Modafinil for Promoting Wakefulness in Critically Ill Patients: Current Evidence and Perspectives
Abstract
1. Introduction
2. EDS in Critically Ill Patients
2.1. Sleep Disruption and Circadian Desynchronization in the ICU
2.2. OSA in the ICU
2.3. Critical Illness and Underlying Disease
2.4. Medication and EDS in the ICU
3. Pharmacological Properties of Modafinil
3.1. Mechanism of Action
3.2. Pharmacokinetics and Dosing
3.3. Guiding Principles for Commencing and Ceasing Modafinil Treatment
3.4. Side Effects and Drug Interactions
4. Administration of Modafinil in Critically Ill Patients
4.1. Mixed ICU Populations
4.2. ICU Patients with Traumatic and Non-Traumatic Brain Injury
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Eschbach, E.; Wang, J. Sleep and critical illness: A review. Front. Med. 2023, 10, 1199685. [Google Scholar] [CrossRef]
- Matthews, E.E. Sleep disturbances and fatigue in critically ill patients. AACN Adv. Crit. Care 2011, 22, 204–224. [Google Scholar] [CrossRef]
- Gerrard, P.; Malcolm, R. Mechanisms of modafinil: A review of current research. Neuropsychiatr. Dis. Treat. 2007, 3, 349–364. [Google Scholar]
- Kumar, R. Approved and investigational uses of modafinil: An evidence-based review. Drugs 2008, 68, 1803–1839. [Google Scholar] [CrossRef] [PubMed]
- Richards, K.C.; Wang, Y.Y.; Jun, J.; Ye, L. A Systematic Review of Sleep Measurement in Critically Ill Patients. Front. Neurol. 2020, 11, 542529. [Google Scholar] [CrossRef] [PubMed]
- Devlin, J.W.; Skrobik, Y.; Gélinas, C.; Needham, D.M.; Slooter, A.J.C.; Pandharipande, P.P.; Watson, P.L.; Weinhouse, G.L.; Nunnally, M.E.; Rochwerg, B.; et al. Clinical Practice Guidelines for the Prevention and Management of Pain, Agitation/Sedation, Delirium, Immobility, and Sleep Disruption in Adult Patients in the ICU. Crit. Care Med. 2018, 46, e825–e873. [Google Scholar] [CrossRef]
- Trinka, E.; Cock, H.; Hesdorffer, D.; Rossetti, A.O.; Scheffer, I.E.; Shinnar, S.; Shorvon, S.; Lowenstein, D.H. A definition and classification of status epilepticus—Report of the ILAE Task Force on Classification of Status Epilepticus. Epilepsia 2015, 56, 1515–1523. [Google Scholar] [CrossRef] [PubMed]
- Kamdar, B.B.; King, L.M.; Collop, N.A.; Sakamuri, S.; Colantuoni, E.; Neufeld, K.J.; Bienvenu, O.J.; Rowden, A.M.; Touradji, P.; Brower, R.G.; et al. The effect of a quality improvement intervention on perceived sleep quality and cognition in a medical ICU. Crit. Care Med. 2013, 41, 800–809. [Google Scholar] [CrossRef] [PubMed]
- Friese, R.S. Sleep and recovery from critical illness and injury: A review of theory, current practice, and future directions. Crit. Care Med. 2008, 36, 697–705. [Google Scholar] [CrossRef] [PubMed]
- Cooper, A.B.; Thornley, K.S.; Young, G.B.; Slutsky, A.S.; Stewart, T.E.; Hanly, P.J. Sleep in critically ill patients requiring mechanical ventilation. Chest 2000, 117, 809–818. [Google Scholar] [CrossRef]
- Krueger, J.M.; Majde, J.A.; Rector, D.M. Cytokines in immune function and sleep regulation. Handb. Clin. Neurol. 2011, 98, 229–240. [Google Scholar] [CrossRef]
- Felten, M.; Dame, C.; Lachmann, G.; Spies, C.; Rubarth, K.; Balzer, F.; Kramer, A.; Witzenrath, M. Circadian rhythm disruption in critically ill patients. Acta Physiol. 2023, 238, e13962. [Google Scholar] [CrossRef]
- Boyko, Y.; Jennum, P.; Nikolic, M.; Holst, R.; Oerding, H.; Toft, P. Sleep in intensive care unit: The role of environment. J. Crit. Care 2017, 37, 99–105. [Google Scholar] [CrossRef] [PubMed]
- Mokhlesi, B.; Tulaimat, A.; Faibussowitsch, I.; Wang, Y.; Evans, A.T. Obesity hypoventilation syndrome: Prevalence and predictors in patients hospitalized with respiratory failure. Chest 2007, 131, 164–171. [Google Scholar]
- Horner, R.L. Emerging principles and neural substrates underlying tonic sleep-state-dependent influences on respiratory motor activity. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2009, 364, 2553–2564. [Google Scholar] [CrossRef] [PubMed]
- Diaz-Abad, M.; Verceles, A.C.; Brown, J.E.; Scharf, S.M. Sleep-disordered breathing may be under-recognized in patients who wean from prolonged mechanical ventilation. Respir. Care 2012, 57, 229–237. [Google Scholar] [CrossRef]
- Wallace, S.; McGrath, B.A. Laryngeal complications after tracheal intubation and tracheostomy. BJA Educ. 2021, 21, 250–257. [Google Scholar] [CrossRef] [PubMed]
- Brown, D.L.; Yadollahi, A.; He, K.; Xu, Y.; Piper, B.; Case, E.; Chervin, R.D.; Lisabeth, L.D. Overnight Rostral Fluid Shifts Exacerbate Obstructive Sleep Apnea After Stroke. Stroke 2021, 52, 3176–3183. [Google Scholar] [CrossRef]
- Ponsford, J.L.; Ziino, C.; Parcell, D.L.; Shekleton, J.A.; Roper, M.; Redman, J.R.; Phipps-Nelson, J.; Rajaratnam, S.M. Fatigue and sleep disturbance following traumatic brain injury—Their nature, causes, and potential treatments. J. Head Trauma Rehabil. 2012, 27, 224–233. [Google Scholar] [CrossRef]
- Campos, T.F.; Diógenes, F.P.; França, F.R.; Dantas, R.C.; Araujo, J.F.; Menezes, A.A. The sleep-wake cycle in the late stage of cerebral vascular accident recovery. Biol. Rhythm. Res. 2005, 36, 109–114. [Google Scholar] [CrossRef]
- Mundigler, G.; Delle-Karth, G.; Koreny, M.; Zehetgruber, M.; Steindl-Munda, P.; Marktl, W.; Ferti, L.; Siostrzonek, P. Impaired circadian rhythm of melatonin secretion in sedated critically ill patients with severe sepsis. Crit. Care Med. 2002, 30, 536–540. [Google Scholar] [CrossRef] [PubMed]
- Hermans, G.; De Jonghe, B.; Bruyninckx, F.; Van den Berghe, G. Clinical review: Critical illness polyneuropathy and myopathy. Crit. Care. 2008, 12, 238. [Google Scholar] [CrossRef] [PubMed]
- Bourne, R.S.; Mills, G.H. Sleep disruption in critically ill patients—Pharmacological considerations. Anaesthesia 2004, 59, 374–384. [Google Scholar] [CrossRef] [PubMed]
- Nagappa, M.; Weingarten, T.N.; Montandon, G.; Sprung, J.; Chung, F. Opioids, respiratory depression, and sleep-disordered breathing. Best Pract. Res. Clin. Anaesthesiol. 2017, 31, 469–485. [Google Scholar] [CrossRef] [PubMed]
- Scammell, T.E.; Estabrooke, I.V.; McCarthy, M.T.; Chemelli, R.M.; Yanagisawa, M.; Miller, M.S.; Saper, C.B. Hypothalamic arousal regions are activated during modafinil-induced wakefulness. J. Neurosci. 2000, 20, 8620–8628. [Google Scholar] [CrossRef]
- Mignot, E.; Nishino, S.; Guilleminault, C.; Dement, W.C. Modafinil binds to the dopamine uptake carrier site with low affinity. Sleep 1994, 17, 436–437. [Google Scholar] [CrossRef]
- Gallopin, T.; Luppi, P.H.; Rambert, F.A.; Frydman, A.; Fort, P. Effect of the wake-promoting agent modafinil on sleep-promoting neurons from the ventrolateral preoptic nucleus: An in vitro pharmacologic study. Sleep 2004, 27, 19–25. [Google Scholar] [PubMed]
- Ferraro, L.; Tanganelli, S.; O’Connor, W.T.; Antonelli, T.; Rambert, F.; Fuxe, K. The vigilance promoting drug modafinil decreases GABA release in the medial preoptic area and in the posterior hypothalamus of the awake rat: Possible involvement of the serotonergic 5-HT3 receptor. Neurosci. Lett. 1996, 220, 5–8. [Google Scholar] [CrossRef]
- Darwish, M.; Kirby, M.; D’Andrea, D.M.; Yang, R.; Hellriegel, E.T.; Robertson, P., Jr. Pharmacokinetics of armodafinil and modafinil after single and multiple doses in patients with excessive sleepiness associated with treatedobstructive sleep apnea: A randomized, open-label, crossover study. Clin. Ther. 2010, 32, 2074–2087. [Google Scholar] [CrossRef]
- Schwartz, J.R.L.; Feldman, N.T.; Bogan, R.K. Dose effects of modafinil in sustaining wakefulness in narcolepsy patients with residual evening sleepiness. J. Neuropsychiatry Clin. Neurosci. 2005, 7, 405–412. [Google Scholar] [CrossRef]
- Schwartz, J.R.; Feldman, N.T.; Bogan, R.K.; Nelson, M.T.; Hughes, R.J. Dosing regimen effects of modafinil for improving daytime wakefulness in patients with narcolepsy. Clin. Neuropharmacol. 2003, 26, 252–257. [Google Scholar] [CrossRef] [PubMed]
- Teva Pharmaceuticals. 2015. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2015/020717s037s038lbl.pdf (accessed on 20 May 2025).
- Nasr, S.; Wendt, B.; Steiner, K. Absence of mood switch with and tolerance to modafinil: A replication study from a large private practice. J. Affect. Disord. 2006, 95, 111–114. [Google Scholar] [CrossRef]
- Wisor, J. Modafinil as a catecholaminergic agent: Empirical evidence and unanswered questions. Front. Neurol. 2013, 4, 1–10. [Google Scholar] [CrossRef]
- Scammell, T.E.; Matheson, J. Modafinil: A novel stimulant for the treatment of narcolepsy. Expert Opin. Investig. Drugs 1998, 7, 99–112. [Google Scholar] [CrossRef]
- Carter, G.T.; Weiss, M.D.; Lou, J.S.; Jensen, M.P.; Abresch, R.T.; Martin, T.K.; Hecht, T.W.; Han, J.J.; Weydt, P.; Kraft, G.H. Modafinil to treat fatigue in amyotrophic lateral sclerosis: An open label pilot study. Am. J. Hosp. Palliat. Med. 2005, 22, 55–59. [Google Scholar] [CrossRef]
- Brown, J.N.; Howard, C.A.; Kemp, D.W. Modafinil for the treatment of multiple sclerosis-related fatigue. Ann. Pharmacother. 2010, 44, 1098–1103. [Google Scholar] [CrossRef]
- Webster, L.; Andrews, M.; Stoddard, G. Modafinil treatment of opioid-induced sedation. Pain Med. 2003, 4, 135–140. [Google Scholar] [CrossRef]
- Wirz, S.; Nadstawek, J.; Kühn, K.U.; Vater, S.; Junker, U.; Wartenberg, H.C. Modafinil zur Behandlung der Tumorfatigue. Schmerz 2010, 24, 587–595. [Google Scholar] [CrossRef] [PubMed]
- DeBattista, C.; Lembke, A.; Solvason, H.B.; Ghebremichael, R.; Poirier, J. A prospective trial of modafinil as an adjunctive treatment of major depression. J. Clin. Psychopharmacol. 2004, 24, 87–90. [Google Scholar] [CrossRef] [PubMed]
- Fava, M.; Thase, M.E.; DeBattista, C. A multicenter, placebo-controlled study of modafinil augmentation in partial responders to selective serotonin reuptake inhibitors with persistent fatigue and sleepiness. J. Clin. Psychiatry 2005, 66, 85–93. [Google Scholar] [CrossRef]
- Galvin, E.; Boesjes, H.; Hol, J.; Ubben, J.F.; Klein, J.; Verbrugge, S.J. Modafinil reduces patient-reported tiredness after sedation/analgesia but does not improve patient psychomotor skills. Acta Anaesthesiol. Scand. 2010, 54, 154–161. [Google Scholar] [CrossRef]
- Larijani, G.E.; Goldberg, M.E.; Hojat, M.; Khaleghi, B.; Dunn, J.B.; Marr, A.T. Modafinil improves recovery after general anesthesia. Anesth. Analg. 2004, 98, 976–981. [Google Scholar] [CrossRef]
- Lal, C.; Weaver, T.E.; Bae, C.J.; Strohl, K.P. Excessive Daytime Sleepiness in Obstructive Sleep Apnea. Mechanisms and Clinical Management. Ann. Am. Thorac. Soc. 2021, 18, 757–768. [Google Scholar] [CrossRef] [PubMed]
- Gajewski, M.; Weinhouse, G. The use of modafinil in the Intensive Care Unit. J. Intensive Care Med. 2016, 31, 142–145. [Google Scholar] [CrossRef]
- Amer, M.; Ghyath, J.M.; Eiad, K. Modafinil for Wakefulness and Disorders of Consciousness in the Critical Care Units. An Updated Narrative Review and Case Series. Saudi Crit. Care J. 2022, 6, 23–35. [Google Scholar] [CrossRef]
- Mo, Y.; Thomas, M.C.; Miano, T.A.; Stemp, L.I.; Bonacum, J.T.; Hutchins, K.; Karras, G.E., Jr. Effect of modafinil on cognitive function in Intensive Care Unit patients: A retrospective cohort study. J. Clin. Pharmacol. 2018, 58, 152–157. [Google Scholar] [CrossRef]
- Branstetter, L.; Gallagher, J.; Nichols, K.; Goyal, S.; Mukhtar, A. Evaluation of the use of modafinil in critically ill patients: A retrospective chart review. Crit. Care Med. 2022, 50, 482. [Google Scholar] [CrossRef]
- Keeney, C.P.; Adeniyi, A. Effect of modafinil on time to wean from mechanical ventilation. Chest 2022, 162, A2622. [Google Scholar] [CrossRef]
- Mansouri, M.; Massoumi, G.; Rezaei-Hoseinabadi, M.K. Evaluation of the Effect of Modafinil on Respiratory and Cerebral Outcomes after Coronary Artery Bypass Graft Surgery. ARYA Atheroscler. 2021, 17, 1–6. [Google Scholar] [CrossRef]
- Kaiser, P.R.; Valko, P.O.; Werth, E.; Thomann, J.; Meier, J.; Stocker, R.; Bassetti, C.L.; Baumann, C.R. Modafinil ameliorates excessive daytime sleepiness after traumatic brain injury. Neurology 2010, 75, 1780–1785. [Google Scholar] [CrossRef]
- Barra, M.E.; Izzy, S.; Sarro-Schwartz, A.; Hirschberg, R.E.; Mazwi, N.; Edlow, B.L. Stimulant therapy in acute traumatic brain injury: Prescribing patterns and adverse event rates at 2 level 1 trauma centers. J. Intensive Care Med. 2020, 35, 1196–1202. [Google Scholar] [CrossRef] [PubMed]
- Zand, Z.; Zand, F.; Asmarian, N.; Sabetian, G.; Masjedi, M.; Beizavinejad, Z.; Banifatemi, M.; Yousefi, O.; Taheri, R.; Niakan, A.; et al. Efficacy of oral modafinil on accelerating consciousness recovery in adult patients with moderate to severe acute traumatic brain injury admitted to intensive care unit: A randomized double-blind clinical trial. Neurosurg. Rev. 2025, 48, 2. [Google Scholar] [CrossRef] [PubMed]
- Leclerc, A.M.; Riker, R.R.; Brown, C.S.; May, T.; Nocella, K.; Cote, J.; Eldridge, A.; Seder, D.B.; Gagnon, D.J. Amantadine and modafinil as neurostimulants following acute stroke: A retrospective study of Intensive Care Unit patients. Neurocrit. Care 2021, 34, 102–111. [Google Scholar] [CrossRef]
- Jha, A.; Weintraub, A.; Allshouse, A.; Morey, C.; Cusick, C.; Kittelson, J.; Harrison-Felix, C.; Whiteneck, G.; Gerber, D. A randomized trial of modafinil for the treatment of fatigue and excessive daytime sleepiness in individuals with chronic traumatic brain injury. J. Head Trauma Rehabil. 2008, 23, 52–63. [Google Scholar] [CrossRef]
- Gagnon, D.J.; Leclerc, A.M.; Riker, R.R.; Brown, C.S.; May, T.; Nocella, K.; Cote, J.; Eldridge, A.; Seder, D.B. Amantadine and modafinil as neurostimulants during post-stroke care: A systematic review. Neurocrit. Care 2020, 33, 283–297. [Google Scholar] [CrossRef]
- Cross, D.B.; Tiu, J.; Medicherla, C.; Ishida, K.; Lord, A.; Czeisler, B.; Wu, C.; Golub, D.; Karoub, A.; Hernandez, C.; et al. Modafinil in recovery after stroke (MIRAS): A retrospective study. J. Stroke Cerebrovasc. Dis. 2020, 29, 104645. [Google Scholar] [CrossRef]
- Bivard, A.; Lillicrap, T.; Krishnamurthy, V.; Holliday, E.; Attia, J.; Pagram, H.; Nilsson, M.; Parsons, M.; Levi, C.R. MIDAS (modafinil in debilitating fatigue after stroke): A randomized, double-blind, placebo-controlled, cross-over trial. Stroke 2017, 48, 1293–1298. [Google Scholar] [CrossRef]
- Visser, M.M.; Goodin, P.; Parsons, M.W.; Lillicrap, T.; Spratt, N.J.; Levi, C.R.; Bivard, A. Modafinil treatment modulates functional connectivity in stroke survivors with severe fatigue. Sci. Rep. 2019, 9, 9660. [Google Scholar] [CrossRef] [PubMed]


| Author (Ref). | Country (Year) | Study Type | Patient Population (n = Number of Patients) | Modafinil Daily Dosage | Outcome | 
|---|---|---|---|---|---|
| Gajewski and Weinhouse, [45] | USA (2015) | Case series | Thoracic surgery ICU (n = 3) | 100–200 mg | Improved alertness and activeness observed | 
| Amer et al. [46] | Saudi Arabia (2022) | Case series | Mixed ICU population (n = 8) | 100–200 mg | GCS improvement in 5 patients | 
| Mo et al. [47] | USA (2017) | Retrospective | Mixed ICU population with ventilatory support (n = 60) | Median dose 170 mg | Non-significant increase in GCS by 0.34 points | 
| Branstetter et al. [48] | USA (2022) | Retrospective | Mixed ICU population—CAM-ICU positive patients (n = 54) | Not mentioned | Increased duration of delirium, LOS and mechanical ventilation in the modafinil group | 
| Keeney CP and Adeniyi [49] | USA (2022) | Retrospective | Mixed ICU population on mechanical ventilation (n = 511) | Not mentioned | Non-significant reduction in mean number of days to wean from ventilation with modafinil | 
| Mansouri et al. [50] | Iran (2021) | RCT | Patients undergoing on pump CABG (n = 74) | 200 mg on the day of surgery, and 200 mg the morning after surgery | Significant decreases in time to consciousness, ventilator time in ICU LOS in the ICU, duration of hospitalization and PaCO2 | 
| Kaiser et al. [51] | Switzerland (2010) | RCT | TBI (n = 20) | 100–200 mg for 6 weeks | EDS improvement, no effect on fatigue | 
| Barra et al. [52] | USA (2020) | Retrospective | TBI (n = 48) | 100–150 mg | Median GCS increase by a median of 1, well tolerated | 
| Zand et al. [53] | Iran (2024) | RCT | TBI (n = 85) | 200 mg | Higher proportion of patients with an increase in total GCS in the modafinil group | 
| Leclerc et al. [54] | USA (2021) | Retrospective | ICU patients with nontraumatic ICH, IS, or SAH (n = 87) | 100 mg twice daily | Response 33% (amantadine and modafinil cotreatment) and 0% (modafinil monotherapy) | 
| Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. | 
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kakavas, S.; Karayiannis, D. Modafinil for Promoting Wakefulness in Critically Ill Patients: Current Evidence and Perspectives. Clocks & Sleep 2025, 7, 62. https://doi.org/10.3390/clockssleep7040062
Kakavas S, Karayiannis D. Modafinil for Promoting Wakefulness in Critically Ill Patients: Current Evidence and Perspectives. Clocks & Sleep. 2025; 7(4):62. https://doi.org/10.3390/clockssleep7040062
Chicago/Turabian StyleKakavas, Sotirios, and Dimitrios Karayiannis. 2025. "Modafinil for Promoting Wakefulness in Critically Ill Patients: Current Evidence and Perspectives" Clocks & Sleep 7, no. 4: 62. https://doi.org/10.3390/clockssleep7040062
APA StyleKakavas, S., & Karayiannis, D. (2025). Modafinil for Promoting Wakefulness in Critically Ill Patients: Current Evidence and Perspectives. Clocks & Sleep, 7(4), 62. https://doi.org/10.3390/clockssleep7040062
 
         
                                                

 
       