trend indicates that genetic factors received far less attention in the publications of these European organisations compared to nutritional topics.
The analysis of statements that link genetics with nutrition reveals a very limited and sporadic pattern of activity. For many years, specifically from 2015 to 2018 and then in 2020 and 2023, there are no extracted statements on this combined topic (0%). Statements addressing both nutrition and genetic factors appear in publications from 2019, 2022, 2024, and 2025. The highest count is six statements in 2019.

2.4. Qualitative Analysis of Statements on Nutrition and Genetic Factors

This section presents a detailed qualitative analysis of the 13 extracted statements that link nutrition to genetic factors. The analysis reveals a clear focus on a specific disease area, CoD. A significant portion of the statements, primarily from UEG and ESPGHAN, addresses the relationship between HLA-DQ2/DQ8 genes and gluten intake in the diagnosis and management of CoD. These statements emphasise the utilisation of genetic testing to either rule out the disease or to guide further diagnostic steps, such as a gluten challenge, in patients who are already on a gluten-free diet. The data highlights a shared understanding among these organisations that genetic predisposition plays a crucial role in CoD, influencing both diagnostic protocols and dietary recommendations (Table 4).
Moreover, a few statements address other genetic conditions. ESPEN links genetic causes of Carbohydrate Malabsorption (CarbMal) to dietary restrictions, while ESPGHAN states that congenital sucrase-isomaltase deficiency is usually diagnosed by genetic testing after symptoms of malabsorption appear with the introduction of sucrose and starch in the diet. There is only one statement from ESPEN that recommends nutritional support for patients with Cystic Fibrosis (CF) who are not growing according to their “genetic potential” (Table 4).

3. Discussion

Our findings reflect this gap: although clinical need and early initiatives exist, variable evidence strength, regulatory concerns, and lack of consensus tools likely explain the slow uptake of gene–diet guidance in European recommendations. Our review revealed that out of more than 5000 statements, published by four European organisations (ECCO, ESPGHAN, ESPEN and UEG), only 13 explicitly linked genetics with nutrition in gastroenterology. While statements focusing exclusively on nutrition were numerous, statements incorporating genetic predisposition were far fewer, underscoring the limited integration of genomics into current dietary recommendations. The lack of consistent output indicates that the joint topic of nutrition and genetics is not a primary focus for these European organisations, at least not in a way that is clearly addressed in their publications.
Most gene–diet statements are related to HLA typing in CoD, confirming that genetic testing is well established in this context. CoD is a multifactorial disease that triggers an abnormal immune response upon gluten intake in genetically predisposed individuals, particularly those carrying specific class II human leukocyte antigen (HLA) variants within the major histocompatibility complex (MHC) [141]. The majority of CοD patients are carriers of HLA-DQ2 and/or HLA-DQ8, and the value of HLA genotyping in suspected coeliac disease lies mainly in its strong negative predictive value [142]. In susceptible individuals, gluten can lead to gut inflammation and villous atrophy, so extensive studies have shown that adherence to a strict gluten-free diet (GFD) can restore normal small bowel histology [141,143]. According to the new ESPGHAN guideline, there is insufficient evidence to associate high gluten intake with different HLA risk types [84].
Regarding the diagnosis of CoD, standard tests of serology and conventional histology are often adequate to reach a diagnosis of CoD, but HLA-DQ2/8 testing can help exclude individuals without genetic risk for CoD, reducing unnecessary repeated testing in symptomatic patients with a first-degree relative affected by the disease. It can also be used in patients with suspected CoD but who fail to respond to a GFD [142]. As reported in the new UEG guideline, HLA-DQ2/DQ8 typing has an important but supportive role in the diagnosis of CoD. Although HLA-DQ2/DQ8 typing should not be used as a routine initial test, it can be valuable for excluding the disease when negative and for clarifying ambiguous cases such as seronegative CoD, patients already on a gluten-free diet, or those with discordant serology and histology. Diagnosis, thus, relies on a combination of serology, histology (on a gluten-containing diet), and genetics [122].
However, other GI disorders where genetics are increasingly relevant—such as IBD, IBS—were scarcely addressed, showing a limited scope of current recommendations. Recent work has highlighted progress in understanding the genetic architecture of IBD, including pharmacogenetic applications. In parallel, new bioinformatics and multi-omics platforms can integrate genomic, transcriptomic, proteomic, metabolomic and microbiome data to build comprehensive molecular maps of disease, creating opportunities for future gene–diet guidance once evidence matures [144,145]. Existing research suggests [146,147] the potential use of specific loci as diagnostic biomarkers for IBD and IBS through genome-wide association studies (GWAS), providing new insights into the aetiology of these diseases. However, since the underlying genes remain insufficiently characterised, further progress is necessary for therapeutic approaches, including nutritional interventions.
While scientific evidence supports the role of genetic polymorphisms in nutrient metabolism and disease susceptibility, our findings suggest that European guidelines still lag in incorporating this knowledge. This gap points out the need for systematic frameworks to integrate genetic data into dietary recommendations, as highlighted in recent precision nutrition research [148,149,150,151,152]. According to the Academy of Nutrition and Dietetics, “nutritional genomics provides insight into how diet and genotype interactions affect phenotype. The practical application of nutritional genomics for complex chronic disease is an emerging science, and the use of nutrigenetic testing to provide dietary advice is not ready for routine dietetics practice” [153]. At present, advances in high-throughput genotyping, machine learning, and artificial intelligence enable the collection and analysis of vast amounts of genetic data [150]. However, further research is needed before these tools can provide rigorous evidence to support dietary recommendations for either groups or individuals [151,152]. In fact, heterogeneity in genetic associations, insufficient clinical trial evidence, and the absence of validated clinical tools for translating nutrigenetic findings into practice might explain the limited inclusion of gene–nutrition guidance. Guideline committees are often cautious about issuing recommendations in areas where the evidence remains preliminary or inconsistent. Therefore, the absence of clear, evidence-based guidance leaves clinicians with limited support for integrating genetic data into nutritional care. This gap risks slowing the adoption of precision nutrition approaches, despite their potential to improve patient outcomes in gastroenterology.
We observed significant differences across societies; ESPEN produced many nutrition-related guidelines but almost no genetic content, while ESPGHAN and UEG provided only a handful of gene–diet statements. This variability may reflect differences in target populations and in the thresholds of evidence required for guideline development. Additional reasons might well be variations in methodological approaches to evidence appraisal, the pace at which each society integrates emerging research, and the degree of collaboration between geneticists, nutritionists, and clinicians.
A strength of our study is the comprehensive, systematic search across major European gastroenterology and nutrition organisations, which enhances the robustness of our findings. However, we may have missed relevant guidelines issued by other professional bodies, smaller societies, or those published only in non-English languages. Furthermore, global organisations were not included, and therefore the statements reported here are restricted to the European context. Our analysis focused only on explicit gene–diet references, which may underestimate the extent of indirect genetic considerations. Finally, the aim of this paper was to collect and map existing statements, without evaluating the strength or quality of the relevant recommendations.
There is a critical opportunity for expert societies to expand guideline development by incorporating emerging gene-nutrition interaction evidence, particularly in IBD, IBS, and metabolic GI disorders. Multidisciplinary collaboration, standardisation of genetic testing protocols, endorsing robust methodological designs, such as longitudinal studies and clinical trials, will be key to building an evidence-based framework for precision nutrition in gastroenterology.

4. Materials and Methods

4.1. Guideline Identification

A comprehensive systematic search was conducted to identify clinical practice guidelines, original research articles, and review articles—including consensus papers, topical reviews, and position statements—published between 1 January 2015 and 30 July 2025 by leading European organisations addressing nutrition and/or gastroenterology. The search included PubMed and the official repositories of the following European organisation: ECCO, ESPGHAN, ESPEN and UEG.
The search was performed in July 2025 using combinations of keywords such as “guideline”, “clinical practice”, “gastroenterology”, “nutrition”, and disease-specific terms (e.g., “inflammatory bowel disease”, “coeliac disease”, “irritable bowel syndrome”, “Crohn’s disease”, “lactose intolerance”). To ensure completeness, additional manual searches were conducted in the guideline databases available on each organisation’s website. Articles focusing on surgical interventions or oncology were not included, as this was outside the scope of the current study.

4.2. Eligibility Criteria

The eligibility criteria included guideline, consensus or other guidance manuscripts that were published or endorsed by the aforementioned European associations. The included manuscripts addressed topics related to gastroenterology and gastrointestinal disorders, including IBD, CoD, IBS, lactose intolerance, and any other GI condition. Publications were in English.

4.3. Data Extraction and Review Process

All statements, recommendations, and consensus points from the identified guidelines were systematically extracted into a dedicated database. Extracted statements were categorised by issuing organisation and publication year.
Two independent researchers (V.S. and A.T.) reviewed all extracted statements to identify statements referring to nutrition in gastroenterology, including references to specific nutrients, diet, enteral nutrition, and parenteral nutrition. By utilising the same approach, they also identified the statements referring to genetic predisposition. This included explicit references to genes, genetic polymorphisms, genotypes, genetic testing, and familial history. From the classified statements, we further extracted those that referred to both nutrition and genetic elements.

4.4. Data Synthesis

Quantitative summaries were generated to indicate the number and proportion of statements addressing nutrition or/and genetic factors within each guideline source and by publication year. Comparative analyses were performed to identify trends across different guideline-producing organisations and over time, providing insight into evolving emphasis on genetics in nutrition-related gastroenterology guidance.
Extracted statements involving nutrition and genetics in gastroenterology were collated in tabular form, organised by disease area, guideline source, and publication year. A narrative synthesis described the scope and depth of genetic considerations in nutrition-related gastroenterology recommendations, highlighting areas with robust evidence and gaps needing further research.

5. Conclusions

A large number of nutrition-focused guidelines was identified, particularly from ESPEN. However, our study revealed that out of more than 5000 statements issued by four European scientific societies (ECCO, ESPGHAN, ESPEN, and UEG), only 13 explicitly linked genetic predisposition with nutrition in gastroenterology, highlighting a significant gap in the literature. The emerging scientific field of precision nutrition provides the opportunity to apply genomic knowledge to the nutritional prevention of multifactorial diseases. Although clinicians are faced with a growing volume of nutrigenetic data, evidence-based guidelines for patient counselling—at least from the organisations mentioned in this paper—remain limited.

Supplementary Materials

The following supporting information can be downloaded at https://www.mdpi.com/article/10.3390/gidisord7040067/s1: Table S1: Extracted statements for gastrointestinal health mentioned within ESPEN, ECCO, UEG and ESPGHAN manuscripts between 2015–2025.

Author Contributions

Conceptualization, V.S., A.T. and O.A.; methodology, V.S. and A.T.; formal analysis, A.T. and G.C.; data curation, A.T., G.C., M.D., M.-N.N., M.M., E.B. (Eleni Bakasieta), E.B. (Eleni Balafa) and D.E.S.; writing—original draft preparation, V.S. and A.T.; writing—review and editing, V.S., A.T., G.C., M.D., M.-N.N., M.M., E.B. (Eleni Bakasieta), E.B. (Eleni Balafa) and D.E.S.; supervision, V.S. and O.A.; project administration, A.T. All authors have read and agreed to the published version of the manuscript.

Funding

This research received no external funding.

Institutional Review Board Statement

Not applicable.

Informed Consent Statement

Not applicable.

Data Availability Statement

No new data were created or analyzed in this study. Data sharing is not applicable to this article.

Conflicts of Interest

The authors declare no conflicts of interest.

Abbreviations

The following abbreviations are used in this manuscript:
CarbMalCarbohydrate Malabsorption
CDCrohn’s Disease
CDACeliac Disease Autoimmunity
CFCystic Fibrosis
CoDCoeliac Disease
CSIDCongenital sucrase-isomaltase deficiency
DGPDeamidated gliadin peptides
ECCOEuropean Crohn’s and Colitis Organisation
EENExclusive enteral nutrition
EMAEndomysial antibodies
ENEnteral nutrition
ESPEN European Society for Clinical Nutrition and Metabolism
ESPGHANEuropean Society for Paediatric Gastroenterology, Hepatology and Nutrition
FODMAPFermentable Oligosaccharides Disaccharides Monosaccharides And Polyols
GFDGluten free diet
GIGastrointestinal
HLAHuman Leukocyte Antigen
IBDInflammatory Bowel Disease
IBSIrritable Bowel Syndrome
LCT geneLactase gene
NCGSNon-Celiac Gluten Sensitivity
NOD2Nucleotide-binding oligomerization domain 2
TG2Tissue transglutaminase 2
TGPDeamidated gliadin peptides
UCUlcerative Colitis
UEGUnited European Gastroenterology
ULNUpper Limit of Normal
VAVillous Atrophy

References

  1. Liu, Z.; Liu, R.; Gao, H.; Jung, S.; Gao, X.; Sun, R.; Liu, X.; Kim, Y.; Lee, H.S.; Kawai, Y.; et al. Genetic architecture of the inflammatory bowel diseases across East Asian and European ancestries. Nat. Genet. 2023, 55, 796–806. [Google Scholar] [CrossRef] [PubMed]
  2. Kars, M.E.; Wu, Y.; Stenson, P.D.; Cooper, D.N.; Burisch, J.; Peter, I.; Itan, Y. The landscape of rare genetic variation associated with inflammatory bowel disease and Parkinson’s disease comorbidity. Genome Med. 2024, 16, 66. [Google Scholar] [CrossRef]
  3. Cabezudo, D.; Tsafaras, G.; Van Acker, E.; Van den Haute, C.; Baekelandt, V. Mutant LRRK2 exacerbates immune response and neurodegeneration in a chronic model of experimental colitis. Acta Neuropathol. 2023, 146, 245–261. [Google Scholar] [CrossRef]
  4. Dauncey, M. Recent advances in nutrition, genes and brain health. Proc. Nutr. Soc. 2012, 71, 581–591. [Google Scholar] [CrossRef] [PubMed]
  5. Bösch, E.S.; Spörri, J.; Scherr, J. Vitamin Metabolism and Its Dependency on Genetic Variations Among Healthy Adults: A Systematic Review for Precision Nutrition Strategies. Nutrients. 2025, 17, 242. [Google Scholar] [CrossRef]
  6. Medori, M.C.; Dhuli, K.; Bonetti, G.; Donato, K.; Cristoni, S.; Ceccarini, M.R.; Beccari, T.; Iaconelli, A.; Aquilanti, B.; Matera, G.; et al. Nutrigenomics: SNPs correlated to Food Preferences and Susceptibilities. Clin. Ter. 2023, 174 (Suppl. 2), 214–226. [Google Scholar] [CrossRef]
  7. Khor, B.; Gardet, A.; Xavier, R. Genetics and pathogenesis of inflammatory bowel disease. Nature 2011, 474, 307–317. [Google Scholar] [CrossRef] [PubMed]
  8. Peruhova, M.; Stoyanova, D.; Miteva, D.G.; Kitanova, M.; Mirchev, M.B.; Velikova, T. Genetic factors that predict response and failure of biologic therapy in inflammatory bowel disease. World J. Exp. Med. 2025, 15, 97404. [Google Scholar] [CrossRef] [PubMed]
  9. Iversen, R.; Sollid, L.M. The Immunobiology and Pathogenesis of Celiac Disease. Annu. Rev. Pathol. 2023, 18, 47–70. [Google Scholar] [CrossRef]
  10. Gnodi, E.; Meneveri, R.; Barisani, D. Celiac disease: From genetics to epigenetics. World J. Gastroenterol. 2022, 28, 449–463. [Google Scholar] [CrossRef]
  11. Anguita-Ruiz, A.; Aguilera, C.M.; Gil, Á. Genetics of Lactose Intolerance: An Updated Review and Online Interactive World Maps of Phenotype and Genotype Frequencies. Nutrients 2020, 12, 2689. [Google Scholar] [CrossRef]
  12. Li, J.; Ma, X.; Chakravarti, D.; Shalapour, S.; DePinho, R.A. Genetic and biological hallmarks of colorectal cancer. Genes Dev. 2021, 35, 787–820. [Google Scholar] [CrossRef] [PubMed]
  13. Uthpala, T.G.; Fernando, H.N.; Thibbotuwawa, A.; Jayasinghe, M. Importance of nutrigenomics and nutrigenetics in food science. MOJ Food Process. Technol. 2020, 8, 114–119. [Google Scholar] [CrossRef]
  14. Kiani, A.K.; Bonetti, G.; Donato, K.; Kaftalli, J.; Herbst, K.L.; Stuppia, L.; Fioretti, F.; Nodari, S.; Perrone, M.; Chiurazzi, P.; et al. Polymorphisms, diet and nutrigenomics. J. Prev. Med. Hyg. 2022, 63 (Suppl. 3), E125–E141. [Google Scholar] [CrossRef]
  15. Enattah, N.S.; Sahi, T.; Savilahti, E.; Terwilliger, J.D.; Peltonen, L.; Järvelä, I. Identification of a variant associated with adult-type hypolactasia. Nat. Genet. 2002, 30, 233–237. [Google Scholar] [CrossRef] [PubMed]
  16. Livingstone, K.M.; Ramos López, O.; Pérusse, L.; Kato, H.; Ordovas, J.M.; Martínez, J.A. Precision nutrition: A review of current approaches and future endeavors. Trends Food Sci. Technol. 2022, 128, 253–264, Reprint in Trends Food Sci. Technol. 2022, 130, 51–62. [Google Scholar] [CrossRef]
  17. Ho, J.; Puoplo, N.; Pokharel, N.; Hirdaramani, A.; Hanyaloglu, A.C.; Cheng, C.W. Nutrigenomic underpinnings of intestinal stem cells in inflammatory bowel disease and colorectal cancer development. Front. Genet. 2024, 15, 1349717. [Google Scholar] [CrossRef]
  18. Husein, D.M.; Naim, H.Y. Impaired cell surface expression and digestive function of sucrase-isomaltase gene variants are associated with reduced efficacy of low FODMAPs diet in patients with IBS-D. Gut 2020, 69, 1538–1539. [Google Scholar] [CrossRef] [PubMed]
  19. Gruber, L.; Lichti, P.; Rath, E.; Haller, D. Nutrigenomics and nutrigenetics in inflammatory bowel diseases. J. Clin. Gastroenterol. 2012, 46, 735–747. [Google Scholar] [CrossRef]
  20. Adamina, M.; Bonovas, S.; Raine, T.; Spinelli, A.; Warusavitarne, J.; Armuzzi, A.; Bachmann, O.; Bager, P.; Biancone, L.; Bokemeyer, B.; et al. ECCO guidelines on therapeutics in Crohn’s disease: Surgical treatment. J. Crohn’s Colitis 2020, 14, 155–168. [Google Scholar] [CrossRef] [PubMed]
  21. Adamina, M.; Minozzi, S.; Warusavitarne, J.; Buskens, C.J.; Chaparro, M.; Verstockt, B.; Kopylov, U.; Yanai, H.; Vavricka, S.R.; Sigall-Boneh, R.; et al. ECCO Guidelines on Therapeutics in Crohn’s Disease: Surgical Treatment. J. Crohn’s Colitis 2024, 18, 1556–1582. [Google Scholar] [CrossRef] [PubMed]
  22. Gordon, H.; Biancone, L.; Fiorino, G.; Katsanos, K.H.; Kopylov, U.; Al Sulais, E.; Axelrad, J.E.; Balendran, K.; Burisch, J.; de Ridder, L.; et al. ECCO Guidelines on Inflammatory Bowel Disease and Malignancies. J. Crohn’s Colitis 2023, 17, 827–854. [Google Scholar] [CrossRef]
  23. Gordon, H.; Burisch, J.; Ellul, P.; Karmiris, K.; Katsanos, K.; Allocca, M.; Bamias, G.; Barreiro-de Acosta, M.; Braithwaite, T.; Greuter, T.; et al. ECCO Guidelines on Extraintestinal Manifestations in Inflammatory Bowel Disease. J. Crohn’s Colitis 2024, 18, 1–37. [Google Scholar] [CrossRef] [PubMed]
  24. Gordon, H.; Minozzi, S.; Kopylov, U.; Verstockt, B.; Chaparro, M.; Buskens, C.; Warusavitarne, J.; Agrawal, M.; Allocca, M.; Atreya, R.; et al. ECCO Guidelines on Therapeutics in Crohn’s Disease: Medical Treatment. J. Crohn’s Colitis 2024, 18, 1531–1555. [Google Scholar] [CrossRef]
  25. Kucharzik, T.; Ellul, P.; Greuter, T.; Rahier, J.F.; Verstockt, B.; Abreu, C.; Albuquerque, A.; Allocca, M.; Esteve, M.; Farraye, F.A.; et al. ECCO Guidelines on the Prevention, Diagnosis, and Management of Infections in Inflammatory Bowel Disease. J. Crohn’s Colitis 2021, 15, 879–913. [Google Scholar] [CrossRef] [PubMed]
  26. Raine, T.; Bonovas, S.; Burisch, J.; Kucharzik, T.; Adamina, M.; Annese, V.; Bachmann, O.; Bettenworth, D.; Chaparro, M.; Czuber-Dochan, W.; et al. ECCO Guidelines on Therapeutics in Ulcerative Colitis: Medical Treatment. J. Crohn’s Colitis 2022, 16, 2–17. [Google Scholar] [CrossRef]
  27. Torres, J.; Bonovas, S.; Doherty, G.; Kucharzik, T.; Gisbert, J.P.; Raine, T.; Adamina, M.; Armuzzi, A.; Bachmann, O.; Bager, P.; et al. ECCO Guidelines on Therapeutics in Crohn’s Disease: Medical Treatment. J. Crohn’s Colitis 2020, 14, 4–22. [Google Scholar] [CrossRef]
  28. Torres, J.; Chaparro, M.; Julsgaard, M.; Katsanos, K.; Zelinkova, Z.; Agrawal, M.; Ardizzone, S.; Campmans-Kuijpers, M.; Dragoni, G.; Ferrante, M.; et al. European Crohn’s and Colitis Guidelines on Sexuality, Fertility, Pregnancy, and Lactation. J. Crohn’s Colitis 2023, 17, 1–27. [Google Scholar] [CrossRef]
  29. Annese, V.; Beaugerie, L.; Egan, L.; Biancone, L.; Bolling, C.; Brandts, C.; Dierickx, D.; Dummer, R.; Fiorino, G.; Gornet, J.M.; et al. European Evidence-based Consensus: Inflammatory Bowel Disease and Malignancies. J. Crohn’s Colitis 2015, 9, 945–965. [Google Scholar] [CrossRef] [PubMed]
  30. Bemelman, W.A.; Warusavitarne, J.; Sampietro, G.M.; Serclova, Z.; Zmora, O.; Luglio, G.; de Buck van Overstraeten, A.; Burke, J.P.; Buskens, C.J.; Colombo, F.; et al. ECCO-ESCP Consensus on Surgery for Crohn’s Disease. J. Crohn’s Colitis 2018, 12, 1–16. [Google Scholar] [CrossRef] [PubMed]
  31. Dignass, A.U.; Gasche, C.; Bettenworth, D.; Birgegård, G.; Danese, S.; Gisbert, J.P.; Gomollon, F.; Iqbal, T.; Katsanos, K.; Koutroubakis, I.; et al. European Consensus on the Diagnosis and Management of Iron Deficiency and Anaemia in Inflammatory Bowel Diseases. J. Crohn’s Colitis 2015, 9, 211–222. [Google Scholar] [CrossRef]
  32. Gomollón, F.; Dignass, A.; Annese, V.; Tilg, H.; Van Assche, G.; Lindsay, J.O.; Peyrin-Biroulet, L.; Cullen, G.J.; Daperno, M.; Kucharzik, T.; et al. 3rd European Evidence-based Consensus on the Diagnosis and Management of Crohn’s Disease 2016: Part 2: Surgical Management and Special Situations. J. Crohn’s Colitis 2017, 11, 135–149. [Google Scholar] [CrossRef] [PubMed]
  33. Harbord, M.; Annese, V.; Vavricka, S.R.; Allez, M.; Barreiro-de Acosta, M.; Boberg, K.M.; Burisch, J.; De Vos, M.; De Vries, A.M.; Dick, A.D.; et al. The First European Evidence-based Consensus on Extra-intestinal Manifestations in Inflammatory Bowel Disease. J. Crohn’s Colitis 2016, 10, 239–254. [Google Scholar] [CrossRef]
  34. Harbord, M.; Eliakim, R.; Bettenworth, D.; Karmiris, K.; Katsanos, K.; Kopylov, U.; Kucharzik, T.; Molnár, T.; Raine, T.; Sebastian, S.; et al. Third European Evidence-based Consensus on Diagnosis and Management of Ulcerative Colitis. Part 2: Current Management. J. Crohn’s Colitis 2017, 11, 769–784. [Google Scholar] [CrossRef]
  35. Kemp, K.; Dibley, L.; Chauhan, U.; Greveson, K.; Jäghult, S.; Ashton, K.; Buckton, S.; Duncan, J.; Hartmann, P.; Ipenburg, N.; et al. Second N-ECCO Consensus Statements on the European Nursing Roles in Caring for Patients with Crohn’s Disease or Ulcerative Colitis. J. Crohn’s Colitis 2018, 12, 760–776. [Google Scholar] [CrossRef]
  36. Magro, F.; Gionchetti, P.; Eliakim, R.; Ardizzone, S.; Armuzzi, A.; Barreiro-de Acosta, M.; Burisch, J.; Gecse, K.B.; Hart, A.L.; Hindryckx, P.; et al. Third European Evidence-based Consensus on Diagnosis and Management of Ulcerative Colitis. Part 1: Definitions, Diagnosis, Extra-intestinal Manifestations, Pregnancy, Cancer Surveillance, Surgery, and Ileo-anal Pouch Disorders. J. Crohn’s Colitis 2017, 11, 649–666. [Google Scholar] [CrossRef] [PubMed]
  37. van der Woude, C.J.; Ardizzone, S.; Bengtson, M.B.; Fiorino, G.; Fraser, G.; Katsanos, K.; Kolacek, S.; Juillerat, P.; Mulders, A.G.M.G.J.; Pedersen, N.; et al. The Second European Evidenced-Based Consensus on Reproduction and Pregnancy in Inflammatory Bowel Disease. J. Crohn’s Colitis 2015, 9, 107–124. [Google Scholar] [CrossRef] [PubMed]
  38. Adamina, M.; Feakins, R.; Iacucci, M.; Spinelli, A.; Cannatelli, R.; D’Hoore, A.; Driessen, A.; Katsanos, K.; Mookhoek, A.; Myrelid, P.; et al. ECCO Topical Review Optimising Reporting in Surgery, Endoscopy, and Histopathology: Collaboration Between S-ECCO, EduCom, H-ECCO. J. Crohn’s Colitis 2021, 15, 1089–1105. [Google Scholar] [CrossRef]
  39. Doherty, G.; Katsanos, K.H.; Burisch, J.; Allez, M.; Papamichael, K.; Stallmach, A.; Mao, R.; Berset, I.P.; Gisbert, J.P.; Sebastian, S.; et al. European Crohn’s and Colitis Organisation Topical Review on Treatment Withdrawal (‘Exit Strategies’) in Inflammatory Bowel Disease. J. Crohn’s Colitis 2018, 12, 17–31. [Google Scholar] [CrossRef]
  40. Feakins, R.; Torres, J.; Borralho-Nunes, P.; Burisch, J.; Cúrdia Gonçalves, T.; De Ridder, L.; Driessen, A.; Lobatón, T.; Menchén, L.; Mookhoek, A.; et al. ECCO Topical Review on Clinicopathological Spectrum and Differential Diagnosis of Inflammatory Bowel Disease. J. Crohn’s Colitis 2022, 16, 343–357. [Google Scholar] [CrossRef] [PubMed]
  41. Godny, L.; Svolos, V.; Williams, A.J.; Czuber-Dochan, W.; Aloi, M.; Ibarra, A.; O’Hanlon, D.V.; Dragoni, G.; Avni Biron, I.; Campmans-Kuijpers, M.; et al. Multidisciplinary Perinatal Care in IBD. J. Crohn’s Colitis 2022, 17, 663–680. [Google Scholar] [CrossRef]
  42. Kayal, M.; Bislenghi, G.; Adamina, M.; Ardalan, Z.S.; Avellaneda, N.; de Buck van Overstraeten, A.; Duijvestein, M.; Estevinho, M.M.; Furfaro, F.; Hart, A.L.; et al. ECCO Topical Review on Pouch Disorders. J. Crohn’s Colitis 2025, 19, jjaf103. [Google Scholar] [CrossRef]
  43. Kirchgesner, J.; Verstockt, B.; Adamina, M.; Allin, K.H.; Allocca, M.; Bourgonje, A.R.; Burisch, J.; Doherty, G.; Dulai, P.S.; El-Hussuna, A.; et al. ECCO Topical Review on Predictive Models on Inflammatory Bowel Disease Disease Course and Treatment Response. J. Crohn’s Colitis 2025, 19, jjaf073. [Google Scholar] [CrossRef]
  44. Kucharzik, T.; Tielbeek, J.; Carter, D.; Taylor, S.A.; Tolan, D.; Wilkens, R.; Bryant, R.V.; Hoeffel, C.; De Kock, I.; Maaser, C.; et al. ECCO-ESGAR Topical Review on Optimizing Reporting for Cross-Sectional Imaging in Inflammatory Bowel Disease. J. Crohn’s Colitis 2022, 16, 523–543. [Google Scholar] [CrossRef] [PubMed]
  45. Maaser, C.; Langholz, E.; Gordon, H.; Burisch, J.; Ellul, P.; Hernández Ramirez, V.; Karakan, T.; Katsanos, K.H.; Krustins, E.; Levine, A.; et al. European Crohn’s and Colitis Organisation Topical Review on Environmental Factors in IBD. J. Crohn’s Colitis 2017, 11, 905–920. [Google Scholar] [CrossRef]
  46. Noor, N.M.; Sousa, P.; Bettenworth, D.; Gomollón, F.; Lobaton, T.; Bossuyt, P.; Casanova, M.J.; Ding, N.S.; Dragoni, G.; Furfaro, F.; et al. ECCO Topical Review on Biological Treatment Cycles in Crohn’s Disease. J. Crohn’s Colitis 2023, 17, 1031–1047. [Google Scholar] [CrossRef]
  47. Raine, T.; Verstockt, B.; Kopylov, U.; Karmiris, K.; Goldberg, R.; Atreya, R.; Burisch, J.; Burke, J.; Ellul, P.; Hedin, C.; et al. ECCO Topical Review: Refractory Inflammatory Bowel Disease. J. Crohn’s Colitis 2021, 15, 1605–1620. [Google Scholar] [CrossRef]
  48. Rieder, F.; Latella, G.; Magro, F.; Yuksel, E.S.; Higgins, P.D.; Di Sabatino, A.; de Bruyn, J.R.; Rimola, J.; Brito, J.; Bettenworth, D.; et al. European Crohn’s and Colitis Organisation Topical Review on Prediction, Diagnosis and Management of Fibrostenosing Crohn’s Disease. J. Crohn’s Colitis 2016, 10, 873–885. [Google Scholar] [CrossRef] [PubMed]
  49. Sebastian, S.; Segal, J.P.; Hedin, C.; Pellino, G.; Kotze, P.G.; Adamina, M.; Campmans-Kuijpers, M.; Davies, J.; de Vries, A.C.; Casbas, A.G.; et al. ECCO Topical Review: Roadmap to Optimal Peri-Operative Care in IBD. J. Crohn’s Colitis 2023, 17, 153–169. [Google Scholar] [CrossRef] [PubMed]
  50. Sturm, A.; Maaser, C.; Mendall, M.; Karagiannis, D.; Karatzas, P.; Ipenburg, N.; Sebastian, S.; Rizzello, F.; Limdi, J.; Katsanos, K.; et al. European Crohn’s and Colitis Organisation Topical Review on IBD in the Elderly. J. Crohn’s Colitis 2017, 11, 263–273. [Google Scholar] [CrossRef]
  51. Torres, J.; Ellul, P.; Langhorst, J.; Mikocka-Walus, A.; Barreiro-de Acosta, M.; Basnayake, C.; Ding, N.J.S.; Gilardi, D.; Katsanos, K.; Moser, G.; et al. European Crohn’s and Colitis Organisation Topical Review on Complementary Medicine and Psychotherapy in Inflammatory Bowel Disease. J. Crohn’s Colitis 2019, 13, 673–685. [Google Scholar] [CrossRef] [PubMed]
  52. van Rheenen, P.F.; Aloi, M.; Avni Biron, I.; Carlsen, K.; Cooney, R.; Cucchiara, S.; Cullen, G.; Escher, J.C.; Kierkus, J.; Lindsay, J.O.; et al. European Crohn’s and Colitis Organisation Topical Review on Transitional Care in Inflammatory Bowel Disease. J. Crohn’s Colitis 2017, 11, 1032–1038. [Google Scholar] [CrossRef]
  53. Danese, S.; Fiorino, G.; Raine, T.; Ferrante, M.; Kemp, K.; Kierkus, J.; Lakatos, P.L.; Mantzaris, G.; van der Woude, J.; Panes, J.; et al. ECCO Position Statement on the Use of Biosimilars for Inflammatory Bowel Disease—An Update. J. Crohn’s Colitis 2017, 11, 26–34. [Google Scholar] [CrossRef]
  54. Feakins, R.; Borralho Nunes, P.; Driessen, A.; Gordon, I.O.; Zidar, N.; Baldin, P.; Christensen, B.; Danese, S.; Herlihy, N.; Iacucci, M.; et al. Definitions of Histological Abnormalities in Inflammatory Bowel Disease: An ECCO Position Paper. J. Crohn’s Colitis 2024, 18, 175–191. [Google Scholar] [CrossRef]
  55. Magro, F.; Sabino, J.; Rosini, F.; Tripathi, M.; Borralho, P.; Baldin, P.; Danese, S.; Driessen, A.; Gordon, I.O.; Iacucci, M.; et al. ECCO Position on Harmonisation of Crohn’s Disease Mucosal Histopathology. J. Crohn’s Colitis 2022, 16, 876–888. [Google Scholar] [CrossRef]
  56. Magro, F.; Doherty, G.; Peyrin-Biroulet, L.; Svrcek, M.; Borralho, P.; Walsh, A.; Carneiro, F.; Rosini, F.; de Hertogh, G.; Biedermann, L.; et al. ECCO Position Paper: Harmonization of the Approach to Ulcerative Colitis Histopathology. J. Crohn’s Colitis 2020, 14, 1503–1511. [Google Scholar] [CrossRef]
  57. Sturm, A.; Maaser, C.; Calabrese, E.; Annese, V.; Fiorino, G.; Kucharzik, T.; Vavricka, S.R.; Verstockt, B.; van Rheenen, P.; Tolan, D.; et al. ECCO-ESGAR Guideline for Diagnostic Assessment in IBD Part 2: IBD scores and general principles and technical aspects. J. Crohn’s Colitis 2019, 13, 273–284. [Google Scholar] [CrossRef]
  58. El-Hussuna, A.; Hauer, A.C.; Karakan, T.; Pittet, V.; Yanai, H.; Devi, J.; Yamamoto-Furusho, J.K.; Sima, A.R.; Desalegn, H.; Sultan, M.I.; et al. ECCO consensus on management of Inflammatory Bowel Disease in low- and middle-income countries. J. Crohn’s Colitis 2025, 19, 1073–1085. [Google Scholar] [CrossRef]
  59. Adamina, M.; Gerasimidis, K.; Sigall-Boneh, R.; Zmora, O.; de Buck van Overstraeten, A.; Campmans-Kuijpers, M.; Ellul, P.; Katsanos, K.; Kotze, P.G.; Noor, N.; et al. Perioperative Dietary Therapy in Inflammatory Bowel Disease. J. Crohn’s Colitis 2020, 14, 431–450. [Google Scholar] [CrossRef] [PubMed]
  60. Svolos, V.; Gordon, H.; Lomer, M.C.E.; Aloi, M.; Bancil, A.; Day, A.S.; Day, A.S.; Fitzpatrick, J.A.; Gerasimidis, K.; Gkikas, K.; et al. ECCO Consensus on Dietary Management of Inflammatory Bowel Disease. J. Crohn’s Colitis 2025, 19, jjaf122. [Google Scholar] [CrossRef] [PubMed]
  61. van Rheenen, P.F.; Aloi, M.; Assa, A.; Bronsky, J.; Escher, J.C.; Fagerberg, U.L.; Gasparetto, M.; Gerasimidis, K.; Griffiths, A.; Henderson, P.; et al. The Medical Management of Paediatric Crohn’s Disease: An ECCO-ESPGHAN Guideline Update. J. Crohn’s Colitis 2021, 15, 171–194. [Google Scholar] [CrossRef]
  62. Amil-Dias, J.; Oliva, S.; Papadopoulou, A.; Thomson, M.; Gutiérrez-Junquera, C.; Kalach, N.; Orel, R.; Auth, M.K.; Nijenhuis-Hendriks, D.; Strisciuglio, C.; et al. Diagnosis and management of eosinophilic esophagitis in children: An update from the European Society for Paediatric Gastroenterology, Hepatology and Nutrition (ESPGHAN). J. Pediatr. Gastroenterol. Nutr. 2024, 79, 394–437. [Google Scholar] [CrossRef] [PubMed]
  63. Broekaert, I.; Tzivinikos, C.; Narula, P.; Antunes, H.; Dias, J.A.; van der Doef, H.; Isoldi, S.; Norsa, L.; Romano, C.; Scheers, I.; et al. ESPGHAN Position Paper on Training in Paediatric Endoscopy. J. Pediatr. Gastroenterol. Nutr. 2020, 70, 127–140. [Google Scholar] [CrossRef] [PubMed]
  64. Broekaert, I.J.; Borrelli, O.; Dolinsek, J.; Martin-de-Carpi, J.; Mas, E.; Miele, E.; Pienar, C.; Ribes-Koninckx, C.; Thomassen, R.; Thomson, M.; et al. An ESPGHAN Position Paper on the Use of Breath Testing in Paediatric Gastroenterology. J. Pediatr. Gastroenterol. Nutr. 2022, 74, 123–137. [Google Scholar] [CrossRef] [PubMed]
  65. Cohen, S.; Hyer, W.; Mas, E.; Auth, M.; Attard, T.M.; Spalinger, J.; Latchford, A.; and Durno, C. Management of Juvenile Polyposis Syndrome in Children and Adolescents: A Position Paper from the ESPGHAN Polyposis Working Group. J. Pediatr. Gastroenterol. Nutr. 2019, 68, 453–462. [Google Scholar] [CrossRef]
  66. Davidovics, Z.H.; Michail, S.; Nicholson, M.R.; Kociolek, L.K.; Pai, N.; Hansen, R.; Schwerd, T.; Maspons, A.; Shamir, R.; Szajewska, H.; et al. Fecal Microbiota Transplantation for Recurrent Clostridium difficile Infection Other Conditions in Children: A Joint Position Paper from NASPGHAN and ESPGHAN. J. Pediatr. Gastroenterol. Nutr. 2019, 68, 519–530. [Google Scholar] [CrossRef]
  67. European Society for Paediatric Gastroenterology, Hepatology and Nutrition (ESPGHAN). Common Gastrointestinal Problems in Children with Neurological Impairments (NI): Evaluation, Treatment and Monitoring; ESPGHAN Advice Guide; European Society for Paediatric Gastroenterology, Hepatology and Nutrition (ESPGHAN): Geneva, Switzerland, 2019; Version 1. [Google Scholar]
  68. Hojsak, I.; Kolaček, S.; Mihatsch, W.; Mosca, A.; Shamir, R.; Szajewska, H.; Vandenplas, Y. Synbiotics in the Management of Pediatric Gastrointestinal Disorders: Position Paper of the ESPGHAN Special Interest Group on Gut Microbiota and Modifications. J. Pediatr. Gastroenterol. Nutr. 2023, 76, 102–108. [Google Scholar] [CrossRef]
  69. Homan, M.; Hauser, B.; Romano, C.; Tzivinikos, C.; Torroni, F.; Gottrand, F.; Hojsak, I.; Dall’Oglio, L.; Thomson, M.; Bontems, P.; et al. Percutaneous Endoscopic Gastrostomy in Children: An Update to the ESPGHAN Position Paper. J. Pediatr. Gastroenterol. Nutr. 2021, 73, 415–426. [Google Scholar] [CrossRef]
  70. Homan, M.; Jones, N.L.; Bontems, P.; Carroll, M.W.; Czinn, S.J.; Gold, B.D.; Goodman, K.; Harris, P.R.; Jerris, R.; Kalach, N.; et al. Updated joint ESPGHAN/NASPGHAN guidelines for management of Helicobacter pylori infection in children and adolescents (2023). J. Pediatr. Gastroenterol. Nutr. 2024, 79, 758–785. [Google Scholar] [CrossRef]
  71. Husby, S.; Koletzko, S.; Korponay-Szabó, I.; Kurppa, K.; Mearin, M.L.; Ribes-Koninckx, C.; Shamir, R.; Troncone, R.; Auricchio, R.; Castillejo, G.; et al. European Society Paediatric Gastroenterology, Hepatology and Nutrition Guidelines for Diagnosing Coeliac Disease 2020. J. Pediatr. Gastroenterol. Nutr. 2020, 70, 141–156. [Google Scholar] [CrossRef]
  72. Hyer, W.; Cohen, S.; Attard, T.; Vila-Miravet, V.; Pienar, C.; Auth, M.; Septer, S.; Hawkins, J.; Durno, C.; Latchford, A. Management of Familial Adenomatous Polyposis in Children and Adolescents: Position Paper from the ESPGHAN Polyposis Working Group. J. Pediatr. Gastroenterol. Nutr. 2019, 68, 428–441. [Google Scholar] [CrossRef]
  73. Koninckx, C.R.; Donat, E.; Benninga, M.A.; Broekaert, I.J.; Gottrand, F.; Kolho, K.-L.; Lionetti, P.; Miele, E.; Orel, R.; Papadopoulou, A.; et al. The Use of Fecal Calprotectin Testing in Paediatric Disorders: A Position Paper of the European Society for Paediatric Gastroenterology and Nutrition Gastroenterology Committee. J. Pediatr. Gastroenterol. Nutr. 2021, 72, 617–640. [Google Scholar] [CrossRef]
  74. Latchford, A.; Cohen, S.; Auth, M.; Scaillon, M.; Viala, J.; Daniels, R.; Talbotec, C.; Attard, T.; Durno, C.; Hyer, W. Management of Peutz-Jeghers Syndrome in Children and Adolescents: A Position Paper from the ESPGHAN Polyposis Working Group. J. Pediatr. Gastroenterol. Nutr. 2019, 68, 442–452. [Google Scholar] [CrossRef]
  75. Luque, V.; Crespo-Escobar, P.; Hård Af Segerstad, E.M.; Koltai, T.; Norsa, L.; Roman, E.; Vreugdenhil, A.; Fueyo-Díaz, R.; Ribes-Koninckx, C. Gluten-free diet for pediatric patients with coeliac disease: A position paper from the ESPGHAN gastroenterology committee, special interest group in coeliac disease. J. Pediatr. Gastroenterol. Nutr. 2024, 78, 973–995. [Google Scholar] [CrossRef]
  76. Mearin, M.L.; Agardh, D.; Antunes, H.; Al-Toma, A.; Auricchio, R.; Castillejo, G.; Catassi, C.; Ciacci, C.; Discepolo, V.; Dolinsek, J.; et al. ESPGHAN Position Paper on Management and Follow-Up of Children and Adolescents with Celiac Disease. J. Pediatr. Gastroenterol. Nutr. 2022, 75, 369–386. [Google Scholar] [CrossRef]
  77. Miele, E.; Shamir, R.; Aloi, M.; Assa, A.; Braegger, C.; Bronsky, J.; de Ridder, L.; Escher, J.C.; Hojsak, I.; Kolaček, S.; et al. Nutrition in Pediatric Inflammatory Bowel Disease: A Position Paper on Behalf of the Porto IBD Group of the European Society for Paediatric Gastroenterology, Hepatology and Nutrition. J. Pediatr. Gastroenterol. Nutr. 2018, 66, 687–708. [Google Scholar] [CrossRef] [PubMed]
  78. Mubarak, A.; Benninga, M.A.; Broekaert, I.; Dolinsek, J.; Homan, M.; Mas, E.; Miele, E.; Pienar, C.; Thapar, N.; Thomson, M.; et al. Diagnosis, Management, and Prevention of Button Battery Ingestion in Childhood: A European Society for Paediatric Gastroenterology Hepatology and Nutrition Position Paper. J. Pediatr. Gastroenterol. Nutr. 2021, 73, 129–136. [Google Scholar] [CrossRef]
  79. Oliva, S.; Thomson, M.; de Ridder, L.; Martín-de-Carpi, J.; Van Biervliet, S.; Braegger, C.; Amil Dias, J.; Kolacek, S.; Miele, E.; Buderus, S.; et al. Endoscopy in Pediatric Inflammatory Bowel Disease: A Position Paper on Behalf of the Porto IBD Group of the European Society for Pediatric Gastroenterology, Hepatology and Nutrition. J. Pediatr. Gastroenterol. Nutr. 2018, 67, 414–430. [Google Scholar] [CrossRef] [PubMed]
  80. Papadopoulou, A.; Amil-Dias, J.; Auth, M.K.; Chehade, M.; Collins, M.H.; Gupta, S.K.; Gutiérrez-Junquera, C.; Orel, R.; Vieira, M.C.; Zevit, N.; et al. Joint ESPGHAN/NASPGHAN Guidelines on Childhood Eosinophilic Gastrointestinal Disorders Beyond Eosinophilic Esophagitis. J. Pediatr. Gastroenterol. Nutr. 2024, 78, 122–152. [Google Scholar] [CrossRef]
  81. Romano, C.; van Wynckel, M.; Hulst, J.; Broekaert, I.; Bronsky, J.; Dall’Oglio, L.; Mis, N.F.; Hojsak, I.; Orel, R.; Papadopoulou, A.; et al. European Society for Paediatric Gastroenterology, Hepatology and Nutrition Guidelines for the Evaluation and Treatment of Gastrointestinal and Nutritional Complications in Children with Neurological Impairment. J. Pediatr. Gastroenterol. Nutr. 2017, 65, 242–264. [Google Scholar] [CrossRef] [PubMed]
  82. Rosen, R.; Vandenplas, Y.; Singendonk, M.; Cabana, M.; DiLorenzo, C.; Gottrand, F.; Gupta, S.; Langendam, M.; Staiano, A.; Thapar, N.; et al. Pediatric Gastroesophageal Reflux Clinical Practice Guidelines: Joint Recommendations of the North American Society for Pediatric Gastroenterology, Hepatology, and Nutrition and the European Society for Pediatric Gastroenterology, Hepatology, and Nutrition. J. Pediatr. Gastroenterol. Nutr. 2018, 66, 516–554. [Google Scholar] [CrossRef]
  83. Szajewska, H.; Berni Canani, R.; Domellöf, M.; Guarino, A.; Hojsak, I.; Indrio, F.; Lo Vecchio, A.; Mihatsch, W.A.; Mosca, A.; Orel, R.; et al. Probiotics for the Management of Pediatric Gastrointestinal Disorders: Position Paper of the ESPGHAN Special Interest Group on Gut Microbiota and Modifications. J. Pediatr. Gastroenterol. Nutr. 2023, 76, 232–247. [Google Scholar] [CrossRef] [PubMed]
  84. Szajewska, H.; Shamir, R.; Auricchio, R.; Chmielewska, A.; Dolinsek, J.; Kivelä, L.; Koletzko, S.; Korponay-Szabo, I.R.; Af Segerstad, E.M.H.; Mearin, M.L.; et al. Early diet and the risk of coeliac disease. An update 2024 position paper by the ESPGHAN special interest group on coeliac disease. J. Pediatr. Gastroenterol. Nutr. 2024, 79, 438–445. [Google Scholar] [CrossRef] [PubMed]
  85. Thapar, N.; Saliakellis, E.; Benninga, M.A.; Borrelli, O.; Curry, J.; Faure, C.; De Giorgio, R.; Gupte, G.; Knowles, C.H.; Staiano, A.; et al. Paediatric Intestinal Pseudo-obstruction: Evidence and Consensus-based Recommendations from an ESPGHAN-Led Expert Group. J. Pediatr. Gastroenterol. Nutr. 2018, 66, 991–1019. [Google Scholar] [CrossRef]
  86. Turner, D.; Ruemmele, F.M.; Orlanski-Meyer, E.; Griffiths, A.M.; de Carpi, J.M.; Bronsky, J.; Veres, G.; Aloi, M.; Strisciuglio, C.; Braegger, C.P.; et al. Management of Paediatric Ulcerative Colitis, Part 1: Ambulatory Care—An Evidence-based Guideline from European Crohn’s and Colitis Organization and European Society of Paediatric Gastroenterology, Hepatology and Nutrition. J. Pediatr. Gastroenterol. Nutr. 2018, 67, 257–291. [Google Scholar] [CrossRef] [PubMed]
  87. Turner, D.; Russell, R.K.; Wine, E.; de Carpi, J.M.; de Ridder, L.; Shouval, D.; Dias, J.A.; Assa, A. Response to FDA draft guidance on pediatric IBD drug approval trials: A consensus statement from the IBD Porto Group. J. Pediatr. Gastroenterol. Nutr. 2025, 80, 238–241. [Google Scholar] [CrossRef]
  88. Uhlig, H.H.; Charbit-Henrion, F.; Kotlarz, D.; Shouval, D.S.; Schwerd, T.; Strisciuglio, C.; de Ridder, L.; van Limbergen, J.; Macchi, M.; Snapper, S.B.; et al. Clinical Genomics for the Diagnosis of Monogenic Forms of Inflammatory Bowel Disease: A Position Paper from the Paediatric IBD Porto Group of ESPGHAN. J. Pediatr. Gastroenterol. Nutr. 2021, 72, 456–473. [Google Scholar] [CrossRef]
  89. Broekaert, I.J.; Falconer, J.; Bronsky, J.; Gottrand, F.; Dall’Oglio, L.; Goto, E.; Hojsak, I.; Hulst, J.; Kochavi, B.; Papadopoulou, A.; et al. The Use of Jejunal Tube Feeding in Children: A Position Paper by the Gastroenterology and Nutrition Committees of the European Society for Paediatric Gastroenterology, Hepatology, and Nutrition. J. Pediatr. Gastroenterol. Nutr. 2019, 69, 239–258. [Google Scholar] [CrossRef]
  90. Bronsky, J.; Campoy, C.; Embleton, N.; Fewtrell, M.; Fidler Mis, N.; Gerasimidis, K.; Hojsak, I.; Hulst, J.; Indrio, F.; Lapillonne, A.; et al. Palm Oil and Beta-palmitate in Infant Formula: A Position Paper by the European Society for Paediatric Gastroenterology, Hepatology, and Nutrition (ESPGHAN) Committee on Nutrition. J. Pediatr. Gastroenterol. Nutr. 2019, 68, 742–760. [Google Scholar] [CrossRef]
  91. Embleton, N.D.; Moltu, S.J.; Lapillonne, A.; van den Akker, C.H.P.; Carnielli, V.; Fusch, C.; Gerasimidis, K.; van Goudoever, J.B.; Haiden, N.; Iacobelli, S.; et al. Enteral Nutrition in Preterm Infants (2022): A Position Paper from the ESPGHAN Committee on Nutrition and Invited Experts. J. Pediatr. Gastroenterol. Nutr. 2023, 76, 248–268. [Google Scholar] [CrossRef]
  92. European Society for Paediatric Gastroenterology, Hepatology & Nutrition (ESPGHAN); European Academy of Paediatrics (EAP); European Society for Paediatric Research (ESPR); European Academy for Allergy and Clinical Immunology (EAACI); Federation of International Societies for Paediatric Gastroenterology, Hepatology & Nutrition (FISPGHAN); Latin American Society for Pediatric Gastroenterology, Hepatology & Nutrition (LASPGHAN); Pan Arab Society for Pediatric Gastroenterology and Nutrition (PASPGHAN); Asian Pan-Pacific Society for Pediatric Gastroenterology, Hepatology and Nutrition (AAPSGHAN); North American Society for Pediatric Gastroenterology, Hepatology and Nutrition (NASPGHAN); World Allergy Organization (WAO); et al. World Health Organization (WHO) guideline on the complementary feeding of infants and young children aged 6–23 months 2023: A multisociety response. J. Pediatr. Gastroenterol. Nutr. 2024, 79, 181–188. [Google Scholar] [CrossRef]
  93. Fewtrell, M.; Bronsky, J.; Campoy, C.; Domellöf, M.; Embleton, N.; Fidler Mis, N.; Hojsak, I.; Hulst, J.M.; Indrio, F.; Lapillonne, A.; et al. Complementary Feeding: A Position Paper by the European Society for Paediatric Gastroenterology, Hepatology, and Nutrition (ESPGHAN) Committee on Nutrition. J. Pediatr. Gastroenterol. Nutr. 2017, 64, 119–132. [Google Scholar] [CrossRef]
  94. Fidler Mis, N.; Braegger, C.; Bronsky, J.; Campoy, C.; Domellöf, M.; Embleton, N.D.; Hojsak, I.; Hulst, J.; Indrio, F.; Lapillonne, A.; et al. Sugar in Infants, Children and Adolescents: A Position Paper of the European Society for Paediatric Gastroenterology, Hepatology and Nutrition Committee on Nutrition. J. Pediatr. Gastroenterol. Nutr. 2017, 65, 681–696. [Google Scholar] [CrossRef] [PubMed]
  95. Hojsak, I.; Braegger, C.; Bronsky, J.; Campoy, C.; Colomb, V.; Decsi, T.; Domellöf, M.; Fewtrell, M.; Mis, N.F.; Mihatsch, W.; et al. Arsenic in Rice: A Cause for Concern. J. Pediatr. Gastroenterol. Nutr. 2015, 60, 142–145. [Google Scholar] [CrossRef] [PubMed]
  96. Hojsak, I.; Colomb, V.; Braegger, C.; Bronsky, J.; Campoy, C.; Domellöf, M.; Embleton, N.; Fidler Mis, N.; Hulst, J.M.; Indrio, F.; et al. ESPGHAN Committee on Nutrition Position Paper. Intravenous Lipid Emulsions and Risk of Hepatotoxicity in Infants and Children: A Systematic Review and Meta-Analysis. J. Pediatr. Gastroenterol. Nutr. 2016, 62, 776–792. [Google Scholar] [CrossRef] [PubMed]
  97. Indrio, F.; Dinleyici, E.C.; Berni Canani, R.; Domellöf, M.; Francavilla, R.; Guarino, A.; Gutierrez Castrellon, P.; Orel, R.; Salvatore, S.; Van den Akker, C.H.P.; et al. Prebiotics in the management of pediatric gastrointestinal disorders: Position Paper of the ESPGHAN special interest group on gut microbiota and modifications. J. Pediatr. Gastroenterol. Nutr. 2024, 78, 728–742. [Google Scholar] [CrossRef]
  98. Lapillonne, A.; Bronsky, J.; Campoy, C.; Embleton, N.; Fewtrell, M.; Fidler Mis, N.; Gerasimidis, K.; Hojsak, I.; Hulst, J.; Indrio, F.; et al. Feeding the late and moderately preterm infant: A Position Paper of the European Society for Paediatric Gastroenterology, Hepatology and Nutrition Committee on Nutrition. J. Pediatr. Gastroenterol. Nutr. 2019, 69, 259–270. [Google Scholar] [CrossRef]
  99. Moltu, S.J.; Bronsky, J.; Embleton, N.; Gerasimidis, K.; Indrio, F.; Köglmeier, J.; de Koning, B.; Lapillonne, A.; Norsa, L.; Verduci, E.; et al. Nutritional management of the critically ill neonate: A position paper of the ESPGHAN Committee on Nutrition. J. Pediatr. Gastroenterol. Nutr. 2021, 73, 274–289. [Google Scholar] [CrossRef]
  100. Mouzaki, M.; Bronsky, J.; Gupte, G.; Hojsak, I.; Jahnel, J.; Pai, N.; Quiros-Tejeira, R.E.; Wieman, R.; Sundaram, S. Nutrition support of children with chronic liver diseases: A joint position paper of the North American Society for Pediatric Gastroenterology, Hepatology, and Nutrition and the European Society for Pediatric Gastroenterology, Hepatology, and Nutrition. J. Pediatr. Gastroenterol. Nutr. 2019, 69, 498–511. [Google Scholar] [CrossRef]
  101. Szajewska, H.; Shamir, R.; Mearin, L.; Ribes-Koninckx, C.; Catassi, C.; Domellöf, M.; Fewtrell, M.S.; Husby, S.; Papadopoulou, A.; Vandenplas, Y.; et al. Gluten introduction and the risk of coeliac disease: A position paper by the European Society for Pediatric Gastroenterology, Hepatology, and Nutrition. J. Pediatr. Gastroenterol. Nutr. 2016, 62, 507–513. [Google Scholar] [CrossRef]
  102. Szajewska, H.; Canani, R.B.; Guarino, A.; Hojsak, I.; Indrio, F.; Kolacek, S.; Orel, R.; Shamir, R.; Vandenplas, Y.; van Goudoever, J.B.; et al. Probiotics for the prevention of antibiotic-associated diarrhea in children. J. Pediatr. Gastroenterol. Nutr. 2016, 62, 495–506. [Google Scholar] [CrossRef]
  103. van den Akker, C.H.P.; Embleton, N.D.; Lapillonne, A.; Mihatsch, W.A.; Salvatore, S.; Canani, R.B.; Dinleyici, E.C.; Domellöf, M.; Guarino, A.; Gutiérrez-Castrellón, P.; et al. Reevaluating the FDA’s warning against the use of probiotics in preterm neonates: A societal statement by ESPGHAN and EFCNI. J. Pediatr. Gastroenterol. Nutr. 2024, 78, 1403–1408. [Google Scholar] [CrossRef] [PubMed]
  104. Abu-El-Haija, M.; Uc, A.; Werlin, S.L.; Freeman, A.J.; Georgieva, M.; Jojkić-Pavkov, D.; Kalnins, D.; Kochavi, B.; Koot, B.G.P.; Van Biervliet, S.; et al. Nutritional considerations in pediatric pancreatitis: A position paper from the NASPGHAN Pancreas Committee and ESPGHAN Cystic Fibrosis/Pancreas Working Group. J. Pediatr. Gastroenterol. Nutr. 2018, 67, 131–143. [Google Scholar] [CrossRef]
  105. Fischler, B.; Baumann, U.; Dezsofi, A.; Hadzic, N.; Hierro, L.; Jahnel, J.; McLin, V.; Nobili, V.; Smets, F.; Verkade, H.; et al. Hepatitis E in children: A position paper by the ESPGHAN Hepatology Committee. J. Pediatr. Gastroenterol. Nutr. 2016, 63, 288–294. [Google Scholar] [CrossRef] [PubMed]
  106. Indolfi, G.; Abdel-Hady, M.; Bansal, S.; Debray, D.; Smets, F.; Czubkowski, P.; van der Woerd, W.; Samyn, M.; Jahnel, J.; Gupte, G.; et al. Management of hepatitis B virus infection and prevention of hepatitis B virus reactivation in children with acquired immunodeficiencies or undergoing immune suppressive, cytotoxic, or biological modifier therapies. J. Pediatr. Gastroenterol. Nutr. 2020, 70, 527–538. [Google Scholar] [CrossRef] [PubMed]
  107. Indolfi, G.; Gonzalez-Peralta, R.P.; Jonas, M.M.; Sayed, M.H.; Fischler, B.; Sokal, E.; Wirth, S.; Nicastro, E. ESPGHAN recommendations on treatment of chronic hepatitis C virus infection in adolescents and children including those living in resource-limited settings. J. Pediatr. Gastroenterol. Nutr. 2024, 78, 957–972. [Google Scholar] [CrossRef]
  108. Mieli-Vergani, G.; Vergani, D.; Baumann, U.; Czubkowski, P.; Debray, D.; Dezsofi, A.; Fischler, B.; Gupte, G.; Hierro, L.; Indolfi, G.; et al. Diagnosis and management of pediatric autoimmune liver disease: ESPGHAN Hepatology Committee position statement. J. Pediatr. Gastroenterol. Nutr. 2018, 66, 345–360. [Google Scholar] [CrossRef]
  109. Nicastro, E.; Ebel, N.H.; Kehar, M.; Czubkowski, P.; Ng, V.L.; Michaels, M.G.; Lobritto, S.J.; Martinez, M.; Indolfi, G. The impact of severe acute respiratory syndrome coronavirus type 2 on children with liver diseases: A joint European Society for Pediatric Gastroenterology, Hepatology and Nutrition and Society of Pediatric Liver Transplantation position paper. J. Pediatr. Gastroenterol. Nutr. 2022, 74, 159–170. [Google Scholar] [CrossRef]
  110. Socha, P.; Janczyk, W.; Dhawan, A.; Baumann, U.; D’Antiga, L.; Tanner, S.; Iorio, R.; Vajro, P.; Houwen, R.; Fischler, B.; et al. Wilson’s disease in children: A position paper by the Hepatology Committee of the European Society for Paediatric Gastroenterology, Hepatology and Nutrition. J. Pediatr. Gastroenterol. Nutr. 2018, 66, 334–344. [Google Scholar] [CrossRef]
  111. Indolfi, G.; Hierro, L.; Dezsofi, A.; Jahnel, J.; Debray, D.; Hadzic, N.; Czubkowski, P.; Gupte, G.; Mozer-Glassberg, Y.; van der Woerd, W.; et al. Treatment of chronic hepatitis C virus infection in children: A position paper by the Hepatology Committee of European Society of Paediatric Gastroenterology, Hepatology and Nutrition. J. Pediatr. Gastroenterol. Nutr. 2018, 66, 505–515. [Google Scholar] [CrossRef]
  112. Lenti, M.V.; Hammer, H.F.; Tacheci, I.; Burgos, R.; Schneider, S.; Foteini, A.; Derovs, A.; Keller, J.; Broekaert, I.; Arvanitakis, M.; et al. European Consensus on Malabsorption—UEG & SIGE, LGA, SPG, SRGH, CGS, ESPCG, EAGEN, ESPEN, and ESPGHAN. Part 2: Screening, Special Populations, Nutritional Goals, Supportive Care, Primary Care Perspective. United Eur. Gastroenterol. J. 2025, 13, 773–797. [Google Scholar] [CrossRef]
  113. Wauters, L.; Dickman, R.; Drug, V.; Mulak, A.; Serra, J.; Enck, P.; Tack, J.; ESNM FD Consensus Group; Accarino, A.; Barbara, G.; et al. United European Gastroenterology (UEG) and European Society for Neurogastroenterology and Motility (ESNM) consensus on functional dyspepsia. United Eur. Gastroenterol. J. 2021, 9, 307–331. [Google Scholar] [CrossRef] [PubMed]
  114. Schol, J.; Wauters, L.; Dickman, R.; Drug, V.; Mulak, A.; Serra, J.; Enck, P.; Tack, J.; ESNM Gastroparesis Consensus Group. United European Gastroenterology (UEG) and European Society for Neurogastroenterology and Motility (ESNM) consensus on gastroparesis. United Eur. Gastroenterol. J. 2021, 9, 287–306. [Google Scholar] [CrossRef] [PubMed]
  115. Savarino, E.; Zingone, F.; Barberio, B.; Marasco, G.; Akyuz, F.; Akpinar, H.; Barboi, O.; Bodini, G.; Bor, S.; Chiarioni, G.; et al. Functional bowel disorders with diarrhoea: Clinical guidelines of the United European Gastroenterology and European Society for Neurogastroenterology and Motility. United Eur. Gastroenterol. J. 2022, 10, 556–584. [Google Scholar] [CrossRef] [PubMed]
  116. Malagelada, C.; Keller, J.; Sifrim, D.; Serra, J.; Tack, J.; Mulak, A.; Stengel, A.; Aguilar, A.; Mohr Drewes, A.; Josefsson, A.; et al. European Guideline on Chronic Nausea and Vomiting—A UEG and ESNM Consensus for Clinical Management. United Eur. Gastroenterol. J. 2025, 13, 427–471. [Google Scholar] [CrossRef]
  117. Löhr, J.M.; Beuers, U.; Vujasinovic, M.; Alvaro, D.; Frøkjær, J.B.; Buttgereit, F.; Capurso, G.; Culver, E.L.; de-Madaria, E.; Della-Torre, E.; et al. European Guideline on IgG4related digestive disease—UEG and SGF evidencebased recommendations. United Eur. Gastroenterol. J. 2020, 8, 637–666. [Google Scholar] [CrossRef]
  118. Kruis, W.; Germer, C.T.; Böhm, S.; Dumoulin, F.L.; Frieling, T.; Hampe, J.; Keller, J.; Kreis, M.E.; Meining, A.; Labenz, J.; et al. German guideline diverticular disease/diverticulitis: Part I: Methods, pathogenesis, epidemiology, clinical characteristics (definitions), natural course, diagnosis and classification. United Eur. Gastroenterol. J. 2022, 10, 923–939. [Google Scholar] [CrossRef]
  119. Gielen, A.H.C.; Guideline Development Group. Guideline for the assessment and management of gastrointestinal symptoms following colorectal surgery—A UEG/ESCP/EAES/ESPCG/ESPEN/ESNM/ESSO collaboration. Part I—Sequelae to oncological diseases. United Eur. Gastroenterol. J. 2024, 12, 1489–1506. [Google Scholar] [CrossRef]
  120. Dominguez-Muñoz, J.E.; Vujasinovic, M.; de la Iglesia, D.; Cahen, D.; Capurso, G.; Gubergrits, N.; Hegyi, P.; Hungin, P.; Ockenga, J.; Paiella, S.; et al. European guidelines for the diagnosis and treatment of pancreatic exocrine insufficiency: UEG, EPC, EDS, ESPEN, ESPGHAN, ESDO, and ESPCG evidencebased recommendations. United Eur. Gastroenterol. J. 2024, 12, e12674. [Google Scholar] [CrossRef]
  121. Assmann, S.L.; Keszthelyi, D.; Kleijnen, J.; Anastasiou, F.; Bradshaw, E.; Brannigan, A.E.; Carrington, E.V.; Chiarioni, G.; Ebben, L.D.A.; Gladman, M.A.; et al. Guideline for the diagnosis and treatment of Faecal Incontinence—A UEG/ESCP/ESNM/ESPCG collaboration. United Eur. Gastroenterol. J. 2022, 10, 251–286. [Google Scholar] [CrossRef]
  122. Al-Toma, A.; Volta, U.; Auricchio, R.; Castillejo, G.; Sanders, D.S.; Cellier, C.; Mulder, C.J.; Lundin, K.E.A. European Society for the Study of Coeliac Disease (ESsCD) guideline for coeliac disease and other gluten-related disorders. United Eur. Gastroenterol. J. 2019, 7, 583–613. [Google Scholar] [CrossRef]
  123. Miehlke, S.; Guagnozzi, D.; Zabana, Y.; Tontini, G.E.; Kanstrup Fiehn, A.M.; Wildt, S.; Bohr, J.; Bonderup, O.; Bouma, G.; D’Amato, M.; et al. European guidelines on microscopic colitis: United European Gastroenterology and European Microscopic Colitis Group statements and recommendations. United Eur. Gastroenterol. J. 2020, 9, 13–37. [Google Scholar] [CrossRef]
  124. D’Amico, F.; Rubin, D.T.; Kotze, P.G.; Magro, F.; Siegmund, B.; Kobayashi, T.; Olivera, P.A.; Bossuyt, P.; Pouillon, L.; Louis, E.; et al. International consensus on methodological issues in standardization of fecal calprotectin measurement in inflammatory bowel diseases. United Eur. Gastroenterol. J. 2021, 9, 451–460. [Google Scholar] [CrossRef] [PubMed]
  125. Kruis, W.; Germer, C.T.; Böhm, S.; Dumoulin, F.L.; Frieling, T.; Hampe, J.; Keller, J.; Kreis, M.E.; Meining, A.; Labenz, J.; et al. German guideline diverticular disease/diverticulitis. Part II: Conservative, interventional and surgical management. United Eur. Gastroenterol. J. 2022, 10, 1095–1120. [Google Scholar] [CrossRef]
  126. Wilschanski, M.; Munck, A.; Carrion, E.; Cipolli, M.; Collins, S.; Colombo, C.; Declercq, D.; Hatziagorou, E.; Hulst, J.; Kalnins, D.; et al. ESPEN-ESPGHAN-ECFS guideline on nutrition care for cystic fibrosis. Clin. Nutr. 2024, 43, 413–445. [Google Scholar] [CrossRef]
  127. Plauth, M.; Bernal, W.; Dasarathy, S.; Merli, M.; Plank, L.D.; Schütz, T.; Bischoff, S.C. ESPEN guideline on clinical nutrition in liver disease. Clin. Nutr. 2019, 38, 485–521. [Google Scholar] [CrossRef]
  128. Pironi, L.; Cuerda, C.; Jeppesen, P.B.; Joly, F.; Jonkers, C.; Krznarić, Ž.; Lal, S.; Lamprecht, G.; Lichota, M.; Mundi, M.S.; et al. ESPEN guideline on chronic intestinal failure in adults—Update 2023. Clin. Nutr. 2023, 42, 1940–2021. [Google Scholar] [CrossRef] [PubMed]
  129. Pironi, L.; Boeykens, K.; Bozzetti, F.; Joly, F.; Klek, S.; Lal, S.; Lichota, M.; Mühlebach, S.; Van Gossum, A.; Wanten, G.; et al. ESPEN guideline on home parenteral nutrition. Clin. Nutr. 2020, 39, 1645–1666. [Google Scholar] [CrossRef]
  130. Bischoff, S.C.; Bager, P.; Escher, J.; Forbes, A.; Hébuterne, X.; Hvas, C.L.; Joly, F.; Klek, S.; Krznaric, Z.; Ockenga, J.; et al. ESPEN guideline on Clinical Nutrition in inflammatory bowel disease. Clin. Nutr. 2023, 42, 352–379. [Google Scholar] [CrossRef] [PubMed]
  131. Bischoff, S.C.; Austin, P.; Boeykens, K.; Chourdakis, M.; Cuerda, C.; Jonkers-Schuitema, C.; Lichota, M.; Nyulasi, I.; Schneider, S.M.; Stanga, Z.; et al. ESPEN guideline on home enteral nutrition. Clin. Nutr. 2020, 39, 5–22. [Google Scholar] [CrossRef]
  132. Berger, M.M.; Shenkin, A.; Schweinlin, A.; Amrein, K.; Augsburger, M.; Biesalski, H.K.; Bischoff, S.C.; Casaer, M.P.; Gundogan, K.; Lepp, H.L.; et al. ESPEN micronutrient guideline. Clin. Nutr. 2022, 41, 1357–1424. [Google Scholar] [CrossRef] [PubMed]
  133. Arvanitakis, M.; Ockenga, J.; Bezmarevic, M.; Gianotti, L.; Krznarić, Ž.; Lobo, D.N.; Löser, C.; Madl, C.; Meier, R.; Phillips, M.; et al. ESPEN guideline on clinical nutrition in acute and chronic pancreatitis. Clin. Nutr. 2020, 39, 612–631. [Google Scholar] [CrossRef]
  134. Pironi, L.; Boeykens, K.; Bozzetti, F.; Joly, F.; Klek, S.; Lal, S.; Lichota, M.; Mühlebach, S.; Van Gossum, A.; Wanten, G.; et al. ESPEN practical guideline: Home parenteral nutrition. Clin. Nutr. 2023, 42, 411–430. [Google Scholar] [CrossRef]
  135. Cuerda, C.; Pironi, L.; Arends, J.; Bozzetti, F.; Gillanders, L.; Jeppesen, P.B.; Joly, F.; Kelly, D.; Lal, S.; Staun, M.; et al. ESPEN practical guideline: Clinical nutrition in chronic intestinal failure. Clin. Nutr. 2021, 40, 5196–5220. [Google Scholar] [CrossRef]
  136. Bischoff, S.C.; Bernal, W.; Dasarathy, S.; Merli, M.; Plank, L.D.; Schütz, T.; Plauth, M. ESPEN practical guideline: Clinical nutrition in liver disease. Clin. Nutr. 2020, 39, 3533–3562. [Google Scholar] [CrossRef]
  137. Bischoff, S.C.; Escher, J.; Hébuterne, X.; Kłęk, S.; Krznaric, Z.; Schneider, S.; Shamir, R.; Stardelova, K.; Wierdsma, N.; Wiskin, A.E.; et al. ESPEN practical guideline: Clinical Nutrition in inflammatory bowel disease. Clin. Nutr. 2020, 39, 632–653. [Google Scholar] [CrossRef]
  138. Arvanitakis, M.; Ockenga, J.; Bezmarevic, M.; Gianotti, L.; Krznarić, Ž.; Lobo, D.N.; Löser, C.; Madl, C.; Meier, R.; Phillips, M.; et al. ESPEN practical guideline on clinical nutrition in acute and chronic pancreatitis. Clin. Nutr. 2024, 43, 395–412. [Google Scholar] [CrossRef]
  139. Pironi, L.; Arends, J.; Baxter, J.; Bozzetti, F.; Peláez, R.B.; Cuerda, C.; Forbes, A.; Gabe, S.; Gillanders, L.; Holst, M.; et al. ESPEN endorsed recommendations. Definition and classification of intestinal failure in adults. Clin. Nutr. 2015, 34, 171–180. [Google Scholar] [CrossRef]
  140. Lal, S.; Soop, M.; Cuerda, C.; Jeppesen, P.; Joly, F.; Lamprecht, G.; Mundi, M.; Szczepanek, K.; Van Gossum, C.; Wanten, G.; et al. Quality-of-care standards in adult type 3 intestinal failure caused by benign disease: A European society of clinical nutrition and metabolism (ESPEN) position paper. Clin. Nutr. ESPEN 2024, 63, 696–701. [Google Scholar] [CrossRef] [PubMed]
  141. Voisine, J.; Abadie, V. Interplay Between Gluten, HLA, Innate and Adaptive Immunity Orchestrates the Development of Coeliac Disease. Front. Immunol. 2021, 12, 674313. [Google Scholar] [CrossRef] [PubMed]
  142. Ludvigsson, J.F.; Bai, J.C.; Biagi, F.; Card, T.; Ciacci, C.; Ciclitira, P.J.; Green, P.H.R.; Hadjivassiliou, M.; Holdoway, A.; van Heel, D.; et al. Diagnosis and management of adult coeliac disease: Guidelines from the British Society of Gastroenterology. Gut 2014, 63, 1210–1228. [Google Scholar] [CrossRef] [PubMed]
  143. Aljada, B.; Zohni, A.; El-Matary, W. The Gluten-Free Diet for Celiac Disease and Beyond. Nutrients 2021, 13, 3993. [Google Scholar] [CrossRef] [PubMed]
  144. Jarmakiewicz-Czaja, S.; Zielińska, M.; Sokal, A.; Filip, R. Genetic and Epigenetic Etiology of Inflammatory Bowel Disease: An Update. Genes 2022, 13, 2388. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
  145. de Souza, H.S.P.; Fiocchi, C.; Iliopoulos, D. The IBD interactome: An integrated view of aetiology, pathogenesis and therapy. Nat. Rev. Gastroenterol. Hepatol. 2017, 14, 739–749. [Google Scholar] [CrossRef] [PubMed]
  146. Li, T.; Jing, H.; Gao, X.; Zhang, T.; Yao, H.; Zhang, X.; Zhang, M. Identification of key genes as diagnostic biomarkers for IBD using bioinformatics and machine learning. J. Transl. Med. 2025, 23, 738. [Google Scholar] [CrossRef]
  147. Luo, Q.; Wang, J.; Ge, W.; Li, Z.; Mao, Y.; Wang, C.; Zhang, L. Exploration of the potential causative genes for inflammatory bowel disease: Transcriptome wide association analysis, Mendelian randomization analysis and bayesian colocalisation. Heliyon 2024, 10, e28944. [Google Scholar] [CrossRef]
  148. Grimaldi, K.A.; van Ommen, B.; Ordovas, J.M.; Parnell, L.D.; Mathers, J.C.; Bendik, I.; Brennan, L.; Celis-Morales, C.; Cirillo, E.; Daniel, H.; et al. Proposed guidelines to evaluate scientific validity and evidence for genotype-based dietary advice. Genes Nutr. 2017, 12, 35. [Google Scholar] [CrossRef]
  149. Ordovas, J.M.; Ferguson, L.R.; Tai, E.S.; Mathers, J.C. Personalised nutrition and health. BMJ 2018, 361, bmj.k2173. [Google Scholar] [CrossRef]
  150. Kirk, D.; Catal, C.; Tekinerdogan, B. Precision nutrition: A systematic literature review. Comput. Biol. Med. 2021, 133, 104365. [Google Scholar] [CrossRef]
  151. Gkouskou, K.K.; Grammatikopoulou, M.G.; Lazou, E.; Vasilogiannakopoulou, T.; Sanoudou, D.; Eliopoulos, A.G. A genomics perspective of personalized prevention and management of obesity. Hum. Genom. 2024, 18, 4. [Google Scholar] [CrossRef]
  152. Gerasimidis, K.; Russell, R.K.; Giachero, F.; Gkikas, K.; Tel, B.; Assa, A.; Bronsky, J.; de Ridder, L.; Hojsak, I.; Jenke, A.; et al. Precision nutrition in pediatric IBD: A position paper from the ESPGHAN special interest group for basic science and translational research, the IBD Porto group, and allied health professionals. J. Pediatr. Gastroenterol. Nutr. 2024, 78, 428–445. [Google Scholar] [CrossRef] [PubMed]
  153. Camp, K.M.; Trujillo, E. Position of the Academy of Nutrition and Dietetics: Nutritional genomics. J. Acad. Nutr. Diet. 2014, 114, 299–312. [Google Scholar] [CrossRef] [PubMed]
Table 1. Distribution of extracted statements on nutrition and genetic predisposition in guideline and position papers by European organisations.
Table 1. Distribution of extracted statements on nutrition and genetic predisposition in guideline and position papers by European organisations.
Name of OrganisationManuscripts Identified
n
Total Statements
n
Nutrition Statements
n (%) 1
Genetic Statements
n (%) 1
Nutrition and Genetic Statements
n (%) 1
ECCO421363179 (13.1%)21 (1.5%)0 (0%)
ESPGHAN521639605 (36.9%)44 (2.7%)5 (0.3%)
UEG14873137 (15.7%)16 (1.8%)6 (0.6%)
ESPEN161321892 (67.5%)2 (0.2%)2 (0.2%)
Total12451961813 (34.9%)83 (1.6%)13 (0.3%)
1 n = number; % = percentage.
Table 2. Number of total extracted statements from manuscripts of European organisations per year of publication.
Table 2. Number of total extracted statements from manuscripts of European organisations per year of publication.
YearECCO
n (%) 1
ESPGHAN
n (%) 1
UEG
n (%) 1
ESPEN
n (%) 1
Total
2015118 (92.2%)7 (5.5%)0 (0.0%)3 (2.3%)128
2016148 (77.9%)42 (22.1%)0 (0.0%)0 (0.0%)190
2017194 (70.5%)81 (29.5%)0 (0.0%)0 (0.0%)275
2018109 (18.6%)476 (81.4%)0 (0.0%)0 (0.0%)585
201978 (21.1%)110 (29.7%)80 (21.6%)102 (27.6%)370
202087 (11.0%)88 (11.1%)265 (33.5%)352 (44.4%)792
2021178 (34.8%)124 (24.3%)97 (19.0%)112 (21.9%)511
2022129 (20.2%)99 (15.5%)142 (22.2%)270 (42.2%)640
202392 (17.7%)190 (36.6%)0 (0.0%)237 (45.7%)519
202485 (9.7%)418 (47.9%)160 (18.3%)210 (24.1%)873
2025 *145 (46.3%)4 (1.3%)129 (41.2%)35 (11.2%)313
Total1363 (26.2%)1639(31.5%)873 (16.8%)1321 (25.4%)5196
1 n = number; % = percentage; * = lower n of statements, search conducted till July 2025.
Table 3. Number of total, nutrition and genetic related extracted statements from manuscripts of European organisations related to nutrition and/or genetics, reported per year of publication.
Table 3. Number of total, nutrition and genetic related extracted statements from manuscripts of European organisations related to nutrition and/or genetics, reported per year of publication.
YearManuscripts Identified
n
Total Statements
n
Nutrition Statements
n (%) 1
Genetic Statements
n (%) 1
Nutrition and Genetic Statements
n (%) 1
2015612818 (14.1%)2 (1.6%)0 (0.0%)
2016919039 (20.5%)5 (2.6%)0 (0.0%)
2017827557 (20.7%)5 (1.8%)0 (0.0%)
201811585165 (28.2%)11 (1.9%)0 (0.0%)
201914370176 (47.6%)20 (5.4%)6 (1.6%)
202017792297 (37.5%)7 (0.9%)0 (0.0%)
20211451174 (14.5%)13 (2.5%)0 (0.0%)
202212640268 (41.9%)7 (1.1%)1 (0.2%)
202311519308 (59.3%)0 (0.0%)0 (0.0%)
202415873274 (31.4%)7 (0.8%)5 (0.6%)
2025 *7313137 (43.8%)6 (1.9%)1 (0.3%)
Total12451961813 (34.9%)83 (1.6%)13 (0.3%)
1 n = number; % = percentage; * = lower n of statements, search conducted till July 2025.
Table 4. Extracted statements on gene–diet interactions from guideline documents.
Table 4. Extracted statements on gene–diet interactions from guideline documents.
Organisation
(Year; Condition)
Nutrition and Genetic Statement
ESPEN
(2025; CarbMal)
Genetic and non-genetic causes of carbohydrate malabsorption can be quite common in childhood and adolescence, and children and adolescents may show symptoms after ingestion of the respective carbohydrate, depending on the ingested dose and concurrent diseases like irritable bowel syndrome. Dietary restriction of the specific carbohydrate(s) is recommended when the intolerance to the specific carbohydrate is proven by validated symptom assessment [112].
ESPGHAN
(2024; CoD)
Observational and case–control studies suggest that the consumption of a higher amount of gluten at weaning and/or thereafter may increase the risk of CDA and CoD in genetically at-risk children [84].
ESPGHAN
(2024; CoD)
Observational studies, including cohort and case–control studies, do not provide evidence that the effect of high gluten intake on CoD and CDA development is related to different HLA risk types [84].
ESPGHAN
(2024; CoD)
Recommendations on breastfeeding for infants with known or unknown genetic risk should not be modified due to considerations regarding prevention of CoD [84].
ESPGHAN
(2024; CoD)
There is not enough evidence to give differentiated recommendations on gluten consumption for various HLA risk types [84].
ESPEN
(2024; CF)
We recommend clinicians should discuss use of EN in a timely manner with the patient and family when patients do not grow according to their genetic potential [126].
ESPGHAN
(2022; CSID)
The ESPGHAN GIC recommends that the diagnosis of congenital sucrase-isomaltase deficiency is usually made with genetic testing after appearance of a malabsorption syndrome when firstly exposed to sucrose and starch in the diet [64].
UEG
(2019; CoD)
HLA-DQ2/DQ8 testing should not be used routinely in the initial diagnosis of CoD. It is recommended that the results of such testing should be included along with a caution that patients at risk should be serologically tested for CoD without changing their diet [122].
UEG
(2019; CoD)
In case of elevated TG2-titre and normal histology: biopsies should be reviewed by a pathologist familiar with CoD. It is recommended to repeat biopsy after gluten challenge if the patient was not on gluten-containing diet before testing. HLA-DQ2/8 typing is mandatory. Testing for other antibodies, e.g., DGP and/or EMA, may be of added value [122].
UEG
(2019; CoD)
Seronegative CoD requires careful assessment with HLA-DQ2/8 testing and a response to a GFD after excluding other causes of seronegative VA. Coeliac serology, both IgA- and IgG based, should be negative [122].
UEG
(2019; CoD)
In patients who are already following GFD prior to testing, serology and HLA typing are needed. If serology is positive, then biopsy is the next step. Gluten challenge should be undertaken when serology is negative but HLA DQ2/DQ8 positive [122].
UEG
(2019; CoD)
CoD diagnosis may be made without duodenal biopsy in symptomatic children with high TG2 levels (>10 times ULN) and EMA in the presence of HLA-DQ2/8. The diagnosis is confirmed by an antibody decline and preferably a clinical response to a GFD [122].
UEG
(2019; CoD)
Serology and small-bowel histology (while the patient is on a gluten-containing diet) and HLA-DQ typing (to rule out CoD if negative) are needed to differentiate between CoD and NCGS [122].
CSID: congenital sucrase-isomaltase deficiency; CDA: Celiac Disease Autoimmunity, CoD: coeliac disease; CarbMal: carbohydrate malabsorption; CF: Cystic Fibrosis; GFD: strict gluten-free diet; NCGS: non-coeliac gluten sensitivity; HLA: Human Leukocyte Antigen; DGP: deamidated gliadin peptides; EMA: endomysial antibodies; TG2: tissue transglutaminase 2; EN: enteral nutrition;ULN: upper limit of normal; VA: Villous Atrophy.
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Svolos, V.; Triantafyllou, A.; Charmantzis, G.; Delliou, M.; Nanti, M.-N.; Moustaka, M.; Bakasieta, E.; Balafa, E.; Strongylou, D.E.; Androutsos, O. Genetic Predisposition and Nutritional Interactions in Gastroenterology: A Review of European Clinical Recommendations. Gastrointest. Disord. 2025, 7, 67. https://doi.org/10.3390/gidisord7040067

AMA Style

Svolos V, Triantafyllou A, Charmantzis G, Delliou M, Nanti M-N, Moustaka M, Bakasieta E, Balafa E, Strongylou DE, Androutsos O. Genetic Predisposition and Nutritional Interactions in Gastroenterology: A Review of European Clinical Recommendations. Gastrointestinal Disorders. 2025; 7(4):67. https://doi.org/10.3390/gidisord7040067

Chicago/Turabian Style

Svolos, Vaios, Anastasia Triantafyllou, Georgios Charmantzis, Maria Delliou, Maria-Nikoletta Nanti, Melina Moustaka, Eleni Bakasieta, Evanthia Balafa, Dimitra Eleftheria Strongylou, and Odysseas Androutsos. 2025. "Genetic Predisposition and Nutritional Interactions in Gastroenterology: A Review of European Clinical Recommendations" Gastrointestinal Disorders 7, no. 4: 67. https://doi.org/10.3390/gidisord7040067

APA Style

Svolos, V., Triantafyllou, A., Charmantzis, G., Delliou, M., Nanti, M.-N., Moustaka, M., Bakasieta, E., Balafa, E., Strongylou, D. E., & Androutsos, O. (2025). Genetic Predisposition and Nutritional Interactions in Gastroenterology: A Review of European Clinical Recommendations. Gastrointestinal Disorders, 7(4), 67. https://doi.org/10.3390/gidisord7040067

Article Metrics

Back to TopTop