The Effect of Acute Sleep Extension on Blood Pressure Is Dependent on the Change in Sleep Efficiency
Abstract
:1. Introduction
2. Results
2.1. Demographics
2.2. Effect of Acute Sleep Extension on Sleep and Physical Activity Parameters
2.3. Effect of Acute Sleep Extension on Vascular Function
3. Discussion
3.1. Limitations
3.2. Conclusions
4. Materials and Methods
4.1. Participants
4.2. Study Design
4.3. Sleep Monitoring
4.4. Physical Activity Monitoring
4.5. Blood Pressure and Heart Rate
4.6. Microvascular Vasodilation
4.7. Statistical Analysis
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- CDC. Sleep—Data and Statistics. Available online: https://www.cdc.gov/sleep/data-research/facts-stats/adults-sleep-facts-and-stats.html (accessed on 15 September 2024).
- Yin, J.; Jin, X.; Shan, Z.; Li, S.; Huang, H.; Li, P.; Peng, X.; Peng, Z.; Yu, K.; Bao, W.; et al. Relationship of sleep duration with all-cause mortality and cardiovascular events: A systematic review and dose-response meta-analysis of prospective cohort studies. J. Am. Heart Assoc. 2017, 6, e005947. [Google Scholar] [CrossRef] [PubMed]
- Okunowo, O.; Orimoloye, H.T.; Bakre, S.A.; Njesada, N.S.; Solomon, A. Age- and body weight-dependent association between sleep duration and hypertension in US adults: Findings from the 2014–2017 National Health Interview Survey. Sleep Health 2019, 5, 509–513. [Google Scholar] [CrossRef] [PubMed]
- Ohayon, M.M.; Carskadon, M.A.; Guilleminault, C.; Vitiello, M.V. Meta-analysis of quantitative sleep parameters from childhood to old age in healthy individuals: Developing normative sleep values across the human lifespan. Sleep 2004, 27, 1255–1273. [Google Scholar] [CrossRef] [PubMed]
- Benjamin, E.J.; Muntner, P.; Alonso, A.; Bittencourt, M.S.; Callaway, C.W.; Carson, A.P.; Chamberlain, A.M.; Chang, A.R.; Cheng, S.; Das, S.R.; et al. Heart Disease and Stroke Statistics-2019 Update: A Report From the American Heart Association. Circulation 2019, 139, e56–e528. [Google Scholar] [PubMed]
- Amir, O.; Alroy, S.; Schliamser, J.E.; Asmir, I.; Shiran, A.; Flugelman, M.Y.; Halon, D.A.; Lewis, B.S. Brachial artery endothelial function in residents and fellows working night shifts. Am. J. Cardiol. 2004, 93, 947–949. [Google Scholar] [CrossRef] [PubMed]
- Sauvet, F.; Leftheriotis, G.; Gomez-Merino, D.; Langrume, C.; Drogou, C.; Van Beers, P.; Bourilhon, C.; Florence, G.; Chennaoui, M. Effect of acute sleep deprivation on vascular function in healthy subjects. J. Appl. Physiol. 2010, 108, 68–75. [Google Scholar] [CrossRef]
- Kato, M.; Phillips, B.G.; Sigurdsson, G.; Narkiewicz, K.; Pesek, C.A.; Somers, V.K. Effects of sleep deprivation on neural circulatory control. Hypertension 2000, 35, 1173–1175. [Google Scholar] [CrossRef]
- Ogawa, Y.; Kanbayashi, T.; Saito, Y.; Takahashi, Y.; Kitajima, T.; Takahashi, K.; Hishikawa, Y.; Shimizu, T. Total sleep deprivation elevates blood pressure through arterial baroreflex resetting: A study with microneurographic technique. Sleep 2003, 26, 986–989. [Google Scholar] [CrossRef] [PubMed]
- Kubo, T.; Takahashi, M.; Sato, T.; Sasaki, T.; Oka, T.; Iwasaki, K. Weekend sleep intervention for workers with habitually short sleep periods. Scand. J. Work Environ. Health 2011, 37, 418–426. [Google Scholar] [CrossRef] [PubMed]
- Bhammar, D.M.; Angadi, S.S.; Gaesser, G.A. Effects of fractionized and continuous exercise on 24-h ambulatory blood pressure. Med. Sci. Sports Exerc. 2012, 44, 2270–2276. [Google Scholar] [CrossRef] [PubMed]
- Pejovic, S.; Basta, M.; Vgontzas, A.N.; Kritikou, I.; Shaffer, M.L.; Tsaoussoglou, M.; Stiffler, D.; Stefanakis, Z.; Bixler, E.O.; Chrousos, G.P. Effects of recovery sleep after one work week of mild sleep restriction on interleukin-6 and cortisol secretion and daytime sleepiness and performance. Am. J. Physiol. Endocrinol. Metab. 2013, 305, E890–E896. [Google Scholar] [CrossRef]
- Faraut, B.; Boudjeltia, K.Z.; Dyzma, M.; Rousseau, A.; David, E.; Stenuit, P.; Franck, T.; Antwerpen, P.V.; Vanhaeverbeek, M.; Kerkhofs, M. Benefits of napping and an extended duration of recovery sleep on alertness and immune cells after acute sleep restriction. Brain Behav. Immun. 2011, 25, 16–24. [Google Scholar] [CrossRef]
- Mitchell, G.F. Effects of central arterial aging on the structure and function of the peripheral vasculature: Implications for end-organ damage. J. Appl. Physiol. 2008, 105, 1652–1660. [Google Scholar] [CrossRef] [PubMed]
- Roehrs, T.; Shore, E.; Papineau, K.; Rosenthal, L.; Roth, T. A two-week sleep extension in sleepy normals. Sleep 1996, 19, 576–582. [Google Scholar]
- Gonzales, J.U.; Clark, C.; Anderson, T. Effect of five nights of sleep extension on peripheral vascular function: A randomized crossover investigation into long sleep duration. Sleep Med. 2022, 90, 145–152. [Google Scholar] [CrossRef] [PubMed]
- Levine, B.; Lumley, M.; Roehrs, T.; Zorick, F.; Roth, T. The effects of acute sleep restriction and extension on sleep efficiency. Int. J. Neurosci. 1988, 43, 139–143. [Google Scholar] [CrossRef] [PubMed]
- Roehrs, T.; Timms, V.; Zwyghuizen-Doorenbos, A.; Roth, T. Sleep extension in sleepy and alert normals. Sleep 1989, 12, 449–457. [Google Scholar] [CrossRef]
- Thosar, S.S.; Chess, D.; Bowles, N.P.; McHill, A.W.; Butler, M.P.; Emens, J.S.; Shea, S.A. Sleep efficiency is inversely associated with brachial artery diameter and morning blood pressure in midlife adults, with a potential sex-effect. Nat. Sci. Sleep 2021, 13, 1641–1651. [Google Scholar] [CrossRef]
- Hirata, T.; Nakamura, T.; Kogure, M.; Tsuchiya, N.; Narita, A.; Miyagawa, K.; Nochioka, K.; Uruno, A.; Obara, T.; Nakaya, N.; et al. Reduced sleep efficiency, measured using an objective device, was related to an increased prevalence of home hypertension in Japanese adults. Hypertens. Res. 2020, 43, 23–29. [Google Scholar] [CrossRef]
- Holmer, B.J.; Lapierre, S.S.; Jake-Schoffman, D.E.; Christou, D.D. Effects of sleep deprivation on endothelial function in adult humans: A systematic review. Geroscience 2021, 43, 137–158. [Google Scholar] [CrossRef]
- St Onge, M.; Grandner, M.A.; Brown, D.; Conroy, M.B.; Jean-Louis, G.; Coons, M.; Bhatt, D.L. Sleep duration and quality: Impact on lifestyle behaviors and cardiometabolic health: A Scientific Statement from the American Heart Association. Circulation 2016, 134, e367–e386. [Google Scholar] [CrossRef] [PubMed]
- Soh, A.Z.; Chee, M.W.L.; Yuan, J.M.; Koh, W.P. Sleep lengthening in late adulthood signals increased risk of mortality. Sleep 2018, 41, zsy005. [Google Scholar] [CrossRef] [PubMed]
- Grandner, M.A.; Drummond, S.P. Who are the long sleepers? Towards an understanding of the mortality relationship. Sleep Med. Rev. 2007, 11, 341–360. [Google Scholar] [CrossRef] [PubMed]
- Spiegel, K.; Leproult, R.; L’Hermite-Balériaux, M.; Copinschi, G.; Penev, P.D.; Van Cauter, E. Leptin levels are dependent on sleep duration: Relationships with sympathovagal balance, carbohydrate regulation, cortisol, and thyrotropin. J. Clin. Endocrinol. Metab. 2004, 89, 5762–5771. [Google Scholar] [CrossRef]
- Dzierzewski, J.M.; Buman, M.P.; Giacobbi, P.R., Jr.; Roberts, B.L.; Aiken-Morgan, A.T.; Marsiske, M.; McCrae, C.S. Exercise and sleep in community-dwelling older adults: Evidence for a reciprocal relationship. J. Sleep Res. 2014, 23, 61–68. [Google Scholar] [CrossRef]
- Baron, K.G.; Duffecy, J.; Richardson, D.; Avery, E.; Rothschild, S.; Lane, J. Technology assisted behavior intervention to extend sleep among adults with short sleep duration and prehypertension/stage 1 hypertension: A randomized pilot feasibility study. J. Clin. Sleep Med. 2019, 15, 1587–1597. [Google Scholar] [CrossRef] [PubMed]
- Haack, M.; Serrador, J.; Cohen, D.; Simpson, N.; Meier-Ewert, H.; Mullington, J.M. Increasing sleep duration to lower beat-to-beat blood pressure: A pilot study. J. Sleep Res. 2013, 22, 295–304. [Google Scholar] [CrossRef]
- Arnal, P.J.; Sauvet, F.; Leger, D.; van Beers, P.; Bayon, V.; Bougard, C.; Rabat, A.; Millet, G.Y.; Chennaoui, M. Benefits of sleep extension on sustained attention and sleep pressure before and during total sleep deprivation and recovery. Sleep 2015, 38, 1935–1943. [Google Scholar] [CrossRef]
- Dijk, D.J.; Cajochen, C.; Tobler, I.; Borbely, A.A. Sleep extension in humans: Sleep stages, EEG power spectra and body temperature. Sleep 1991, 14, 294–306. [Google Scholar] [CrossRef] [PubMed]
- Hartwich, D.; Aldred, S.; Fisher, J.P. Influence of menstrual cycle phase on muscle metaboreflex control of cardiac baroreflex sensitivity, heart rate and blood pressure in humans. Exp. Physiol. 2013, 98, 220–232. [Google Scholar] [CrossRef]
- Williams, J.S.; Dunford, E.C.; MacDonald, M.J. Impact of the menstrual cycle on peripheral vascular function in premenopausal women: Systematic review and meta-analysis. Am. J. Physiol. Heart Circ. Physiol. 2020, 319, H1327–H1337. [Google Scholar] [CrossRef] [PubMed]
- Full, K.M.; Kerr, J.; Grandner, M.A.; Malhotra, A.; Moran, K.; Godoble, S.; Natarajan, L.; Soler, X. Validation of a physical activity accelerometer device worn on the hip and wrist against polysomnography. Sleep Health 2018, 4, 209–216. [Google Scholar] [CrossRef]
- Littner, M.; Kushida, C.A.; Anderson, W.M.; Bailey, D.; Berry, R.B.; Davila, D.G.; Hirshkowitz, M.; Kapen, S.; Kramer, M.; Loube, D.; et al. Practice parameters for the role of actigraphy in the study of sleep and circadian rhythms: An update for 2002. Sleep 2003, 26, 337–341. [Google Scholar] [CrossRef]
- Sasaki, J.E.; John, D.; Freedson, P.S. Validation and comparison of ActiGraph activity monitors. J. Sci. Med. Sport 2011, 14, 411–416. [Google Scholar] [CrossRef]
- Ostchega, Y.; Nwankwo, T.; Sorlie, P.D.; Wolz, M.; Zipf, G. Assessing the validity of the Omron HEM-907XL oscillometric blood pressure measurement device in a National Survey environment. J. Clin. Hypertens. 2010, 12, 22–28. [Google Scholar] [CrossRef]
13-Night Average | Usual Night Prior to Testing | Sleep Extension | p-Value | |
---|---|---|---|---|
Sleep parameters | ||||
Time in bed (min) | 468 ± 52 | 452 ± 71 | 633 ± 41 a,b | <0.001 |
Sleep duration (min) | 405 ± 45 | 386 ± 61 | 549 ± 36 a,b | <0.001 |
Efficiency (%) | 86 [84, 89] | 85 [81, 90] | 88 [82, 91] b | 0.04 |
WASO (min) | 56 [45, 71] | 59 [37, 87] | 67 [49, 107] | 0.10 |
Awakenings (#) | 22 [16, 25] | 18 [14, 25] | 27 [17, 31] a,b | 0.009 |
Time per awakening (min) | 2.7 [2.3, 3.4] | 3.2 [2.4, 3.9] | 2.7 [2.1, 3.8] | 0.66 |
Physical activity parameters | ||||
Light (min per day) | 868 [801, 916] | 873 [755, 952] | 760 [658, 841] a,b | 0.007 |
MVPA (min per day) | 23 [13, 40] | 18 [7, 42] | 17 [6, 49] | 0.61 |
Total steps (per day) | 6437 ± 2920 | 6198 ± 3249 | 6304 ± 3925 | 0.91 |
Improved (n = 10, 6 F 4 M) | Not Improved (n = 12, 10 F 2 M) | 2-Way RM ANOVA | |||||
---|---|---|---|---|---|---|---|
13-Night Average | Sleep Extension | 13-Night Average | Sleep Extension | Group | Time | Int. | |
Sleep parameters | |||||||
Time in bed (min) | 468 ± 50 | 625 ± 26 | 467 ± 55 | 638 ± 51 | 0.74 | <0.01 | 0.47 |
Sleep duration (min) | 405 ± 49 | 559 ± 34 | 405 ± 43 | 541 ± 38 | 0.56 | <0.01 | 0.37 |
Efficiency (%) | 86 ± 4 | 90 ± 3 *,† | 86 ± 3 | 85 ± 5 * | 0.12 | 0.02 | <0.01 |
WASO (min) | 60 ± 20 | 59 ± 28 | 60 ± 20 | 93 ± 43 *,† | 0.18 | <0.01 | <0.001 |
Awakenings (#) | 21 ± 4 | 24 ± 7 | 20 ± 6 | 26 ± 10 | 0.93 | <0.01 | 0.16 |
Time per awakening (min) | 2.7 ± 0.4 | 2.2 ± 0.4 *,† | 3.0 ± 0.9 | 3.8 ± 1.5 * | 0.02 | 0.63 | <0.01 |
Physical activity parameters | |||||||
Light (min per day) | 901 ± 152 | 784 ± 137 | 852 ± 53 | 739 ± 118 | 0.23 | <0.01 | 0.94 |
MVPA (min per day) | 38 ± 28 | 40 ± 31 | 24 ± 21 | 21 ± 23 | 0.12 | 0.85 | 0.56 |
Total steps (per day) | 6636 ± 3129 | 7518 ± 4084 | 6271 ± 2864 | 5293 ± 3649 | 0.34 | 0.94 | 0.17 |
Usual Sleep | Sleep Extension | p Value | |
---|---|---|---|
Brachial systolic blood pressure (mm Hg) | 126 ± 17 | 123 ± 16 | 0.13 |
Central aortic systolic blood pressure (mm Hg) | 111 ± 15 | 109 ± 14 | 0.12 |
Diastolic blood pressure (mm Hg) | 73 ± 7 | 72 ± 7 | 0.54 |
Mean arterial pressure (mm Hg) | 101 ± 13 | 99 ± 12 | 0.18 |
Augmentation pressure (mm Hg) | 12 ± 6 | 11 ± 7 | 0.07 |
Peak FBF (mL/100 mL/min) | 24 ± 8 | 23 ± 8 | 0.22 |
Peak FVC (mL/100 mL/min/mmHg) | 0.26 ± 0.10 | 0.27 ± 0.10 | 0.33 |
Improved (n = 10, 6 F 4 M) | Not Improved (n = 12, 10 F 2 M) | 2-Way RM ANOVA | |||||
---|---|---|---|---|---|---|---|
Usual Sleep | Sleep Extension | Usual Sleep | Sleep Extension | Group | Time | Int. | |
Heart rate (bpm) | 64 ± 11 | 66 ± 12 | 62 ± 6 | 62 ± 5 | 0.64 | 0.52 | 0.53 |
Brachial SBP (mm Hg) | 126 ± 16 | 119 ± 13 * | 125 ± 18 | 126 ± 18 | 0.69 | 0.07 | 0.04 |
Central SBP (mm Hg) | 112 ± 15 | 106 ± 12 * | 111 ± 15 | 112 ± 16 | 0.71 | 0.058 | 0.02 |
Diastolic BP (mm Hg) | 74 ± 5 | 71 ± 5 * | 72 ± 8 | 73 ± 7 | 0.98 | 0.31 | <0.01 |
MAP (mm Hg) | 101 ± 12 | 96 ± 10 * | 100 ± 14 | 102 ± 14 | 0.65 | 0.08 | 0.01 |
AP (mm Hg) | 11 ± 6 | 9 ± 6 | 13 ± 7 | 13 ± 7 | 0.43 | 0.06 | 0.26 |
Resting FBF (mL/100 mL/min) | 1.7 ± 0.8 | 1.5 ± 0.3 | 1.7 ± 0.8 | 1.4 ± 0.6 | 0.88 | 0.16 | 0.40 |
Peak FBF (mL/100 mL/min) | 27 ± 8 | 27 ± 9 | 21 ± 8 | 22 ± 7 | 0.12 | 0.63 | 0.38 |
Peak FVC (mL/100 mL/min/mmHg) | 0.29 ± 0.10 | 0.30 ± 0.10 | 0.23 ± 0.09 | 0.24 ± 0.09 | 0.15 | 0.31 | 0.53 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gonzales, J.U.; Clark, C.; Dellinger, J.R. The Effect of Acute Sleep Extension on Blood Pressure Is Dependent on the Change in Sleep Efficiency. Clocks & Sleep 2024, 6, 546-556. https://doi.org/10.3390/clockssleep6040036
Gonzales JU, Clark C, Dellinger JR. The Effect of Acute Sleep Extension on Blood Pressure Is Dependent on the Change in Sleep Efficiency. Clocks & Sleep. 2024; 6(4):546-556. https://doi.org/10.3390/clockssleep6040036
Chicago/Turabian StyleGonzales, Joaquin U., Cayla Clark, and Jacob R. Dellinger. 2024. "The Effect of Acute Sleep Extension on Blood Pressure Is Dependent on the Change in Sleep Efficiency" Clocks & Sleep 6, no. 4: 546-556. https://doi.org/10.3390/clockssleep6040036
APA StyleGonzales, J. U., Clark, C., & Dellinger, J. R. (2024). The Effect of Acute Sleep Extension on Blood Pressure Is Dependent on the Change in Sleep Efficiency. Clocks & Sleep, 6(4), 546-556. https://doi.org/10.3390/clockssleep6040036