Development of an Optimized NDT Methodology for the Investigation of Ancient Greek Copper-Based Artifacts
Abstract
:1. Introduction
2. Materials and Methods
2.1. Copper-Based Artifacts
2.2. XRF Spectroscopy
2.3. Vis-NearIR FORS
2.4. ESEM-EDX
3. Results
3.1. XRF Results
3.2. In Situ FORS Results
3.3. ESEM-EDX Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- De Ryck, I.; Adriaens, A.; Adams, F. An overview of Mesopotamian bronze metallurgy during the 3rd millennium BC. J. Cult. Herit. 2005, 6, 261–268. [Google Scholar] [CrossRef] [Green Version]
- Tylecote, R.F. A History of Metallurgy, 2nd ed.; Maney Materials Science: London, UK, 1992. [Google Scholar]
- Cheilakou, E. The Application of Spectroscopic and Non Destructive Testing & Evaluation Techniques (NDT&E) for the Materials Characterization, the Decay Inspection and the Conservation-Restoration of Historic Artefacts. Ph.D. Thesis, NTUA, School of Chemical Engineering, Materials Science and Engineering Section, Athens, Greece, 2011. [Google Scholar]
- Mangou, H.; Ioannou, P.V. On the chemical composition of Prehistoric Greek Copper-Based Artifacts from Mainland Greece. BSA 1999, 94, 81–100. [Google Scholar]
- Pernicka, E.; Begemann, F.; Sphmitt-Stecker, S.; Grimanis, A.P. On the composition of metal artifacts from Poliochni on Lemnos. Oxf. J. Archaeol. 1990, 9, 263–297. [Google Scholar] [CrossRef]
- Mangou, H.; Ioannou, P.V. On the chemical composition of Prehistoric Greek Copper- Based Artifacts from the Aegean Region. BSA 1997, 92, 59–72. [Google Scholar]
- Mangou, H.; Ioannou, P.V. On the chemical composition of Prehistoric Greek Copper- Based Artifacts form Crete. BSA 1998, 93, 91–102. [Google Scholar]
- Stos-Gale, Z.; Sampson, A.; Mangou, E. Analyses of metal artifacts from the Early Helladic Cemetery of Manika on Euboia. Aegean Archaeol. 1996, 3, 49–62. [Google Scholar]
- Gilmore, R.G.; Ottaway, S.B. Micromethods for the Determination of Trace Elements in Copper-based Metal Artifacts. J. Archaeol. Sci. 1980, 7, 241–254. [Google Scholar] [CrossRef]
- Mangou, H.; Ioannou, P.V. Studies of the Late Bronze Age copper-based ingots found in Greece. BSA 2000, 95, 207–217. [Google Scholar] [CrossRef]
- Mangou, H.; Ioannou, P.V. Trends in the making of Greek copper-based artefacts during the prehistoric period (4000-1050 BC). OpAthRom 2002, 27, 105–118. [Google Scholar]
- Andreopoulou-Mangou, E. Chimiki analysi metallikon antikeimenon mykinaikis epochis apo tous Andronianous Evoias. EAM Mous. 2005, 5, 45–50. (In Greek) [Google Scholar]
- Grammenos, D.; Tzachili, I. O thesavros ton Petralonon this Chalkidikis. Archaeol. Ephemer. 1994, 85. (In Greek) [Google Scholar]
- Pernicka, E.; Begemann, F.; Schmitt-Strecker, S.; Todorova, H. KuleffI. Prehistoric copper in Bulgaria, its composition and provenance. Eurasia Antiq. 1997, 3, 41–180. [Google Scholar]
- Koui, M.; Papandreopoulos, P.; Andreopoulou-Mangou, E.; Papazoglou-Manioudaki, E.; Priftaj-Vevecka, A.; Stamati, F. Study of Bronze Age copper based swords of type Naue II and spearheads from Greece and Albania. Mediterr. Archaeol. Archaeom. 2006, 6, 5–22. [Google Scholar]
- Bourgarit, D.; Mille, B. The elemental analysis of ancient copper-based artefatcs by inductively-coupled-plasma atomic-emission spectrometry: An optimized methodology reveals some secrects of the Vix crater. Meas. Sci. Technol. 2003, 14, 1538–1555. [Google Scholar] [CrossRef]
- Koui, M.; Andreopoulou-Mangou, E.; Papazoglou-Manioudaki, E.; Papandreopoulos, P. Preliminary results from the study of the composition ant the Manufacturing technique of Prehistoric Age copper objects from the Greek area. In Proceedings of the 2nd Greek Congress of Metal Materials, Athens, Greece, 25–26 November 2004; pp. 143–150. (In Greek). [Google Scholar]
- Mattsson, E.; Nord, A.G.; Tronner, K.; Fjaestad, M.; Laglerlof, A.; Ullen, I.; Borg, G.C. Deterioration of archaeological material in soil-Results on bronze artefacts. In Konserveringstekniska Studier; RIK 10; Riksantikvarieambetet: Stockholmm, Sweden, 1996; pp. 16–80. [Google Scholar]
- Robbiola, L.; Blengino, J.M.; Fiaud, C. Morphology and mechanisms of formation of natural patinas on archaeological Cu-Sn alloys. Corros. Sci. 1998, 40, 2083–2111. [Google Scholar] [CrossRef]
- Geilmann, W. Verwitterung von Bronzen in Sandboden. Ein Beitrag zu Korrosionsforschung. Angew. Chem. 1956, 68, 201–211. [Google Scholar] [CrossRef]
- Scott, A.D. Periodic corrosion phenomena in bronze antiquities. Stud. Conserv. 1985, 33, 49–57. [Google Scholar]
- Tylecote, R.F. The effect of soil conditions on the long-term corrosion of buried tin-bronzes and copper. J. Archaeol. Sci. 1979, 6, 345–368. [Google Scholar] [CrossRef]
- De Ryck, I.; Pantos, E.; Adriaens, A. Near Eastern ancient bronze objects from Tell Beydar (NE- Syria): Insights into their corrosion. Eur. News 2007, 38, 29–33. [Google Scholar] [CrossRef]
- Constantinides, I.; Adriaens, A.; Adams, F. Surface characterization of artificial corrosion layers on copper alloy reference materials. Appl. Surf. Sci. 2002, 189, 90–101. [Google Scholar] [CrossRef]
- Saint, A.C.; Dritsa, V.; Cheilakou, E.; Koui, M. Non-invasive discrimination of early and late Bronze Age copper-based objects by means of XRF spectroscopy. In Proceedings of the 9th International Symposium on the Conservation of Monuments in the Mediterranean Basin, Ankara, Turkey, 3–5 June 2014; pp. 521–529. [Google Scholar]
- Craddock, P. The composition of the copper alloys used by Greek, Etruscan and Roman civilizations: The Greeks before the Archaic Period. J. Archaeol. Sci. 1976, 3, 93–113. [Google Scholar] [CrossRef]
- Hosler, D. The Sounds and Colors of Power. The Sacred Metallurgical Technology of Ancient West Mexico; MIT Press: Massachusetts, MA, USA, 1994. [Google Scholar]
- Cheilakou, E.; Koui, M. Corrosion products identification of simulated ancient copper alloys and Bronze Age copper based objects by Fiber Optics Diffuse Reflectance Spectroscopy technique (FODRS). In Proceedings of the XIII Balkan Mineral Processing Congress, Bucharest, Romania, 17–19 June 2009; Volume 1, pp. 79–86. [Google Scholar]
- Cheilakou, E.; Koui, M. Fiber Optics Diffuse Reflectance Spectroscopy (FODRS) as a tool for the non destructive characterization of ancient copper based artefacts through the measurement of their colour. In Proceedings of the 6th International Conference on Instrumental Methods of Analysis, Athens, Greece, 4–8 October 2009; p. 152. [Google Scholar]
- Scott, A.D. Copper and Bronze in Art. In Corrosion, Colorants, Conservation; Getty Publications, The Getty Consertion Institute: Los Angeles, CA, USA, 2002. [Google Scholar]
- Ingo, G.M.; Riccucci, C.; Giuliani, C.; Faustoferri, A.; Pierigè, I.; Fierro, G.; Pascucci, M.; Albini, M.; Di Carlo, G. Surface studies of patinas and metallurgical features of uncommon high-tin bronze artefacts from the Italic necropolises of ancient Abruzzo (Central Italy). Appl. Surf. Sci. 2019, 470, 74–83. [Google Scholar] [CrossRef]
- De Ryck, I.; Adriaens, A.; Pantos, E.; Adams, F. A comparison of microbeam techniques for the analysis of corroded ancient bronze objects. Analyst 2003, 128, 1104–1109. [Google Scholar] [CrossRef]
- Casaletto, M.P.; Ingo, G.M.; Albini, M.; Lapenna, A.; Pierige, I.; Riccucci, C.; Faraldi, F. An integrated analytical characterization of corrosion products on ornamental objects from the necropolis of Colle Badetta-Tortoreto (Teramo-Italy). Appl. Phys. A 2010, 100, 801–808. [Google Scholar] [CrossRef]
- Ingo, G.M.; de Caro, T.; Riccucci, C.; Angelini, E.; Grassini, S.; Balbi, S.; Bernardini, P.; Salvi, D.; Bousselmi, L.; Çilingiroglu, A.; et al. Large scale investigation of chemical composition, structure and corrosion mechanism of bronze archeological artefacts from Mediterranean basin. Appl. Phys. A 2006, 83, 513–520. [Google Scholar] [CrossRef]
- Oudbashi, O.; Emami, S.M.; Ahmadi, H.; Davami, P. Micro-stratigraphical investigation on corrosion layers in ancient Bronze artefacts by scanning electron microscopy energy dispersive spectrometry and optical microscopy. Herit. Sci. 2013, 1, 1–10. [Google Scholar] [CrossRef] [Green Version]
- He, L.; Liang, J.; Zhao, X.; Jiang, B. Corrosion behavior and morphological features of archeological bronze coins from ancient China. Microchem. J. 2011, 99, 203–212. [Google Scholar] [CrossRef]
- Arafat, A.; Na’es, M.; Kantarelou, V.; Haddada, N.; Giakoumaki, A.; Argyropoulos, V.; Anglos, D.; Karydas, A.G. Combined in situ micro-XRF, LIBS and SEM-EDS analysis of base metal and corrosion products for Islamic copper alloyed artefacts from Umm Qais museum, Jordan. J. Cult. Herit. 2013, 14, 261–269. [Google Scholar] [CrossRef]
- Lechtman, H. Arsenic Bronze: Dirty Copper or Chosen Alloy? A View from the Americas. J. Field Archaeol. 1996, 23, 477–514. [Google Scholar]
- Bottaini, C.; Vilaça, R.; Montero-Ruiz, I.; Mirão, J.; Candeias, A. Archaeometric contribution to the interpretation of the Late Bronze Age “hoard” from Porto Do Concelho (Macão, Central Portugal). Mediterr. Archaeol. Archaeom. 2017, 17, 217–231. [Google Scholar]
No | Cu | As | Bi | Ni | Co | Ag | Zn | Sn | Pb | Sb | Fe |
---|---|---|---|---|---|---|---|---|---|---|---|
17794 | 90.91 | 1.93 | 0.26 | n.d. | n.d. | 0.15 | 0.06 | 0.12 | n.d. | 0.13 | 2.88 |
17795 | 91.00 | 1.98 | 1.44 | n.d. | n.d. | 0.09 | 0.05 | 0.04 | n.d. | 0.12 | 1.38 |
17796 | 93.18 | 2.31 | 1.03 | 0.04 | n.d. | 0.07 | 0.07 | 0.12 | n.d. | 0.17 | 1.18 |
17797 | 90.50 | 2.12 | 1.65 | n.d. | n.d. | 0.20 | 0.06 | 0.06 | n.d. | 0.19 | 2.22 |
17798 | 88.81 | 2.03 | 0.64 | n.d. | n.d. | 0.05 | 0.05 | 0.06 | n.d. | 0.19 | 3.69 |
17799 | 86.66 | 2.61 | 1.06 | n.d. | n.d. | 0.01 | n.d. | 0.02 | n.d. | 0.14 | 0.78 |
17800 | 93.72 | 1.26 | 0.61 | n.d. | n.d. | 0.09 | 0.07 | 0.02 | n.d. | 0.10 | 1.48 |
17801 | 94.85 | 1.71 | 0.88 | 0.02 | n.d. | 0.13 | 0.08 | 0.02 | n.d. | 0.08 | 0.35 |
17802 | 95.42 | 1.61 | 0.29 | n.d. | n.d. | 0.09 | 0.08 | 0.02 | n.d. | 0.22 | n.d. |
17803 | 92.79 | 1.96 | 0.45 | 0.08 | n.d. | 0.08 | 0.05 | 0.05 | n.d. | 0.11 | 0.86 |
17804 | 87.23 | 1.72 | 0.84 | n.d. | n.d. | 0.11 | 0.01 | 0.04 | 1.232 | 0.13 | 1.55 |
17805 | 94.92 | 1.390 | 0.80 | 0.03 | 0.01 | 0.10 | 0.15 | 0.02 | 1.750 | 0.07 | 0.29 |
17806 | 96.04 | 1.200 | 0.46 | 0.02 | n.d. | 0.13 | 0.10 | 0.40 | n.d. | 0.13 | 0.29 |
17807 | 94.31 | 2.338 | 0.22 | 0.16 | n.d. | 0.10 | 0.08 | 0.09 | n.d. | 0.15 | 0.59 |
17808 | 93.30 | 1.913 | 0.80 | 0.15 | n.d. | 0.08 | 0.09 | 0.12 | n.d. | 0.18 | 1.03 |
17809 | 91.28 | 1.486 | 0.29 | n.d. | n.d. | 0.15 | 0.10 | 0.18 | n.d. | 0.18 | 2.56 |
17810 | 91.52 | 1.299 | 0.08 | n.d. | n.d. | 0.27 | 0.10 | 0.19 | n.d. | 0.13 | 2.74 |
17811 | 91.69 | 1.131 | 0.22 | n.d. | n.d. | 0.16 | 0.11 | 0.18 | n.d. | 0.26 | 2.74 |
17812 | 92.37 | 2.159 | 1.06 | 0.04 | n.d. | 0.14 | 0.08 | 0.13 | n.d. | 0.13 | 0.70 |
No | Cu | Sn | As | Ni | Co | Ag | Zn | Pb | Sb | Fe | Bi |
---|---|---|---|---|---|---|---|---|---|---|---|
10797 | 85.81 | 12.49 | 0.11 | n.d. | n.d. | n.d. | 0.15 | n.d. | 0.02 | 0.91 | 0.03 |
10798 | 84.24 | 14.15 | 0.11 | n.d. | 0.001 | 0.03 | 0.25 | 0.19 | 0.12 | 0.32 | 0.10 |
10810 | 84.44 | 15.21 | 0.34 | 0.11 | 0.02 | n.d. | 0.35 | 0.13 | 0.04 | 0.11 | 0.08 |
10811 | 88.21 | 11.85 | 0.11 | n.d. | n.d. | n.d. | 0.12 | n.d. | 0.05 | 0.15 | 0.02 |
10812 | 84.98 | 14.82 | 0.01 | n.d. | n.d. | n.d. | 0.12 | 0.04 | n.d. | 0.37 | 0.02 |
10813 | 82.95 | 15.88 | 0.11 | n.d. | 0.001 | n.d. | 0.28 | 0.26 | 0.14 | 0.33 | 0.15 |
10814 | 79.87 | 18.84 | 0.25 | n.d. | n.d. | n.d. | 0.20 | n.d. | 0.09 | 0.56 | 0.10 |
10815 | 83.27 | 10.85 | 0.60 | n.d. | 0.05 | n.d. | 3.17 | 0.09 | 0.03 | 0.38 | 0.01 |
10816 | 86.97 | 9.31 | 0.39 | n.d. | 0.02 | n.d. | 2.49 | n.d. | 0.004 | 0.08 | 0.01 |
9885 | 92.10 | 5.80 | 0.12 | n.d. | 0.01 | n.d. | 0.10 | n.d. | 0.03 | 0.87 | 0.01 |
2740 | 90.21 | 6.45 | 0.19 | 1.19 | 0.25 | 0.12 | 0.51 | 0.06 | n.d. | 0.05 | 0.04 |
2539 | 94.63 | 1.16 | 0.28 | 1.28 | 0.09 | 0.07 | 0.89 | n.d. | n.d. | 0.03 | 0.04 |
1017 | 80.80 | 10.98 | 5.90 | 1.61 | 0.29 | 0.21 | 0.06 | 0.02 | 0.02 | 0.05 | 0.11 |
10185 | 89.79 | 9.12 | 0.06 | 0.23 | 0.20 | 0.15 | 0.30 | 0.04 | 0.09 | 0.01 | n.d. |
10186 | 86.79 | 10.91 | 0.77 | 0.68 | 0.64 | 0.12 | 0.10 | 0.06 | 0.04 | 0.02 | n.d. |
13905 | 89.65 | 9.04 | 0.19 | 0.07 | 0.02 | 0.01 | 0.11 | 0.13 | 0.11 | 0.29 | 0.05 |
11934 | 86.53 | 12.70 | 0.10 | n.d. | n.d. | n.d. | 0.10 | n.d. | 0.03 | 0.51 | 0.04 |
11949 | 90.03 | 9.81 | 0.01 | n.d. | n.d. | 0.01 | 0.11 | 0.06 | 0.06 | 0.17 | 0.03 |
Element | Area 1 Mapping (200×) | Spot 1 (6000×) | Area 2 Mapping (200×) | Area 3 Mapping (400×) |
---|---|---|---|---|
O | 40.30 | 25.08 | 28.65 | 24.01 |
C | 23.41 | 13.74 | 20.58 | 25.67 |
Cu | 20.72 | 28.54 | 39.10 | 39.48 |
Ca | 3.81 | 2.25 | 2.28 | 1.40 |
Cl | 3.72 | 1.98 | 3.56 | 3.26 |
Si | 2.82 | 1.85 | 2.19 | 2.10 |
Ag | 2.53 | 22.12 | 1.66 | 3.21 |
S | 1.45 | 3.46 | 0.97 | 0.54 |
Al | 0.59 | 0.41 | 0.48 | 0.32 |
Mg | 0.45 | 0.44 | 0.33 | - |
Fe | 0.21 | 0.12 | 0.22 | - |
Pb | n.d. | n.d. | n.d. | n.d. |
Sum. | 100.0 | 100.0 | 100.00 | 100.00 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saint, A.-C.; Dritsa, V.; Koui, M. Development of an Optimized NDT Methodology for the Investigation of Ancient Greek Copper-Based Artifacts. Corros. Mater. Degrad. 2021, 2, 325-340. https://doi.org/10.3390/cmd2020017
Saint A-C, Dritsa V, Koui M. Development of an Optimized NDT Methodology for the Investigation of Ancient Greek Copper-Based Artifacts. Corrosion and Materials Degradation. 2021; 2(2):325-340. https://doi.org/10.3390/cmd2020017
Chicago/Turabian StyleSaint, Amani-Christiana, Vasiliki Dritsa, and Maria Koui. 2021. "Development of an Optimized NDT Methodology for the Investigation of Ancient Greek Copper-Based Artifacts" Corrosion and Materials Degradation 2, no. 2: 325-340. https://doi.org/10.3390/cmd2020017
APA StyleSaint, A.-C., Dritsa, V., & Koui, M. (2021). Development of an Optimized NDT Methodology for the Investigation of Ancient Greek Copper-Based Artifacts. Corrosion and Materials Degradation, 2(2), 325-340. https://doi.org/10.3390/cmd2020017