The Role of Artificial Intelligence and Information Technology in Enhancing and Optimizing Stapling Efficiency in Metabolic and Bariatric Surgery: A Comprehensive Narrative Review
Abstract
1. Background
2. General and Anatomical Considerations in Stapling for MBS
2.1. Tissue Thickness and Staple Height Selection
2.2. Vascularity and Perfusion
2.3. Tissue Elasticity and Mechanical Load
2.4. Patient Factors: Age, Ethnicity, BMI, and Prior Surgeries
2.5. Intraoperative and Postoperative Tissue Changes
3. Current Staplers on the Market and Their Working Mechanisms
3.1. Stapler Mechanism and Outcome
3.2. Clinical Performance and Applications
4. Areas for Improvement of Current Stapling Technologies
5. Necessity of Staple-Line Reinforcement
Study | Author, Journal, Year | Method | Finding | Conclusion |
---|---|---|---|---|
Is There Necessity for Oversewing the Staple Line During Laparoscopic Sleeve Gastrectomy? An Updated Systematic Review and Meta-Analysis of Randomized Controlled Trials | Wu et al. [72] Journal of investigative surgery, Dec 2019 | Compared 11 RCT which included, 2411 patients (1219 patients in oversewing group (OS) and 1192 in no-oversewing group (NOS) to evaluate the effectiveness of oversewing the staple line during laparoscopic sleeve gastrectomy (LSG) | Postoperative bleeding- 2.94% in NOS group and 1.23% in OS group. Postoperative leakage-1.76% on NOS group and 0.66% in OS group. Hospital stay—mean hospital stay of OS vs. NOS was 2.98 ± 2.96 days vs. 2.96 ± 1.61 days. Operative time—mean operative time of OS vs. NOS was 74.45 ± 27.48 min vs. 58.87 ± 22.86 min. | Oversewing the staple line significantly decreases the incident of postoperative bleeding by 52% and decreases the incidence of postoperative leakage by 56%. It has no effect on length of hospital stay, but prolongs the operative time. |
Clinical Benefit of Gastric Staple Line Reinforcement (SLR) in Gastrointestinal Surgery: a Meta-analysis | Shikora et al. [73] Obes Surg. 2015 | Data extracted in 253 studies. Leaking and bleeding compared in surgeries with no staple-line reinforcement, staple-line reinforcement using oversuture/bovine pericardium/glycolide copolymer. | Non-staple-line reinforcement (SLR) vs. reinforcement with oversuture vs. bovine pericardium vs. glycolide copolymer; Postoperative bleeding: 42.5% vs. 34.3% vs. 16.1% vs. 7.0% Postoperative leaking: 46.2% vs. 35.1% vs. 12.1% vs. 6.6% | SLR provided superior results for patients compared to no reinforcement for reducing staple-line complications. Buttressing with bovine pericardium resulted in the most favorable outcomes. |
Staple-line reinforcement during laparoscopic sleeve gastrectomy: Systematic review and network meta-analysis of randomized controlled trials | Aiolfi et al. [74] Obes Surg. 2022 | 17 RCTs compared to an analysis of no reinforcement (NR), suture oversewing (SR), glue reinforcement (GR), bioabsorbable staple-line reinforcement (Gore® Seamguard®) (GoR), and clips reinforcement (CR) during laparoscopic sleeve gastrectomy. | SR was associated with a significantly reduced risk of bleeding (RR = 0.51; 95% CrI 0.31–0.88), staple-line leak (RR = 0.56; 95% CrI 0.32–0.99), and overall complications (RR = 0.50; 95% CrI 0.30–0.88) compared to NR while no differences were found vs. GR, GoR, and CR. Operative time was significantly longer for SR (WMD = 16.2; 95% CrI 10.8–21.7), GR (WMD = 15.0; 95% CrI 7.7–22.4), and GoR (WMD = 15.5; 95% CrI 5.6–25.4) compared to NR. | SR seems associated with a reduced risk of bleeding, leak, and overall complications in spite of a reasonable longer operative time compared to NR while no differences were found vs. GR, GoR, and CR. |
The efficacy of staple-line reinforcement during laparoscopic sleeve gastrectomy: A meta-analysis of randomized controlled trials | Wang et al. [76] International journal of surgery. 2016 | 8 RCTs were analyzed. The outcomes of staple-line hemorrhage and leakage, overall complications, and operative time were compared in surgeries with reinforcement and without reinforcement. | Compared to performing no reinforcement, staple-line reinforcement was associated with a lower risk of staple-line hemorrhage (RR = 0.609, 95%CI = 0.439-0.846, p = 0.003) and overall complications (RR = 0.673, 95%CI = 0.507-0.892, p = 0.006). No significant difference was observed regarding postoperative leakage (RR = 0.654, 95%CI = 0.275-1.555, p = 0.337). Oversewing of the staple line took longer operative time (WMD = 13.211, 95%CI = 6.192-20.229, p = 0.000) | Staple-line reinforcement using buttressing or roofing materials could reduce staple-line hemorrhage and overall complications. No obvious advantages of oversewing the staple line were found and it took longer operative time. No significant reduction in leak rate was evidenced after reinforcement. |
Reinforcing the staple line during laparoscopic sleeve gastrectomy: does it have advantages? A meta-analysis | Choi et al. [75] Obes Surg. 2012 | 2 RCTs and 6 cohort studies were analyzed. A comparison was made between the reinforcement of the staple line and no reinforcement of the staple line. | Comparing the reinforcement of the staple line to no reinforcement of the staple line, the odds ratio (OR) for overall complications was 0.521 (95% confidence intervals [CI], 0.349–0.777). In addition, the OR for staple-line leak was 0.425 (95% CI, 0.226–0.799), and for staple-line hemorrhage it was 0.559 (95% CI, 0.247–1.266). | Reinforcing the staple line during LSG has the following advantages: decreased incidence of postoperative leak and overall complications. |
6. The General View and Power of AI in Surgery
7. Enhancing Stapling Efficiency Through AI Integration
8. Can AI Eliminate the Need for Staple-Line Reinforcement?
9. Price Efficiency and Economic Implications of AI-Guided Stapling
10. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ng, M.; Gakidou, E.; Lo, J.; Abate, Y.H.; Abbafati, C.; Abbas, N.; Abbasian, M.; Abd ElHafeez, S.; Abdel-Rahman, W.M.; Abd-Elsalam, S.; et al. Global, regional, and national prevalence of adult overweight and obesity, 1990-2021, with forecasts to 2050: A forecasting study for the Global Burden of Disease Study 2021. Lancet 2025, 405, 813–838. [Google Scholar] [CrossRef] [PubMed]
- Kerr, J.A.; Patton, G.C.; Cini, K.I.; Abate, Y.H.; Abbas, N.; Abd Al Magied, A.H.; Abd ElHafeez, S.; Abd-Elsalam, S.; Abdollahi, A.; Abdoun, M.; et al. Global, regional, and national prevalence of child and adolescent overweight and obesity, 1990-2021, with forecasts to 2050: A forecasting study for the Global Burden of Disease Study 2021. Lancet 2025, 405, 785–812. [Google Scholar] [CrossRef] [PubMed]
- Buchwald, H. Metabolic Surgery: Progenitor of Effective Therapy for Atherosclerotic Cardiovascular Disease, Cancer, Type 2 Diabetes, and Obesity. Ann. Surg. 2025, 281, 725–729. [Google Scholar] [CrossRef]
- Suzuki, M.; Imoto, T.; Shimizu, R.; Nakagawa, K. Manual slow firing mode of Signia™ Stapling System can achieve less staple line bleeding from pulmonary artery. J. Thorac. Dis. 2025, 17, 4948–4956. [Google Scholar] [CrossRef]
- Hany, M.; Abouelnasr, A.A.; Gaballah, M.; Ragab, A.; Hafez, D.M.; Torensma, B. Gastrocolic Fistula Due to Staple Line Leak Following Metabolic Bariatric Surgery: A Systematic Review. Obes. Surg. 2025, 35, 2277–2295. [Google Scholar] [CrossRef]
- Wu, C.C.; Tan, Y.L.; Hsu, C.W.; Tseng, H.P.; Miskovic, D.; Huang, S.F. Robotic intracorporeal single-stapling versus double-stapling anastomosis in left-sided colorectal cancer: A propensity score-weighted pilot study. J. Robot. Surg. 2025, 19, 430. [Google Scholar] [CrossRef]
- Foppa, C.; D’Amico, S.; Delleani, M.; Maroli, A.; Savevski, V.; Della Porta, M.G.; Carvello, M.; Montorsi, M.; Repici, A.; Hassan, C.; et al. Synthetic Data Generated by Artificial Intelligence to Optimize Surgical Trial Design. Ann. Surg. 2025. online ahead of print. [Google Scholar] [CrossRef]
- Chekan, E.; Whelan, R.L. Surgical stapling device-tissue interactions: What surgeons need to know to improve patient outcomes. Med. Devices 2014, 7, 305–318. [Google Scholar] [CrossRef]
- Verras, G.I.; Mulita, F.; Lampropoulos, C.; Kehagias, D.; Curwen, O.; Antzoulas, A.; Panagiotopoulos, I.; Leivaditi, V.; Kehagias, I. Risk Factors and Management Approaches for Staple Line Leaks Following Sleeve Gastrectomy: A Single-Center Retrospective Study of 402 Patients. J. Pers. Med. 2023, 13, 1422. [Google Scholar] [CrossRef] [PubMed]
- Rawlins, L.; Rawlins, M.P.; Teel, D., 2nd. Human tissue thickness measurements from excised sleeve gastrectomy specimens. Surg. Endosc. 2014, 28, 811–814. [Google Scholar] [CrossRef]
- Boeker, C.; Schneider, B.; Markov, V.; Mall, J.; Reetz, C.; Wilkens, L.; Hakami, I.; Stroh, C.; Köhler, H. Primary Sleeve Gastrectomy and Leaks: The Impact of Fundus-Wall Thickness and Staple Heights on Leakage—An Observational Study of 500 Patients. Front. Surg. 2021, 8, 747171. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.J.; Kim, Y.N.; Park, S. Measurement of Stomach Wall Thickness to Guide Staple Selection during Sleeve Gastrectomy. Obes. Surg. 2020, 30, 2140–2146. [Google Scholar] [CrossRef] [PubMed]
- Iftikhar, M.; Saqib, M.; Zareen, M.; Mumtaz, H. Artificial intelligence: Revolutionizing robotic surgery: Review. Ann. Med. Surg. 2024, 86, 5401–5409. [Google Scholar] [CrossRef]
- Clapp, B.L.; Billy, H.; Lutfi, R.E.; Pan, I.W. Effectiveness of bedside staplers in bariatric robotic procedures. Surg. Endosc. 2024, 38, 5310–5318. [Google Scholar] [CrossRef]
- Salyer, C.; Spuzzillo, A.; Wakefield, D.; Gomaa, D.; Thompson, J.; Goodman, M. Endocutter Staple Height Auto-Adjusts to Tissue Thickness. J. Surg. Res. 2021, 267, 705–711. [Google Scholar] [CrossRef]
- Mery, C.M.; Shafi, B.M.; Binyamin, G.; Morton, J.M.; Gertner, M. Profiling surgical staplers: Effect of staple height, buttress, and overlap on staple line failure. Surg. Obes. Relat. Dis. Off. J. Am. Soc. Bariatr. Surg. 2008, 4, 416–422. [Google Scholar] [CrossRef] [PubMed]
- Barski, K.; Binda, A.; Kudlicka, E.; Jaworski, P.; Tarnowski, W. Gastric wall thickness and stapling in laparoscopic sleeve gastrectomy—A literature review. Videosurgery Other Miniinvasive Tech. 2018, 13, 122–127. [Google Scholar] [CrossRef]
- Lu, T.; Kan, J.; He, X.; Zou, J.; Sheng, D.; Xue, Y.; Wang, Y.; Xu, L. Gastric Submucosal Fat Accumulation Is Associated with Insulin Resistance in Patients with Obesity. Obes. Surg. 2024, 34, 534–541. [Google Scholar] [CrossRef]
- Patrzyk, M.; Sonke, J.; Glitsch, A.; Kessler, R.; Steveling, A.; Lünse, S.; Partecke, L.I.; Heidecke, C.-D.; Kessler, W. Gastric Balloon Implantation as Part of Morbid Adiposity Therapy Changes the Structure of the Stomach Wall. Visc. Med. 2021, 37, 418–425. [Google Scholar] [CrossRef]
- Wah, J.N.K. Revolutionizing surgery: AI and robotics for precision, risk reduction, and innovation. J. Robot. Surg. 2025, 19, 47. [Google Scholar] [CrossRef]
- Meng, M.; Saini, J.; Fan, D.; Singh, A.; Farkas, D.T. Use of Indocyanine Green to Detect Intraoperative Staple-Line Leaks in Robotic Bariatric Surgery: An Observational Cohort Study. Cureus 2024, 16, e56991. [Google Scholar] [CrossRef]
- Pavone, G.; Fersini, A.; Pacilli, M.; De Fazio, M.; Panzera, P.; Ambrosi, A.; Tartaglia, N. Can indocyanine green during laparoscopic sleeve gastrectomy be considered a new intraoperative modality for leak testing? BMC Surg. 2022, 22, 341. [Google Scholar] [CrossRef] [PubMed]
- Popa, M.T.; Ginghină, O.; Mardare, M.; Nodiţi, A.; Puşcaşu, A.; Peleaşă, T.M.; Miron, A.; Blidaru, A. The Celiac Trunk: Anatomical Variants and Malformations—A Narrative Review. Chirurgia 2025, 120, 303–313. [Google Scholar] [CrossRef] [PubMed]
- Riebeling, J.; Patejdl, R.; Zipf, D.; Conradi, L.C.; Ghadimi, M.; Gundling, F.; Bruegmann, T. Update on Gastric Pacemaking: Relevance for Gastroparesis. Zentralblatt Chir. 2025, 150, 337–345. [Google Scholar]
- Man, J.; Hrabe, J. Anastomotic Technique-How to Optimize Success and Minimize Leak Rates. Clin. Colon Rectal Surg. 2021, 34, 371–378. [Google Scholar] [CrossRef]
- Kumar, N.; Thompson, C.C. Endoscopic management of complications after gastrointestinal weight loss surgery. Clin. Gastroenterol. Hepatol. Off. Clin. Pract. J. Am. Gastroenterol. Assoc. 2013, 11, 343–353. [Google Scholar] [CrossRef]
- Ishizawa, T.; Wang, P.Y. “Bon mariage” of artificial intelligence and intraoperative fluorescence imaging for safer surgery. Art. Int. Surg. 2023, 3, 163–165. [Google Scholar] [CrossRef]
- Wityk, M.; Dowgiałło-Gornowicz, N.; Feszak, I.; Bobowicz, M. Fluorescence use in minimally invasive metabolic and bariatric surgery—A systematic review of the literature. Langenbeck’s Arch. Surg. 2023, 408, 216. [Google Scholar] [CrossRef]
- Braghetto, I.; Czwiklitzer, G.; Korn, O.; Brante, P.; Burgos, A. Results of Mechanic Versus Motorized Stapler Used in Gastric Surgery: Prospective Study. Arq. Bras. Cir. Dig. ABCD = Braz. Arch. Dig. Surg. 2024, 37, e1818. [Google Scholar] [CrossRef]
- Chung, Y.; Park, D.G.; Kim, Y.J. Endoscopic Management of Staple Line Leak after Bariatric Surgery: Surgeon’s Perspective. Clin. Endosc. 2021, 54, 805–809. [Google Scholar] [CrossRef] [PubMed]
- Catchlove, W.; Liao, S.; Lim, G.; Brown, W.; Burton, P. Mechanism of Staple Line Leak After Sleeve Gastrectomy via Isobaric Pressurisation Concentrating Stress Forces at the Proximal Staple Line. Obes. Surg. 2022, 32, 2525–2536. [Google Scholar] [CrossRef]
- Acquafresca, P.A.; Palermo, M.; Rogula, T.; Duza, G.E.; Serra, E. Early surgical complications after gastric by-pass: A literature review. Arq. Bras. Cir. Dig. ABCD = Braz. Arch. Dig. Surg. 2015, 28, 74–80. [Google Scholar] [CrossRef] [PubMed]
- Knapps, J.; Ghanem, M.; Clements, J.; Merchant, A.M. A systematic review of staple-line reinforcement in laparoscopic sleeve gastrectomy. JSLS J. Soc. Laparoendosc. Surg. 2013, 17, 390–399. [Google Scholar] [CrossRef]
- Barski, K.; Binda, A.; Jaworski, P.; Gonciarska, A.; Kudlicka, E.; Żurkowska, J.; Wawiernia, K.; Tałałaj, M.; Wąsowski, M. Influence of preoperative weight loss on gastric wall thickness-analysis of laparoscopic sleeve gastrectomy histological material. Langenbeck’s Arch. Surg. 2022, 407, 3315–3322. [Google Scholar] [CrossRef]
- Alekya, B.; Rao, S.; Pandya, H.J. Engineering approaches for characterizing soft tissue mechanical properties: A review. Clin. Biomech. 2019, 69, 127–140. [Google Scholar] [CrossRef]
- Cho, E.J.; Kim, S.M. Revisional surgery after removal of eroded adjustable gastric bands. Asian J. Surg. 2019, 42, 688–695. [Google Scholar] [CrossRef] [PubMed]
- Khattab, M.A.; Mohammed, A.T.A.; Alqahtani, A.Z.M.; Alqahtani, E.Z.M.; Alslim, M.M.A.; Alharbi, N.E.A.; A Alslim, R.M.; Saleh, Z.; Atia, M.A.Q.; Shanaq, A.J.; et al. The Role of Ethnic Disparities in the Outcomes of Bariatric Surgery: A Systematic Review and Meta-Analysis. Cureus 2022, 14, e24743. [Google Scholar] [CrossRef] [PubMed]
- Choban, P.S.; Jackson, B.; Poplawski, S.; Bistolarides, P. Bariatric surgery for morbid obesity: Why, who, when, how, where, and then what? Clevel. Clin. J. Med. 2002, 69, 897–903. [Google Scholar] [CrossRef]
- Varela, J.E.; Hinojosa, M.; Nguyen, N. Correlations between intra-abdominal pressure and obesity-related co-morbidities. Surg. Obes. Relat. Dis. Off. J. Am. Soc. Bariatr. Surg. 2009, 5, 524–528. [Google Scholar] [CrossRef]
- Fass, O.Z.; Mashimo, H. The Effect of Bariatric Surgery and Endoscopic Procedures on Gastroesophageal Reflux Disease. J. Neurogastroenterol. Motil. 2021, 27, 35–45. [Google Scholar] [CrossRef]
- Evans, L.A.; Castillo-Larios, R.; Cornejo, J.; Elli, E.F. Challenges of Revisional Metabolic and Bariatric Surgery: A Comprehensive Guide to Unraveling the Complexities and Solutions of Revisional Bariatric Procedures. J. Clin. Med. 2024, 13, 3104. [Google Scholar] [CrossRef] [PubMed]
- Hany, M.; Zidan, A.; Ibrahim, M.; Sabry, A.; Agayby, A.S.S.; Mourad, M.; Torensma, B. Revisional One-Step Bariatric Surgical Techniques After Unsuccessful Laparoscopic Gastric Band: A Retrospective Cohort Study with 2-Year Follow-up. Obes. Surg. 2024, 34, 814–829. [Google Scholar] [CrossRef]
- Poirier, P.; Cornier, M.A.; Mazzone, T.; Stiles, S.; Cummings, S.; Klein, S.; McCullough, P.A.; Fielding, C.R. Bariatric surgery and cardiovascular risk factors: A scientific statement from the American Heart Association. Circulation 2011, 123, 1683–1701. [Google Scholar] [CrossRef]
- Henry, J.A.; Abdesselam, I.; Deal, O.; Lewis, A.J.; Rayner, J.; Bernard, M.; Dutour, A.; Gaborit, B.; Kober, F.; Soghomonian, A.; et al. Changes in epicardial and visceral adipose tissue depots following bariatric surgery and their effect on cardiac geometry. Front. Endocrinol. 2023, 14, 1092777. [Google Scholar] [CrossRef]
- Salyer, C.; Spuzzillo, A.; Wakefield, D.; Gomaa, D.; Thompson, J.; Goodman, M. Assessment of a novel stapler performance for laparoscopic sleeve gastrectomy. Surg. Endosc. 2021, 35, 4016–4021. [Google Scholar] [CrossRef]
- Kodilinye, S.M.; Kumbhari, V.; Badurdeen, D. Complications of Metabolic and Bariatric Surgery for the Gastroenterologist: A Comprehensive Review. Gastroenterol. Hepatol. 2025, 21, 97–110. [Google Scholar]
- Turcu, F.; Balahura, C.; Doras, I.; Constantin, A.; Copaescu, C. Symptomatic Stenosis after Laparoscopic Sleeve Gastrectomy—Incidence and Management in a High-Volume Bariatric Surgery Center. Chirurgia 2018, 113, 826–836. [Google Scholar] [CrossRef] [PubMed]
- Agnihotri, A.; Barola, S.; Hill, C.; Neto, M.G.; Campos, J.; Singh, V.K.; Schweitzer, M.; A Khashab, M.; Kumbhari, V. An Algorithmic Approach to the Management of Gastric Stenosis Following Laparoscopic Sleeve Gastrectomy. Obes. Surg. 2017, 27, 2628–2636. [Google Scholar] [CrossRef] [PubMed]
- Vitiello, A.; Mok, J.; Elkalaawy, M.; Pucci, A.; Jenkinson, A.; Battheram, R.; Pilone, V.; Adamo, M. Staple Line Reinforcement during Sleeve Gastrectomy with SeamGuard: Single-Center Retrospective Case-Control Study over a 5-Year Period. J. Clin. Med. 2024, 13, 3410. [Google Scholar] [CrossRef]
- Hashimoto, D.A.; Rosman, G.; Witkowski, E.R.; Stafford, C.; Navarette-Welton, A.J.; Rattner, D.W.; Lillemoe, K.D.; Rus, D.L.; Meireles, O.R. Computer Vision Analysis of Intraoperative Video: Automated Recognition of Operative Steps in Laparoscopic Sleeve Gastrectomy. Ann. Surg. 2019, 270, 414–421. [Google Scholar] [CrossRef]
- Hassan Mukhtar, M.A.; Babiker Ahmed, A.U.; Siddig Mohammed, M.A.; Ibrahim Omer, N.O.; Altom, D.S.; Elnour, M.A.A. The Role of Artificial Intelligence in the Prediction of Bariatric Surgery Complications: A Systematic Review. Cureus 2025, 17, e82461. [Google Scholar] [CrossRef]
- Blanc, P.; Breton, C.; Kuperas, C. Robotic Roux-en-Y gastric bypass with hand sewn anastomosis (with video). J. Visc. Surg. 2020, 157, 157–158. [Google Scholar] [CrossRef]
- Spurzem, G.J.; Broderick, R.C.; Kunkel, E.K.; Hollandsworth, H.M.; Sandler, B.J.; Jacobsen, G.R.; Horgan, S. Robotic bariatric surgery reduces morbidity for revisional gastric bypass when compared to laparoscopic: Outcome of 8-year MBSAQIP analysis of over 40,000 cases. Surg. Endosc. 2024, 38, 6294–6304. [Google Scholar] [CrossRef]
- Spurzem, G.J.; Broderick, R.C.; Kunkel, E.K.; Hollandsworth, H.M.; Sandler, B.J.; Jacobsen, G.R.; Horgan, S. Robotic sleeve gastrectomy has higher complication rates compared to laparoscopic: 8-year analysis of robotic versus laparoscopic primary bariatric surgery. Surg. Obes. Relat. Dis. Off. J. Am. Soc. Bariatr. Surg. 2025, 21, 372–381. [Google Scholar] [CrossRef]
- Cirocchi, R.; Boselli, C.; Santoro, A.; Guarino, S.; Covarelli, P.; Renzi, C.; Listorti, C.; Trastulli, S.; Desiderio, J.; Coratti, A.; et al. Current status of robotic bariatric surgery: A systematic review. BMC Surg. 2013, 13, 53. [Google Scholar] [CrossRef]
- Fadel, M.G.; Walshaw, J.; Pecchini, F.; Yiasemidou, M.; Boal, M.; Elhadi, M.; Fehervari, M.; Massey, L.H.; Carrano, F.M.; Antoniou, S.A.; et al. A pan-European survey of robotic training for gastrointestinal surgery: European Robotic Surgery Consensus (ERSC) initiative. Surg. Endosc. 2025, 39, 907–921. [Google Scholar] [CrossRef]
- Pennestrì, F.; Marincola, G.; Procopio, P.F.; Gallucci, P.; Salvi, G.; Ciccoritti, L.; Greco, F.; Raffaelli, M. Comparison between DaVinci(®) and Hugo(™)-RAS Roux-en-Y Gastric Bypass in bariatric surgery. J. Robot. Surg. 2024, 18, 303. [Google Scholar] [CrossRef] [PubMed]
- Medtronic. Touch Surgery™ Enterprise and Signia™ Stapling System: Real-time insights to enhance surgical performance. White Paper. 2021. Available online: https://www.medtronic.com/en-us/healthcare-professionals/specialties/touch-surgery.html#aq=%40pagetype%3D%22product-model%22&cq=%40products_category%3D%22Surgical%20energy%22%20OR%20%40ontology_isa%3D%22Surgical%20energy%22 (accessed on 1 August 2025).
- Ethicon. ECHELON Circular Powered Stapler and GST Technology: Enhancing Precision Through Advanced Data-Informed Design; Johnson & Johnson Medical Devices Companies: Irvine, CA, USA, 2021. [Google Scholar]
- Hafermann, J.O.; Phelps, J.D.; Tayash, M.F.E. Comparing the effect of laparoscopic and robotic stapling on clinical outcomes, efficiency, and costs of robot-assisted Roux-en-Y gastric bypass. J. Robot. Surg. 2025, 19, 65. [Google Scholar] [CrossRef] [PubMed]
- XNY Multi Use Intelligent Powered Stapler. Available online: https://www.xnymedical.com/#/product-detail (accessed on 21 August 2025).
- Rogula, T.; Koprivanac, M.; Janik, M.R.; Petrosky, J.A.; Nowacki, A.S.; Dombrowska, A.; Kroh, M.; Brethauer, S.; Aminian, A.; Schauer, P. Does Robotic Roux-en-Y Gastric Bypass Provide Outcome Advantages over Standard Laparoscopic Approaches? Obes. Surg. 2018, 28, 2589–2596. [Google Scholar] [CrossRef]
- Clapp, B.; Schrodt, A.; Ahmad, M.; Wicker, E.; Sharma, N.; Vivar, A.; Davis, B. Stapler Malfunctions in Bariatric Surgery: An Analysis of the MAUDE Database. JSLS J. Soc. Laparoendosc. Surg. 2022, 26, e2021.00074. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Lu, J.; Feng, J.; Wang, Z. Staple line oversewing during laparoscopic sleeve gastrectomy. Ann. R. Coll. Surg. Engl. 2017, 99, 509–514. [Google Scholar] [CrossRef]
- Heath, D. Complications Arising from Staple Lines and Anastomotes in Bariatric Surgery: Why They Happen and How to Avoid Them. Available online: https://bariatrictimes.com/complications-arising-from-staple-lines-and-anastomotes-in-bariatric-surgery-why-they-happen-and-how-to-avoid-them/ (accessed on 21 August 2025).
- de Souza Bastos, E.L.; Ramos, A.C. Staple-line Reinforcement in Laparoscopic Sleeve Gastrectomy: Needful or Excessive Care? J. Bariatr. Surg. 2022, 1, 61–67. [Google Scholar] [CrossRef]
- Gencturk, M.; Dalkilic, M.S.; Erdem, H.; Yılmaz, M.; Sisik, A. Correct Stapling Technique in Laparoscopic Sleeve Gastrectomy: Are We Increasing the Bleeding? A Prospective Cohort Study. J. Laparoendosc. Adv. Surg. Tech. Part A 2023, 33, 561–565. [Google Scholar] [CrossRef]
- Giannopoulos, G.A.; Tzanakis, N.E.; Rallis, G.E.; Efstathiou, S.P.; Tsigris, C.; Nikiteas, N.I. Staple line reinforcement in laparoscopic bariatric surgery: Does it actually make a difference? A systematic review and meta-analysis. Surg. Endosc. 2010, 24, 2782–2788. [Google Scholar] [CrossRef]
- Fegelman, E.; Knippenberg, S.; Schwiers, M.; Stefanidis, D.; Gersin, K.S.; Scott, J.D.; Fernandez, A.Z. Evaluation of a Powered Stapler System with Gripping Surface Technology on Surgical Interventions Required During Laparoscopic Sleeve Gastrectomy. J. Laparoendosc. Adv. Surg. Tech. Part A 2017, 27, 489–494. [Google Scholar] [CrossRef]
- Jing, W.; Huang, Y.; Feng, J.; Li, H.; Yu, X.; Zhao, B.; Wei, P. The clinical effectiveness of staple line reinforcement with different matrix used in surgery. Front. Bioeng. Biotechnol. 2023, 11, 1178619. [Google Scholar] [CrossRef]
- Morandeira-Rivas, A.; Moreno-Sanz, C.; Clerveus, M.; Muñoz de la Espada-Merlo Córdoba, J.B.; Herrero-Bogajo, M.L.; Román-Ortiz, C. Staple line reinforcement for adults undergoing bariatric surgery with gastric transection. Cochrane Database Syst. Rev. 2018, 2018, CD011853. [Google Scholar] [CrossRef]
- Wu, C.; Wang, F.G.; Yan, W.M.; Yan, M.; Song, M.M. Is There Necessity for Oversewing the Staple Line During Laparoscopic Sleeve Gastrectomy? An Updated Systematic Review and Meta-Analysis of Randomized Controlled Trials. J. Investig. Surg. Off. J. Acad. Surg. Res. 2020, 33, 839–850. [Google Scholar] [CrossRef] [PubMed]
- Shikora, S.A.; Mahoney, C.B. Clinical Benefit of Gastric Staple Line Reinforcement (SLR) in Gastrointestinal Surgery: A Meta-analysis. Obes. Surg. 2015, 25, 1133–1141. [Google Scholar] [CrossRef]
- Aiolfi, A.; Gagner, M.; Zappa, M.A.; Lastraioli, C.; Lombardo, F.; Panizzo, V.; Bonitta, G.; Cavalli, M. Staple Line Reinforcement During Laparoscopic Sleeve Gastrectomy: Systematic Review and Network Meta-analysis of Randomized Controlled Trials. Obes. Surg. 2022, 32, 1466–1478. [Google Scholar] [CrossRef] [PubMed]
- Choi, Y.Y.; Bae, J.; Hur, K.Y.; Choi, D.; Kim, Y.J. Reinforcing the staple line during laparoscopic sleeve gastrectomy: Does it have advantages? A meta-analysis. Obes. Surg. 2012, 22, 1206–1213. [Google Scholar] [CrossRef]
- Wang, Z.; Dai, X.; Xie, H.; Feng, J.; Li, Z.; Lu, Q. The efficacy of staple line reinforcement during laparoscopic sleeve gastrectomy: A meta-analysis of randomized controlled trials. Int. J. Surg. 2016, 25, 145–152. [Google Scholar] [CrossRef]
- Bektaş, M.; Reiber, B.M.M.; Pereira, J.C.; Burchell, G.L.; van der Peet, D.L. Artificial Intelligence in Bariatric Surgery: Current Status and Future Perspectives. Obes. Surg. 2022, 32, 2772–2783. [Google Scholar] [CrossRef] [PubMed]
- Saux, P.; Bauvin, P.; Raverdy, V.; Teigny, J.; Verkindt, H.; Soumphonphakdy, T.; Debert, M.; Jacobs, A.; Jacobs, D.; Monpellier, V.; et al. Development and validation of an interpretable machine learning-based calculator for predicting 5-year weight trajectories after bariatric surgery: A multinational retrospective cohort SOPHIA study. Lancet Digit. Health 2023, 5, e692–e702. [Google Scholar] [CrossRef] [PubMed]
- Kenig, N.; Monton Echeverria, J.; Muntaner Vives, A. Artificial Intelligence in Surgery: A Systematic Review of Use and Validation. J. Clin. Med. 2024, 13, 7108. [Google Scholar] [CrossRef] [PubMed]
- Reddy, S. Generative AI in healthcare: An implementation science informed translational path on application, integration and governance. Implement. Sci. 2024, 19, 27. [Google Scholar] [CrossRef]
- Au, K.; Yang, W. Auxiliary use of ChatGPT in surgical diagnosis and treatment. Int. J. Surg. 2023, 109, 3940–3943. [Google Scholar] [CrossRef]
- Li, W.; Zhang, Y.; Chen, F. ChatGPT in Colorectal Surgery: A Promising Tool or a Passing Fad? Ann. Biomed. Eng. 2023, 51, 1892–1897. [Google Scholar] [CrossRef]
- Morya, V.K.; Lee, H.W.; Shahid, H.; Magar, A.G.; Lee, J.H.; Kim, J.H.; Jun, L.; Noh, K.-C. Application of ChatGPT for Orthopedic Surgeries and Patient Care. Clin. Orthop. Surg. 2024, 16, 347–356. [Google Scholar] [CrossRef]
- Law, S.; Oldfield, B.; Yang, W. ChatGPT/GPT-4 (large language models): Opportunities and challenges of perspective in bariatric healthcare professionals. Obes. Rev. 2024, 25, e13746. [Google Scholar] [CrossRef]
- Sanders, A.; Lim, R.; Jones, D.; Vosburg, R.W. Artificial intelligence large language model scores highly on focused practice designation in metabolic and bariatric surgery board practice questions. Surg. Endosc. 2024, 38, 6678–6681. [Google Scholar] [CrossRef] [PubMed]
- Wah, J.N.K. Revolutionizing e-health: The transformative role of AI-powered hybrid chatbots in healthcare solutions. Front. Public Health 2025, 13, 1530799. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.; Shin, T.; Tessier, L.; Javidan, A.; Jung, J.; Hong, D.; Strong, A.T.; McKechnie, T.; Malone, S.; Jin, D.; et al. Harnessing artificial intelligence in bariatric surgery: Comparative analysis of ChatGPT-4, Bing, and Bard in generating clinician-level bariatric surgery recommendations. Surg. Obes. Relat. Dis. 2024, 20, 603–608. [Google Scholar] [CrossRef]
- Lee, Y.; Tessier, L.; Brar, K.; Malone, S.; Jin, D.; McKechnie, T.; Jung, J.J.; Kroh, M.; Dang, J.T. Performance of artificial intelligence in bariatric surgery: Comparative analysis of ChatGPT-4, Bing, and Bard in the American Society for Metabolic and Bariatric Surgery textbook of bariatric surgery questions. Surg. Obes. Relat. Dis. 2024, 20, 609–613. [Google Scholar] [CrossRef]
- Kermansaravi, M.; Chiappetta, S.; Shahabi Shahmiri, S.; Varas, J.; Parmar, C.; Lee, Y.; Dang, J.T.; Shabbir, A.; Hashimoto, D.; Jazi, A.H.D.; et al. International expert consensus on the current status and future prospects of artificial intelligence in metabolic and bariatric surgery. Sci. Rep. 2025, 15, 9312. [Google Scholar] [CrossRef]
- Rodler, S.; Ganjavi, C.; De Backer, P.; Magoulianitis, V.; Ramacciotti, L.S.; De Castro Abreu, A.L.; Gill, I.S.; Cacciamani, G.E. Generative artificial intelligence in surgery. Surgery 2024, 175, 1496–1502. [Google Scholar] [CrossRef]
- Bellini, V.; Russo, M.; Domenichetti, T.; Panizzi, M.; Allai, S.; Bignami, E.G. Artificial Intelligence in Operating Room Management. J. Med. Syst. 2024, 48, 19. [Google Scholar] [CrossRef]
- Abdelrazig Merghani, A.M.; Ahmed Esmail, A.K.; Mubarak Osman, A.M.E.; Abdelfrag Mohamed, N.A.; Mohamed Ali Shentour, S.M.; Abdelrazig Merghani, S.M. The Role of Machine Learning in Management of Operating Room: A Systematic Review. Cureus 2025, 17, e79400. [Google Scholar] [CrossRef]
- Bellini, V.; Guzzon, M.; Bigliardi, B.; Mordonini, M.; Filippelli, S.; Bignami, E. Artificial Intelligence: A New Tool in Operating Room Management. Role of Machine Learning Models in Operating Room Optimization. J. Med. Syst. 2019, 44, 20. [Google Scholar]
- Bellini, V.; Domenichetti, T.; Bignami, E.G. Innovative Technologies for Smarter and Efficient Operating Room Scheduling. J. Med. Syst. 2025, 49, 37. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Sheng, C.; Feng, W.; Sun, F.; Zhang, J.; Chen, Y.; Su, L.; Liu, J.; Du, L.; Jia, X.; et al. A multi-center study on glucometabolic response to bariatric surgery for different subtypes of obesity. Front. Endocrinol. 2022, 13, 989202. [Google Scholar] [CrossRef]
- Pantelis, A.G. Metabolomics in Bariatric and Metabolic Surgery Research and the Potential of Deep Learning in Bridging the Gap. Metabolites 2022, 12, 458. [Google Scholar] [CrossRef]
- Hsu, J.L.; Chen, K.A.; Butler, L.R.; Bahraini, A.; Kapadia, M.R.; Gomez, S.M.; Farrell, T.M. Application of machine learning to predict postoperative gastrointestinal bleed in bariatric surgery. Surg. Endosc. 2023, 37, 7121–7127. [Google Scholar] [CrossRef]
- Nwoye, E.; Woo, W.L.; Gao, B.; Anyanwu, T. Artificial Intelligence for Emerging Technology in Surgery: Systematic Review and Validation. IEEE Rev. Biomed. Eng. 2023, 16, 241–259. [Google Scholar] [CrossRef]
- Knudsen, J.E.; Ghaffar, U.; Ma, R.; Hung, A.J. Clinical applications of artificial intelligence in robotic surgery. J. Robot. Surg. 2024, 18, 102. [Google Scholar] [CrossRef]
- Li, H.; Han, Z.; Wu, H.; Musaev, E.R.; Lin, Y.; Li, S.; Makatsariya, A.D.; Chekhonin, V.P.; Ma, W.; Zhang, C. Artificial intelligence in surgery: Evolution, trends, and future directions. Int. J. Surg. 2025, 111, 2101–2111. [Google Scholar] [CrossRef]
- Adam, K.M.; Ali, E.W.; Elangeeb, M.E.; Abuagla, H.A.; Elamin, B.K.; Ahmed, E.M.; Edris, A.M.; Ahmed, A.A.E.M.; Eltieb, E.I. Intelligent Care: A Scientometric Analysis of Artificial Intelligence in Precision Medicine. Med. Sci. 2025, 13, 44. [Google Scholar] [CrossRef] [PubMed]
- Almunifi, A. Impact of Artificial Intelligence on Metabolic Bariatric Surgery (MBS) and Minimally Invasive Surgery (MIS): A literature review. Open Access Surg. 2024, 17, 161–166. [Google Scholar] [CrossRef]
- Kim, Y.S.; Park, S.H.; Lee, I.Y.; Son, G.M.; Baek, K.R. AI-driven automatic compression system for colorectal anastomosis. J. Robot. Surg. 2024, 18, 290. [Google Scholar] [CrossRef]
- Ward, T.M.; Mascagni, P.; Ban, Y.; Rosman, G.; Padoy, N.; Meireles, O.; Hashimoto, D.A. Computer vision in surgery. Surgery 2021, 169, 1253–1256. [Google Scholar] [CrossRef] [PubMed]
- Rahmadian, R.; Abi Rafdhi, M.A.Q.; Ariliusra, Z. Artificial intelligence in surgery: Role of AI in pre-operative, intra-operative, and post-operative. Surg. Gastroenterol. Oncol. 2024, 29, 189. [Google Scholar] [CrossRef]
- Chevalier, O.; Dubey, G.; Benkabbou, A.; Majbar, M.A.; Souadka, A. Comprehensive overview of artificial intelligence in surgery: A systematic review and perspectives. Pflug. Arch. Eur. J. Physiol. 2025, 477, 617–626. [Google Scholar] [CrossRef]
- Nikam, S.T.; Jadhav, B.; Lal, M. Predictive Maintenance for Medical Equipment Using AI-Powered Digital Twins. In Accelerating Product Development Cycles With Digital Twins and IoT Integration; IGI Global Scientific Publishing: Hershey, PA, USA, 2025; pp. 131–154. [Google Scholar]
- Abdelmageed, S.A.; Helmy, M.Z. Staple line reinforcement during laparoscopic sleeve gastrectomy: Pros and cons. Int. Surg. J. 2019, 6, 2677–2681. [Google Scholar] [CrossRef]
- D’Ugo, S.; Gentileschi, P.; Benavoli, D.; Cerci, M.; Gaspari, A.; Berta, R.D.; Moretto, C.; Bellini, R.; Basso, N.; Casella, G.; et al. Comparative use of different techniques for leak and bleeding prevention during laparoscopic sleeve gastrectomy: A multicenter study. Surg. Obes. Relat. Dis. Off. J. Am. Soc. Bariatr. Surg. 2014, 10, 450–454. [Google Scholar] [CrossRef]
- Somashekhar, S.P.; Saldanha, E.; Kumar, R.; Pandey, K.; Dahiya, A.; Ashwin, K.R. Prospective analysis of 164 fires of da Vinci SureForm SmartFire stapler in oncological cases: Indian cohort of 76 consecutive cases. J. Minimal Access Surg. 2023, 19, 384–389. [Google Scholar] [CrossRef]
- Niaz, O.; Askari, A.; Currie, A.; McGlone, E.R.; Zakeri, R.; Khan, O.; Welbourn, R.; Pring, C.; Small, P.; Al-Taan, O.; et al. Analysis of the effect of staple line reinforcement on leaking and bleeding after sleeve gastrectomy from the UK National Bariatric Surgery Registry. World J. Surg. 2024, 48, 1950–1957. [Google Scholar] [CrossRef]
- Nguyen, N.T.; Longoria, M.; Welbourne, S.; Sabio, A.; Wilson, S.E. Glycolide copolymer staple-line reinforcement reduces staple site bleeding during laparoscopic gastric bypass: A prospective randomized trial. Arch. Surg. 2005, 140, 773–778. [Google Scholar] [CrossRef]
- Childers, C.P.; Maggard-Gibbons, M. Understanding Costs of Care in the Operating Room. JAMA Surg. 2018, 153, e176233. [Google Scholar] [CrossRef]
- Miller, D.L.; Roy, S.; Kassis, E.S.; Yadalam, S.; Ramisetti, S.; Johnston, S.S. Impact of Powered and Tissue-Specific Endoscopic Stapling Technology on Clinical and Economic Outcomes of Video-Assisted Thoracic Surgery Lobectomy Procedures: A Retrospective, Observational Study. Adv. Ther. 2018, 35, 707–723. [Google Scholar] [CrossRef] [PubMed]
- Bellini, V.; Valente, M.; Turetti, M.; Del Rio, P.; Saturno, F.; Maffezzoni, M.; Bignami, E. Current Applications of Artificial Intelligence in Bariatric Surgery. Obes. Surg. 2022, 32, 2717–2733. [Google Scholar] [CrossRef] [PubMed]
- Dayan, D.; Nizri, E.; Keidar, A. Using artificial intelligence to evaluate adherence to best practices in one anastomosis gastric bypass: First steps in a real-world setting. Surg. Endosc. 2025, 39, 1945–1951. [Google Scholar] [CrossRef] [PubMed]
Weakness | Underlying Issues | Evidence | Potential Improvement |
---|---|---|---|
Staple-line bleeding and hemorrhage | Inadequate staple compression Vascular rich areas, which are more prone to bleeding. | Research indicates that waiting a brief period after compression before firing can reduce bleeding, although it may extend the operative time [67]. Reinforcement techniques, such as oversewing and buttressing, might help decrease bleeding but can also result in ischemia and stenosis [64]. | Delay-Fire Technology: Implement pre-programmed compression delays before stapler firing. Feedback Mechanisms: Provide audible or haptic alerts when minimum compression time is achieved. |
Staple-line leaks (fistula) | Excessive staple-line tension. Incomplete closure due to variable gastric wall thickness | Reinforcement methods, such as oversewing, may reduce leak rates (1.4–3%), but they can prolong surgery [64]. Some meta-analyses have found no clear benefit of reinforcement in reducing leaks; in some cases, they even suggested slightly higher leak rates with buttresses [68]. | Smart staplers: Measure firing force and tissue resistance; however, they still lack precise measurements of wall thickness. AI-guided cartridge selection: Based on intraoperative imaging could enhance matching accuracy. |
Stapler malfunctions | Excessive staple firing | Controlled firing with slow, sequential compression (waiting approximately 30–60 s before firing) could improve staple formation and reduce bleeding [67]. Predictive tools or fewer, fuller-length loads (single-staple load devices) may help reduce total firings and complication rates [45]. | Pre-loaded 60+ mm reloads and single staple loaded devices: This feature minimizes reloads and tissue manipulation. Stapler Path Planning: Intraoperative AI or AR systems project firing paths across anatomy to optimize cutting. |
Tissue device mismatch | Variable gastric wall thickness Surgeons rely on “feel” and visual cues which vary with patient BMI, comorbidities. Unavailability of intraoperative device to measure exact wall thickness | Variable gastric wall thickness, which ranges from 1.6 to 4.5 mm, necessitates the use of cartridges that are appropriate for the specific location. Utilizing devices that measure tissue thickness in real-time can help guide the selection of the optimal cartridge and staple height, potentially reducing mismatches. Additionally, gripping-class stapler platforms, such as newer powered variants, can minimize tissue slippage [69]. | Smart sensing technologies: Utilize optical or ultrasound-based sensors in stapler jaws to measure gastric wall thickness in real time. Surface technology devices, such as the Medtronic Signia™, aim for consistent compression force, but they do not yet feature tissue-adaptive firing. |
Surgeon-related complications like improper tissue handling | Lack of training and standardization | Standardizing guidelines for firing delays, reinforcement usage, and cartridge selection would minimize variability among surgeons [65,66]. | Training and protocol standardization Simulation training with realistic tissue models Error-tracking staplers |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pouwels, S.; Mwangi, A.; Koutentakis, M.; Mendoza, M.; Rathod, S.; Parajuli, S.; Singhal, S.; Lakshani, U.; Yang, W.; Au, K.; et al. The Role of Artificial Intelligence and Information Technology in Enhancing and Optimizing Stapling Efficiency in Metabolic and Bariatric Surgery: A Comprehensive Narrative Review. Gastrointest. Disord. 2025, 7, 63. https://doi.org/10.3390/gidisord7040063
Pouwels S, Mwangi A, Koutentakis M, Mendoza M, Rathod S, Parajuli S, Singhal S, Lakshani U, Yang W, Au K, et al. The Role of Artificial Intelligence and Information Technology in Enhancing and Optimizing Stapling Efficiency in Metabolic and Bariatric Surgery: A Comprehensive Narrative Review. Gastrointestinal Disorders. 2025; 7(4):63. https://doi.org/10.3390/gidisord7040063
Chicago/Turabian StylePouwels, Sjaak, Alex Mwangi, Michail Koutentakis, Moises Mendoza, Sanskruti Rathod, Santosh Parajuli, Saurabh Singhal, Uresha Lakshani, Wah Yang, Kahei Au, and et al. 2025. "The Role of Artificial Intelligence and Information Technology in Enhancing and Optimizing Stapling Efficiency in Metabolic and Bariatric Surgery: A Comprehensive Narrative Review" Gastrointestinal Disorders 7, no. 4: 63. https://doi.org/10.3390/gidisord7040063
APA StylePouwels, S., Mwangi, A., Koutentakis, M., Mendoza, M., Rathod, S., Parajuli, S., Singhal, S., Lakshani, U., Yang, W., Au, K., & Taha, S. (2025). The Role of Artificial Intelligence and Information Technology in Enhancing and Optimizing Stapling Efficiency in Metabolic and Bariatric Surgery: A Comprehensive Narrative Review. Gastrointestinal Disorders, 7(4), 63. https://doi.org/10.3390/gidisord7040063