Single Anastomosis Duodenoileostomy with Sleeve Gastrectomy Versus Sleeve Gastrectomy Alone: A Systematic Review and Meta-Analysis on Behalf of TROGSS—The Robotic Global Surgical Society
Abstract
:1. Introduction
2. Results
2.1. Studies Selection
2.2. Study Characteristics
2.3. Outcomes of SADI-S and SG
2.3.1. Results of Syntheses
2.3.2. Age and Sex in Patients Undergoing SADI-S vs. SG
2.3.3. BMI in Patients Undergoing SADI-S vs. SG
2.3.4. Obesity-Associated Diseases in Patients Undergoing SADI-S vs. SG
2.3.5. Operating Time (OT) in Patients Undergoing SADI-S vs. SG
2.3.6. Length of Stay (LOS) in Patients Undergoing SADI-S vs. SG
2.3.7. Postoperative Events in Patients Undergoing SADI-S vs. SG
2.4. %EWL at 2 Years in Patients Undergoing SADI-S vs. SG
2.4.1. Heterogeneity and Risk of Bias Across Studies
2.4.2. Quality Assessment
3. Materials and Methods
3.1. Study Design
3.2. Information Sources and Search Strategy
3.3. Study Selection
3.4. Data Extraction
3.5. Bias and Quality Assessment
3.6. Statistical Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Prakash, L. Fundamentals and General Applications of Hardmetals. In Comprehensive Hard Materials; Elsevier Ltd.: Amsterdam, The Netherlands, 2014; pp. 29–90. [Google Scholar] [CrossRef]
- García, J.; Collado-Ciprés, V.; Blomqvist, A.; Kaplan, B. Cemented carbide microstructures: A review. Int. J. Refract. Met. Hard Mater. 2019, 80, 40–68. [Google Scholar] [CrossRef]
- Viswanadham, R.K.; Sun, T.S.; Drake, E.F.; Peck, J.A. Quantitative fractography of WC-Co cermets by Auger spectroscopy. J. Mater. Sci. 1981, 16, 1029–1038. [Google Scholar] [CrossRef]
- Pickens, J.R.; Gurland, J. The fracture toughness of WC-Co alloys measured on single-edge notched beam specimens precracked by electron discharge machining. Mater. Sci. Eng. 1978, 33, 135–142. [Google Scholar] [CrossRef]
- Warren, P.D. Determining the fracture toughness of brittle materials by Hertzian indentation. J. Eur. Ceram. Soc. 1995, 15, 201–207. [Google Scholar] [CrossRef]
- Torres, Y.; Casellas, D.; Anglada, M.; Llanes, L. Fracture toughness evaluation of hardmetals: Influence of testing procedure. Int. J. Refract. Met. Hard Mater. 2001, 19, 27–34. [Google Scholar] [CrossRef]
- Kenny, P. The application of fracture mechanics to cemented carbides. Powder Met. 1971, 14, 22–38. [Google Scholar] [CrossRef]
- Sheikh, S.; M’Saoubi, R.; Flasar, P.; Schwind, M.; Persson, T.; Yang, J.; Llanes, L. Fracture toughness of cemented carbides: Testing method and microstructural effects. Int. J. Refract. Met. Hard Mater. 2015, 49, 153–160. [Google Scholar] [CrossRef]
- Ortiz-Membrado, L.; Liu, C.; Prada-Rodrigo, J.; Jiménez-Piqué, E.; Lin, L.L.; Moreno, P.; Wang, M.S.; Llanes, L. Assessment of fracture toughness of cemented carbides by using a shallow notch produced by ultrashort pulsed laser ablation, and a comparative study with tests employing precracked specimens. Int. J. Refract. Met. Hard Mater. 2022, 108, 105949. [Google Scholar] [CrossRef]
- Hearing, B.; Gestrich, T.; Steinborn, C.; Vornberger, A.; Pötschke, J. Influence of alternative hard and binder phase compositions in hardmetals on thermophysical and mechanical properties. Metals 2023, 13, 1803. [Google Scholar] [CrossRef]
- de Nicolás, M.; Besharatloo, H.; Alvaredo, P.; Roa, J.J.; Llanes, L.; Gordo, E. Design of alternative binders for hard materials. Int. J. Refract. Met. Hard Mater. 2020, 87, 105089. [Google Scholar] [CrossRef]
- Soria-Biurrun, T.; Navarrete-Cuadrado, J.; Lozada-Cabezas, L.; Ibarreta-Lopez, F.; Martínez-Pampliega, R.; Sánchez-Moreno, J.M. Microstructure, mechanical properties and fracture behavior of NiCoCrTiAl and FeNiCoCr new alternative binders for WC based hardmetals. Int. J. Refract. Met. Hard Mater. 2021, 103, 105748. [Google Scholar]
- Grilli, M.L.; Bellezze, T.; Gamsjäger, E.; Rinaldi, A.; Novak, P.; Balos, S.; Piticescu, R.R.; Ruello, M.L. Solutions for critical raw materials under extreme conditions: A review. Materials 2017, 10, 285. [Google Scholar] [CrossRef] [PubMed]
- von Spalden, M.; Pötschke, J.; Michaelis, A. Novel alternative Ni-based binder systems for hardmetals. Crystals 2024, 14, 1013. [Google Scholar] [CrossRef]
- Exner, H.E. Physical and Chemical Nature of Cemented Carbides. Int. Met. Rev. 1979, 24, 149–173. [Google Scholar] [CrossRef]
- Chychko, A.; García, J.; Collado-Ciprés, V.; Holmström, E.; Blomqvist, A. HV-K Ic property charts of cemented carbides: A comprehensive data collection. Int. J. Refract. Met. Hard Mater. 2022, 103, 105763. [Google Scholar] [CrossRef]
- Shetty, D.K.; Wright, I.G.; Mincer, P.N.; Clauer, A.H. Indentation fracture of WC-Co cermets. J. Mater. Sci. 1985, 20, 1873–1882. [Google Scholar] [CrossRef]
- Fang, S.; Klein, S.; Bähre, D.; Llanes, L. Performance of laser surface textured cemented carbide tools during abrasive machining: Coating effects, surface integrity assessment and wear characterization. CIRP J. Manuf. Sci. Technol. 2020, 31, 130–139. [Google Scholar] [CrossRef]
- Hajri, M.; Börner, P.; Wegener, K. An industry-relevant method to determine material-specific parameters for ultra-short pulsed laser ablation of cemented carbide. Procedia CIRP 2018, 74, 709–713. [Google Scholar] [CrossRef]
- Turon-Vinas, M.; Morillas, J.; Moreno, P.; Anglada, M. Evaluation of damage in front of starting notches induced by ultra-short pulsed laser ablation for the determination of fracture toughness in zirconia. J. Eur. Ceram. Soc. 2017, 37, 5127–5131. [Google Scholar] [CrossRef]
- Roebuck, B.; Almond, E.A. Deformation and fracture processes and the physical metallurgy of WC–Co hardmetals. Int. Mater. Rev. 1988, 33, 90–112. [Google Scholar] [CrossRef]
- Torres, Y.; Anglada, M.; Llanes, L. Fatigue mechanics of WC–Co cemented carbides. Int. J. Refract. Met. Hard Mater. 2001, 19, 341–348. [Google Scholar] [CrossRef]
- Iizuka, H.; Tanaka, M. Fracture toughness measurement with fatigue-precracked single edge-notched beam specimens of WC-Co hard metall. J. Mater. Sci. 1991, 26, 4394–4398. [Google Scholar] [CrossRef]
- Suresh, S. The failure of hard materials in cyclic compression: Theory, experiments and applications. Mater. Sci. Eng. A 1988, 105, 323–329. [Google Scholar] [CrossRef]
- James, M.N.; Human, A.M.; Luyckx, S. Fracture toughness testing of hard metals using compression-compression precracking. J. Mater. Sci. 1990, 25, 4810–4814. [Google Scholar] [CrossRef]
- Godse, R.; Gurland, J.; Suresh, S. Effects of residual stresses in fracture toughness testing of hard metals. Mater. Sci. Eng. A 1988, 105, 383–387. [Google Scholar] [CrossRef]
- Munz, D.; Fett, T.; Properties, M.; Behaviour, F.; Selection, M. Ceramics; Springer: Berlin/Heidelberg, Germany, 1999. [Google Scholar] [CrossRef]
- Melk, L.; Turon-Vinas, M.; Roa, J.J.; Antti, M.-L.; Anglada, M. The influence of unshielded small cracks in the fracture toughness of yttria and of ceria stabilised zirconia. J. Eur. Ceram. Soc. 2016, 36, 147–153. [Google Scholar] [CrossRef]
- Turon-Vinas, M.; Anglada, M. Assessment in Si3N4 of a new method for determining the fracture toughness from a surface notch micro-machined by ultra-short pulsed laser ablation. J. Eur. Ceram. Soc. 2015, 35, 1737–1741. [Google Scholar] [CrossRef]
- Konyashin, I.; Ries, B.; Carbides, C. Cemented Carbides; Elsevier: Amsterdam, The Netherlands, 2022. [Google Scholar] [CrossRef]
- Huang, S.G.; Liu, C.; Liu, B.L.; Vleugels, J.; Huang, J.H.; Lauwers, B.; Qian, J.; Mohrbacher, H. Microstructure and mechanical properties of (Nb,W,Ti)(C,N)-Ni solid solution cermets with 6 to 20 wt% Ni. Int. J. Refract. Met. Hard Mater. 2022, 103, 105757. [Google Scholar] [CrossRef]
Author | Year Published | Country | Type of Study | Years Evaluated | Sample Size | Age: Median or Mean | Sex (n = Female) | Length of the Common Loop in SADI-S Patients |
---|---|---|---|---|---|---|---|---|
Clapp et al. [11] | 2023 | USA | Cross-sectional | 2020 | 1500 | 42.65 | 1087 | NR |
Enochs et al. [12] | 2020 | USA | Cross-sectional | 2014–2015 | 608 | 46.5 | 875 | 300 cm |
Sessa et al. [13] | 2019 | Italy | Cross-sectional | 2016–2018 | 16 | 40.95 | 9 | 250 cm |
Soroceanu et al. [14] | 2023 | Romania | Cross-sectional | 2023 | 46 | 40.65 | 32 | NR |
Walton et al. [15] | 2023 | USA | Cross-sectional | 2017–2020 | 1423 | 44.07 | 1218 | NR |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rivero-Moreno, Y.; Zevallos, A.; Redden-Chirinos, S.; Bolivar-Marín, V.; Silva-Martinez, D.; Goyal, A.; Estrada, A.; Domínguez-Profeta, R.; Camacho, D.; Pouwels, S.; et al. Single Anastomosis Duodenoileostomy with Sleeve Gastrectomy Versus Sleeve Gastrectomy Alone: A Systematic Review and Meta-Analysis on Behalf of TROGSS—The Robotic Global Surgical Society. Gastrointest. Disord. 2025, 7, 27. https://doi.org/10.3390/gidisord7020027
Rivero-Moreno Y, Zevallos A, Redden-Chirinos S, Bolivar-Marín V, Silva-Martinez D, Goyal A, Estrada A, Domínguez-Profeta R, Camacho D, Pouwels S, et al. Single Anastomosis Duodenoileostomy with Sleeve Gastrectomy Versus Sleeve Gastrectomy Alone: A Systematic Review and Meta-Analysis on Behalf of TROGSS—The Robotic Global Surgical Society. Gastrointestinal Disorders. 2025; 7(2):27. https://doi.org/10.3390/gidisord7020027
Chicago/Turabian StyleRivero-Moreno, Yeisson, Alba Zevallos, Samantha Redden-Chirinos, Víctor Bolivar-Marín, Dayanna Silva-Martinez, Aman Goyal, Arturo Estrada, Rebeca Domínguez-Profeta, Diego Camacho, Sjaak Pouwels, and et al. 2025. "Single Anastomosis Duodenoileostomy with Sleeve Gastrectomy Versus Sleeve Gastrectomy Alone: A Systematic Review and Meta-Analysis on Behalf of TROGSS—The Robotic Global Surgical Society" Gastrointestinal Disorders 7, no. 2: 27. https://doi.org/10.3390/gidisord7020027
APA StyleRivero-Moreno, Y., Zevallos, A., Redden-Chirinos, S., Bolivar-Marín, V., Silva-Martinez, D., Goyal, A., Estrada, A., Domínguez-Profeta, R., Camacho, D., Pouwels, S., Yang, W., Marano, L., Abou-Mrad, A., & Oviedo, R. J. (2025). Single Anastomosis Duodenoileostomy with Sleeve Gastrectomy Versus Sleeve Gastrectomy Alone: A Systematic Review and Meta-Analysis on Behalf of TROGSS—The Robotic Global Surgical Society. Gastrointestinal Disorders, 7(2), 27. https://doi.org/10.3390/gidisord7020027