Time Spent Outdoors and Associations with Sleep, Optimism, Happiness and Health before and during the COVID-19 Pandemic in Austria
Abstract
:1. Introduction
2. Results
3. Discussion
3.1. Changes in TSO during COVID-19 Social Restriction Measures (SRM) and Predictors of TSO
3.2. TSO and Sleep Outcomes
3.3. TSO and Optimism, Happiness and Health-Status
3.4. Limitations and Strengths
4. Materials and Methods
4.1. Study Design and Setting
4.2. TSO Assessment
4.3. Outcomes Assessment
4.4. Confounder Assessment
4.5. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Finger, A.M.; Kramer, A. Mammalian circadian systems: Organization and modern life challenges. Acta Physiol. 2021, 231, e13548. [Google Scholar] [CrossRef]
- Gooley, J.J.; Chamberlain, K.; Smith, K.A.; Khalsa, S.B.S.; Rajaratnam, S.M.W.; Van Reen, E.; Zeitzer, J.M.; Czeisler, C.A.; Lockley, S.W. Exposure to room light before bedtime suppresses melatonin onset and shortens melatonin duration in humans. J. Clin. Endocrinol. Metab. 2011, 96, E463–E472. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reiter, R.J.; Tan, D.X.; Galano, A. Melatonin: Exceeding expectations. Physiology 2014, 29, 325–333. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vetter, C. Circadian disruption: What do we actually mean? Eur. J. Neurosci. 2020, 51, 531–550. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Landgraf, D.; Long, J.E.; Proulx, C.D.; Barandas, R.; Malinow, R.; Welsh, D.K. Genetic Disruption of Circadian Rhythms in the Suprachiasmatic Nucleus Causes Helplessness, Behavioral Despair, and Anxiety-like Behavior in Mice. Biol. Psychiatry 2016, 80, 827–835. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- He, C.; Shen, W.; Chen, C.; Wang, Q.; Lu, Q.; Shao, W.; Jiang, Z.; Hu, H. Circadian Rhythm Disruption Influenced Hepatic Lipid Metabolism, Gut Microbiota and Promoted Cholesterol Gallstone Formation in Mice. Front. Endocrinol. 2021, 12, 723918. [Google Scholar] [CrossRef] [PubMed]
- Ameen, R.W.; Warshawski, A.; Fu, L.; Antle, M.C. Early life circadian rhythm disruption in mice alters brain and behavior in adulthood. Sci. Rep. 2022, 12, 7366. [Google Scholar] [CrossRef]
- Fishbein, A.B.; Knutson, K.L.; Zee, P.C. Circadian disruption and human health. J. Clin. Investig. 2021, 131. [Google Scholar] [CrossRef]
- Walker, W.H., 2nd; Walton, J.C.; DeVries, A.C.; Nelson, R.J. Circadian rhythm disruption and mental health. Transl. Psychiatry 2020, 10, 28. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mason, I.C.; Qian, J.; Adler, G.K.; Scheer, F. Impact of circadian disruption on glucose metabolism: Implications for type 2 diabetes. Diabetologia 2020, 63, 462–472. [Google Scholar] [CrossRef] [Green Version]
- Jerigova, V.; Zeman, M.; Okuliarova, M. Circadian Disruption and Consequences on Innate Immunity and Inflammatory Response. Int. J. Mol. Sci. 2022, 23, 13722. [Google Scholar] [CrossRef] [PubMed]
- Chellappa, S.L.; Vujovic, N.; Williams, J.S.; Scheer, F. Impact of Circadian Disruption on Cardiovascular Function and Disease. Trends Endocrinol. Metab. 2019, 30, 767–779. [Google Scholar] [CrossRef] [PubMed]
- Wendeu-Foyet, M.G.; Menegaux, F. Circadian Disruption and Prostate Cancer Risk: An Updated Review of Epidemiological Evidences. Cancer Epidemiol. Biomark. Prev. 2017, 26, 985–991. [Google Scholar] [CrossRef] [Green Version]
- He, M.; Xiang, F.; Zeng, Y.; Mai, J.; Chen, Q.; Zhang, J.; Smith, W.; Rose, K.; Morgan, I.G. Effect of Time Spent Outdoors at School on the Development of Myopia Among Children in China: A Randomized Clinical Trial. JAMA 2015, 314, 1142–1148. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xiong, S.; Sankaridurg, P.; Naduvilath, T.; Zang, J.; Zou, H.; Zhu, J.; Lv, M.; He, X.; Xu, X. Time spent in outdoor activities in relation to myopia prevention and control: A meta-analysis and systematic review. Acta Ophthalmol. 2017, 95, 551–566. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Holden, B.A.; Fricke, T.R.; Wilson, D.A.; Jong, M.; Naidoo, K.S.; Sankaridurg, P.; Wong, T.Y.; Naduvilath, T.; Resnikoff, S. Global Prevalence of Myopia and High Myopia and Temporal Trends from 2000 through 2050. Ophthalmology 2016, 123, 1036–1042. [Google Scholar] [CrossRef] [Green Version]
- Lingham, G.; Yazar, S.; Lucas, R.M.; Milne, E.; Hewitt, A.W.; Hammond, C.J.; MacGregor, S.; Rose, K.A.; Chen, F.K.; He, M.; et al. Time spent outdoors in childhood is associated with reduced risk of myopia as an adult. Sci. Rep. 2021, 11, 6337. [Google Scholar] [CrossRef]
- Beyer, K.M.M.; Szabo, A.; Hoormann, K.; Stolley, M. Time spent outdoors, activity levels, and chronic disease among American adults. J. Behav. Med. 2018, 41, 494–503. [Google Scholar] [CrossRef]
- Burns, A.C.; Saxena, R.; Vetter, C.; Phillips, A.J.K.; Lane, J.M.; Cain, S.W. Time spent in outdoor light is associated with mood, sleep, and circadian rhythm-related outcomes: A cross-sectional and longitudinal study in over 400,000 UK Biobank participants. J. Affect. Disord. 2021, 295, 347–352. [Google Scholar] [CrossRef]
- Weitzer, J.; Papantoniou, K.; Lazaro-Sebastia, C.; Seidel, S.; Kloesch, G.; Schernhammer, E. The contribution of dispositional optimism to understanding insomnia symptomatology: Findings from a cross-sectional population study in Austria. J. Sleep Res. 2021, 30, e13132. [Google Scholar] [CrossRef]
- Haider, S.; Smith, L.; Markovic, L.; Schuch, F.B.; Sadarangani, K.P.; Lopez Sanchez, G.F.; Lopez-Bueno, R.; Gil-Salmerón, A.; Rieder, A.; Tully, M.A.; et al. Associations between Physical Activity, Sitting Time, and Time Spent Outdoors with Mental Health during the First COVID-19 Lock Down in Austria. Int. J. Environ. Res. Public Health 2021, 18, 9168. [Google Scholar] [CrossRef]
- Korman, M.; Tkachev, V.; Reis, C.; Komada, Y.; Kitamura, S.; Gubin, D.; Kumar, V.; Roenneberg, T. Outdoor daylight exposure and longer sleep promote wellbeing under COVID-19 mandated restrictions. J. Sleep Res. 2022, 31, e13471. [Google Scholar] [CrossRef]
- Blume, C.; Schmidt, M.H.; Cajochen, C. Effects of the COVID-19 lockdown on human sleep and rest-activity rhythms. Curr. Biol. CB 2020, 30, R795–R797. [Google Scholar] [CrossRef]
- Cénat, J.M.; Blais-Rochette, C.; Kokou-Kpolou, C.K.; Noorishad, P.-G.; Mukunzi, J.N.; McIntee, S.-E.; Dalexis, R.D.; Goulet, M.-A.; Labelle, P.R. Prevalence of symptoms of depression, anxiety, insomnia, posttraumatic stress disorder, and psychological distress among populations affected by the COVID-19 pandemic: A systematic review and meta-analysis. Psychiatry Res. 2021, 295, 113599. [Google Scholar] [CrossRef]
- Jahrami, H.; BaHammam, A.S.; Bragazzi, N.L.; Saif, Z.; Faris, M.; Vitiello, M.V. Sleep problems during the COVID-19 pandemic by population: A systematic review and meta-analysis. J. Clin. Sleep Med. 2021, 17, 299–313. [Google Scholar] [CrossRef] [PubMed]
- Cellini, N.; Conte, F.; De Rosa, O.; Giganti, F.; Malloggi, S.; Reyt, M.; Guillemin, C.; Schmidt, C.; Muto, V.; Ficca, G. Changes in sleep timing and subjective sleep quality during the COVID-19 lockdown in Italy and Belgium: Age, gender and working status as modulating factors. Sleep Med. 2021, 77, 112–119. [Google Scholar] [CrossRef] [PubMed]
- Cindrich, S.L.; Lansing, J.E.; Brower, C.S.; McDowell, C.P.; Herring, M.P.; Meyer, J.D. Associations between Change in Outside Time Pre- and Post-COVID-19 Public Health Restrictions and Mental Health: Brief Research Report. Front. Public Health 2021, 9, 619129. [Google Scholar] [CrossRef]
- Baczynska, K.A.; Rendell, R.J.; Khazova, M. Impact of COVID-19 Lockdown on Sun Exposure of UK Office Workers. Int. J. Environ. Res. Public Health 2021, 18, 4362. [Google Scholar] [CrossRef]
- Colley, K.; Irvine, K.N.; Currie, M. Who benefits from nature? A quantitative intersectional perspective on inequalities in contact with nature and the gender gap outdoors. Landsc. Urban Plan. 2022, 223, 104420. [Google Scholar] [CrossRef]
- Xu, P.; Chen, J.-S.; Chang, Y.-L.; Wang, X.; Jiang, X.; Griffiths, M.D.; Pakpour, A.H.; Lin, C.-Y. Gender Differences in the Associations between Physical Activity, Smartphone Use, and Weight Stigma. Front. Public Health 2022, 10, 862829. [Google Scholar] [CrossRef]
- Statistik Austria. Abgestimmte Erwerbsstatistik und Arbeitsstaettenzaehlung; Statistik Austria: Vienna, Austria, 2022.
- Miguet, M.; Venetis, S.; Rukh, G.; Lind, L.; Schioth, H.B. Time spent outdoors and risk of myocardial infarction and stroke in middle and old aged adults: Results from the UK Biobank prospective cohort. Environ. Res. 2021, 199, 111350. [Google Scholar] [CrossRef] [PubMed]
- White, M.P.; Alcock, I.; Grellier, J.; Wheeler, B.W.; Hartig, T.; Warber, S.L.; Bone, A.; Depledge, M.H.; Fleming, L.E. Spending at least 120 minutes a week in nature is associated with good health and wellbeing. Sci. Rep. 2019, 9, 7730. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roscoe, C.; Sheridan, C.; Geneshka, M.; Hodgson, S.; Vineis, P.; Gulliver, J.; Fecht, D. Green Walkability and Physical Activity in UK Biobank: A Cross-Sectional Analysis of Adults in Greater London. Int. J. Environ. Res. Public Health 2022, 19, 4247. [Google Scholar] [CrossRef] [PubMed]
- Young, D.R.; Hong, B.D.; Lo, T.; Inzhakova, G.; Cohen, D.A.; Sidell, M.A. The longitudinal associations of physical activity, time spent outdoors in nature and symptoms of depression and anxiety during COVID-19 quarantine and social distancing in the United States. Prev. Med. 2022, 154, 106863. [Google Scholar] [CrossRef]
- Leger, D.; Bayon, V.; Elbaz, M.; Philip, P.; Choudat, D. Underexposure to light at work and its association to insomnia and sleepiness: A cross-sectional study of 13,296 workers of one transportation company. J. Psychosom. Res. 2011, 70, 29–36. [Google Scholar] [CrossRef]
- Boubekri, M.; Cheung, I.N.; Reid, K.J.; Wang, C.H.; Zee, P.C. Impact of windows and daylight exposure on overall health and sleep quality of office workers: A case-control pilot study. J. Clin. Sleep Med. 2014, 10, 603–611. [Google Scholar] [CrossRef]
- Roenneberg, T.; Wirz-Justice, A.; Merrow, M. Life between clocks: Daily temporal patterns of human chronotypes. J. Biol. Rhythm. 2003, 18, 80–90. [Google Scholar] [CrossRef] [Green Version]
- Jagannath, A.; Varga, N.; Dallmann, R.; Rando, G.; Gosselin, P.; Ebrahimjee, F.; Taylor, L.; Mosneagu, D.; Stefaniak, J.; Walsh, S.; et al. Adenosine integrates light and sleep signalling for the regulation of circadian timing in mice. Nat. Commun. 2021, 12, 2113. [Google Scholar] [CrossRef]
- Skeldon, A.C.; Phillips, A.J.; Dijk, D.J. The effects of self-selected light-dark cycles and social constraints on human sleep and circadian timing: A modeling approach. Sci. Rep. 2017, 7, 45158. [Google Scholar] [CrossRef] [Green Version]
- Tähkämö, L.; Partonen, T.; Pesonen, A.K. Systematic review of light exposure impact on human circadian rhythm. Chronobiol. Int. 2019, 36, 151–170. [Google Scholar] [CrossRef] [Green Version]
- Xu, Y.X.; Zhang, J.H.; Tao, F.B.; Sun, Y. Association between exposure to light at night (LAN) and sleep problems: A systematic review and meta-analysis of observational studies. Sci. Total Environ. 2023, 857, 159303. [Google Scholar] [CrossRef]
- Zhong, C.; Longcore, T.; Benbow, J.; Chung, N.T.; Chau, K.; Wang, S.S.; Lacey, J.V.; Franklin, M. Environmental Influences on Sleep in the California Teachers Study Cohort. Am. J. Epidemiol. 2022, 191, 1532–1539. [Google Scholar] [CrossRef]
- Cappuccio, F.P.; Cooper, D.; D’Elia, L.; Strazzullo, P.; Miller, M.A. Sleep duration predicts cardiovascular outcomes: A systematic review and meta-analysis of prospective studies. Eur. Heart J. 2011, 32, 1484–1492. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hurley, S.; Goldberg, D.; Von Behren, J.; Clague DeHart, J.; Wang, S.; Reynolds, P. Sleep deficiency and breast cancer risk among postmenopausal women in the California teachers study (CTS). Cancer Causes Control 2020, 31, 1115–1128. [Google Scholar] [CrossRef]
- Kecklund, G.; Axelsson, J. Health consequences of shift work and insufficient sleep. BMJ 2016, 355, i5210. [Google Scholar] [CrossRef]
- Ogilvie, R.P.; Patel, S.R. The epidemiology of sleep and obesity. Sleep Health 2017, 3, 383–388. [Google Scholar] [CrossRef]
- Stone, C.R.; Haig, T.R.; Fiest, K.M.; McNeil, J.; Brenner, D.R.; Friedenreich, C.M. The association between sleep duration and cancer-specific mortality: A systematic review and meta-analysis. Cancer Causes Control 2019, 30, 501–525. [Google Scholar] [CrossRef] [PubMed]
- Vollmer, C.; Michel, U.; Randler, C. Outdoor light at night (LAN) is correlated with eveningness in adolescents. Chronobiol. Int. 2012, 29, 502–508. [Google Scholar] [CrossRef] [PubMed]
- Prayag, A.S.; Münch, M.; Aeschbach, D.; Chellappa, S.L.; Gronfier, C. Light Modulation of Human Clocks, Wake, and Sleep. Clocks Sleep 2019, 1, 193–208. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fleury, G.; Masís-Vargas, A.; Kalsbeek, A. Metabolic Implications of Exposure to Light at Night: Lessons from Animal and Human Studies. Obesity 2020, 28 (Suppl. S1), S18–S28. [Google Scholar] [CrossRef]
- Lai, K.Y.; Sarkar, C.; Ni, M.Y.; Gallacher, J.; Webster, C. Exposure to light at night (LAN) and risk of obesity: A systematic review and meta-analysis of observational studies. Environ. Res. 2020, 187, 109637. [Google Scholar] [CrossRef] [PubMed]
- Cheung, I.N.; Zee, P.C.; Shalman, D.; Malkani, R.G.; Kang, J.; Reid, K.J. Morning and Evening Blue-Enriched Light Exposure Alters Metabolic Function in Normal Weight Adults. PLoS ONE 2016, 11, e0155601. [Google Scholar] [CrossRef] [Green Version]
- Petrowski, K.; Schmalbach, B.; Niedling, M.; Stalder, T. The effects of post-awakening light exposure on the cortisol awakening response in healthy male individuals. Psychoneuroendocrinology 2019, 108, 28–34. [Google Scholar] [CrossRef]
- Mead, M.N. Benefits of sunlight: A bright spot for human health. Environ. Health Perspect. 2008, 116, A160–A167. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- van Maanen, A.; Meijer, A.M.; van der Heijden, K.B.; Oort, F.J. The effects of light therapy on sleep problems: A systematic review and meta-analysis. Sleep Med. Rev. 2016, 29, 52–62. [Google Scholar] [CrossRef] [PubMed]
- Pail, G.; Huf, W.; Pjrek, E.; Winkler, D.; Willeit, M.; Praschak-Rieder, N.; Kasper, S. Bright-light therapy in the treatment of mood disorders. Neuropsychobiology 2011, 64, 152–162. [Google Scholar] [CrossRef]
- Brown, T.M.; Brainard, G.C.; Cajochen, C.; Czeisler, C.A.; Hanifin, J.P.; Lockley, S.W.; Lucas, R.J.; Münch, M.; O’Hagan, J.B.; Peirson, S.N.; et al. Recommendations for daytime, evening, and nighttime indoor light exposure to best support physiology, sleep, and wakefulness in healthy adults. PLoS Biol. 2022, 20, e3001571. [Google Scholar] [CrossRef]
- Malik, S.; Singh, J.; Trivedi, A.K.; Singh, S.; Rani, S.; Kumar, V. Nocturnal melatonin levels decode daily light environment and reflect seasonal states in night-migratory blackheaded bunting (Emberiza melanocephala). Photochem. Photobiol. Sci. 2015, 14, 963–971. [Google Scholar] [CrossRef]
- Kozaki, T.; Kubokawa, A.; Taketomi, R.; Hatae, K. Light-induced melatonin suppression at night after exposure to different wavelength composition of morning light. Neurosci. Lett. 2016, 616, 1–4. [Google Scholar] [CrossRef]
- Tao, L.; Jiang, R.; Zhang, K.; Qian, Z.; Chen, P.; Lv, Y.; Yao, Y. Light therapy in non-seasonal depression: An update meta-analysis. Psychiatry Res. 2020, 291, 113247. [Google Scholar] [CrossRef]
- Geoffroy, P.A.; Schroder, C.M.; Reynaud, E.; Bourgin, P. Efficacy of light therapy versus antidepressant drugs, and of the combination versus monotherapy, in major depressive episodes: A systematic review and meta-analysis. Sleep Med. Rev. 2019, 48, 101213. [Google Scholar] [CrossRef] [PubMed]
- Emens, J.; Lewy, A.; Kinzie, J.M.; Arntz, D.; Rough, J. Circadian misalignment in major depressive disorder. Psychiatry Res. 2009, 168, 259–261. [Google Scholar] [CrossRef] [PubMed]
- Fernandez, D.C.; Fogerson, P.M.; Ospri, L.L.; Thomsen, M.B.; Layne, R.M.; Severin, D.; Zhan, J.; Singer, J.H.; Kirkwood, A.; Zhao, H.; et al. Light Affects Mood and Learning through Distinct Retina-Brain Pathways. Cell 2018, 175, 71–84.e18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Korgaonkar, M.S.; Erlinger, M.; Breukelaar, I.A.; Boyce, P.; Hazell, P.; Antees, C.; Foster, S.; Grieve, S.M.; Gomes, L.; Williams, L.M.; et al. Amygdala Activation and Connectivity to Emotional Processing Distinguishes Asymptomatic Patients with Bipolar Disorders and Unipolar Depression. Biol. Psychiatry Cogn. Neurosci. Neuroimaging 2019, 4, 361–370. [Google Scholar] [CrossRef] [PubMed]
- Musazadeh, V.; Keramati, M.; Ghalichi, F.; Kavyani, Z.; Ghoreishi, Z.; Alras, K.A.; Albadawi, N.; Salem, A.; Albadawi, M.I.; Salem, R.; et al. Vitamin D protects against depression: Evidence from an umbrella meta-analysis on interventional and observational meta-analyses. Pharmacol. Res. 2023, 187, 106605. [Google Scholar] [CrossRef]
- Weitzer, J.; Trudel-Fitzgerald, C.; Okereke, O.I.; Kawachi, I.; Schernhammer, E. Dispositional optimism and depression risk in older women in the Nurses Health Study: A prospective cohort study. Eur. J. Epidemiol. 2022, 37, 283–294. [Google Scholar] [CrossRef]
- Hartescu, I.; Morgan, K.; Stevinson, C.D. Increased physical activity improves sleep and mood outcomes in inactive people with insomnia: A randomized controlled trial. J. Sleep Res. 2015, 24, 526–534. [Google Scholar] [CrossRef] [Green Version]
- Peluso, M.A.; Guerra de Andrade, L.H. Physical activity and mental health: The association between exercise and mood. Clinics 2005, 60, 61–70. [Google Scholar] [CrossRef] [Green Version]
- Kredlow, M.A.; Capozzoli, M.C.; Hearon, B.A.; Calkins, A.W.; Otto, M.W. The effects of physical activity on sleep: A meta-analytic review. J. Behav. Med. 2015, 38, 427–449. [Google Scholar] [CrossRef]
- Yang, P.Y.; Ho, K.H.; Chen, H.C.; Chien, M.Y. Exercise training improves sleep quality in middle-aged and older adults with sleep problems: A systematic review. J. Physiother. 2012, 58, 157–163. [Google Scholar] [CrossRef] [Green Version]
- Abd El-Kader, S.M.; Al-Jiffri, O.H. Aerobic exercise affects sleep, psychological wellbeing and immune system parameters among subjects with chronic primary insomnia. Afr. Health Sci. 2020, 20, 1761–1769. [Google Scholar] [CrossRef] [PubMed]
- Molina, K.M.; Molina, K.M.; Goltz, H.H.; Kowalkouski, M.A.; Hart, S.L. Revised Life Orientation Test (LOT-R). Encycl. Behav. Med. 2013, 10, 1678. [Google Scholar] [CrossRef]
- Lyubomirsky, S.; Lepper, H.S. A Measure of Subjective Happiness: Preliminary Reliability and Construct Validation. Soc. Indic. Res. 1999, 46, 137–155. [Google Scholar] [CrossRef]
2017 Survey * | 2020 Survey * | |||||||
---|---|---|---|---|---|---|---|---|
Total N = 991 | TSOq1 0–1.7 h N = 203 | TSOq3 2.7–3.7 h N = 209 | TSOq5 5.1–12 h N = 198 | Total N = 832 | TSOq1 0–1 h N = 175 | TSOq3 1.8–2.6 h N = 168 | TSOq5 3.9–10.9 h N = 164 | |
Age categories | ||||||||
<25 | 129 (13.0%) | 32 (15.8%) | 30 (14.4%) | 23 (11.6%) | 101 (12.1%) | 27 (15.4%) | 18 (10.1%) | 13 (7.9%) |
25–34 | 180 (18.2%) | 48 (23.6%) | 38 (18.2%) | 26 (13.1%) | 149 (17.9%) | 28 (16.0%) | 47 (26.4%) | 21 (12.8%) |
35–44 | 231 (23.3%) | 48 (23.6%) | 49 (23.4%) | 46 (23.2%) | 192 (23.1%) | 45 (25.7%) | 41 (23.0%) | 37 (22.6%) |
45–54 | 249 (25.1%) | 44 (21.7%) | 53 (25.4%) | 48 (24.2%) | 202 (24.3%) | 47 (26.9%) | 35 (19.7%) | 44 (26.8%) |
>55 | 202 (20.4%) | 31 (15.3%) | 39 (18.7%) | 55 (27.8%) | 188 (22.6%) | 28 (16.0%) | 37 (20.8%) | 49 (29.9%) |
Sex | ||||||||
Female | 504 (50.9%) | 112 (55.2%) | 102 (48.8%) | 88 (44.4%) | 417 (50.1%) | 88 (50.3%) | 99 (55.6%) | 73 (44.5%) |
Male | 487 (49.1%) | 91 (44.8%) | 107 (51.2%) | 110 (55.6%) | 415 (49.9%) | 87 (49.7%) | 79 (44.4%) | 91 (55.5%) |
Education Level | ||||||||
Elementary or high school | 402 (40.6%) | 88 (43.3%) | 71 (34.0%) | 91 (46.0%) | 305 (36.7%) | 66 (37.7%) | 57 (32.0%) | 77 (47.0%) |
University entry exam (Matura) | 368 (37.1%) | 66 (32.5%) | 84 (40.2%) | 75 (37.9%) | 300 (36.1%) | 65 (37.1%) | 68 (38.2%) | 49 (29.9%) |
University degree | 221 (22.3%) | 49 (24.1%) | 54 (25.8%) | 32 (16.2%) | 227 (27.3%) | 44 (25.1%) | 53 (29.8%) | 38 (23.2%) |
Marital status | ||||||||
Single | 298 (30.1%) | 89 (43.8%) | 59 (28.2%) | 58 (29.3%) | 275 (33.1%) | 74 (42.3%) | 58 (32.6%) | 37 (22.6%) |
Married/partnership | 568 (57.3%) | 96 (47.3%) | 124 (59.3%) | 114 (57.6%) | 471 (56.6%) | 83 (47.4%) | 100 (56.2%) | 106 (64.6%) |
Divorced/widowed | 125 (12.6%) | 18 (8.9%) | 26 (12.4%) | 26 (13.1%) | 86 (10.3%) | 18 (10.3%) | 20 (11.2%) | 21 (12.8%) |
Parents of children <16 yrs | ||||||||
0 | 738 (74.5%) | 162 (79.8%) | 148 (70.8%) | 143 (72.2%) | 646 (77.6%) | 148 (84.6%) | 128 (71.9%) | 120 (73.2%) |
1 | 135 (13.6%) | 20 (9.9%) | 37 (17.7%) | 28 (14.1%) | 104 (12.5%) | 17 (9.7%) | 31 (17.4%) | 21 (12.8%) |
2 | 90 (9.1%) | 18 (8.9%) | 18 (8.6%) | 17 (8.6%) | 63 (7.6%) | 8 (4.6%) | 15 (8.4%) | 15 (9.1%) |
≥3 | 28 (2.8%) | 3 (1.5%) | 6 (2.9%) | 10 (5.1%) | 19 (2.3%) | 2 (1.1%) | 4 (2.2%) | 8 (4.9%) |
Area of residence | ||||||||
Urban area | 454 (45.8%) | 104 (51.2%) | 95 (45.5%) | 75 (37.9%) | 407 (48.9%) | 115 (65.7%) | 94 (52.8%) | 63 (38.4%) |
Rural area (<50.000 inhabitants) | 410 (41.4%) | 74 (36.5%) | 89 (42.6%) | 98 (49.5%) | 303 (36.4%) | 44 (25.1%) | 68 (38.2%) | 69 (42.1%) |
Rural area (>50.000 inhabitants) | 127 (12.8%) | 25 (12.3%) | 25 (12.0%) | 25 (12.6%) | 122 (14.7%) | 16 (9.1%) | 16 (9.0%) | 32 (19.5%) |
Work status | ||||||||
Employed full time | 522 (52.7%) | 102 (50.2%) | 119 (56.9%) | 92 (46.5%) | 432 (51.9%) | 71 (40.6%) | 101 (56.7%) | 85 (51.8%) |
Employed part time | 110 (11.1%) | 27 (13.3%) | 20 (9.6%) | 24 (12.1%) | 106 (12.7%) | 24 (13.7%) | 24 (13.5%) | 23 (14.0%) |
Retired | 124 (12.5%) | 22 (10.8%) | 19 (9.1%) | 34 (17.2%) | 93 (11.2%) | 23 (13.1%) | 12 (6.7%) | 27 (16.5%) |
Unemployed | 61 (6.2%) | 12 (5.9%) | 14 (6.7%) | 14 (7.1%) | 74 (8.9%) | 23 (13.1%) | 14 (7.9%) | 17 (10.4%) |
Other ** | 174 (17.6%) | 40 (19.7%) | 37 (17.7%) | 34 (17.2%) | 127 (15.3%) | 34 (19.4%) | 27 (15.2%) | 12 (7.3%) |
Night shift work | ||||||||
Never | 618 (62.4%) | 127 (62.6%) | 134 (64.1%) | 108 (54.5%) | 496 (59.6%) | 88 (50.3%) | 111 (66.1%) | 95 (57.9%) |
Yes, in the past | 255 (25.7%) | 45 (22.2%) | 56 (26.8%) | 61 (30.8%) | 264 (31.7%) | 72 (41.1%) | 46 (27.4%) | 51 (31.1%) |
Yes, currently | 52 (5.2%) | 15 (7.4%) | 9 (4.3%) | 15 (7.6%) | 45 (5.4%) | 7 (4.0%) | 7 (4.2%) | 13 (7.9%) |
Self-estimated health status | ||||||||
Good or very good | 661 (66.7%) | 120 (59.1%) | 137 (65.6%) | 147 (74.2%) | 628 (75.5%) | 114 (65.1%) | 128 (71.9%) | 133 (81.1%) |
Intermediate | 266 (26.8%) | 60 (29.6%) | 59 (28.2%) | 41 (20.7%) | 153 (18.4%) | 38 (21.7%) | 39 (21.9%) | 28 (17.1%) |
Bad or very bad | 64 (6.5%) | 23 (11.3%) | 13 (6.2%) | 10 (5.1%) | 51 (6.1%) | 23 (13.1%) | 11 (6.2%) | 3 (1.8%) |
Smoking status | ||||||||
Never | 428 (43.2%) | 105 (51.7%) | 92 (44.0%) | 78 (39.4%) | 371 (44.6%) | 77 (44.0%) | 76 (42.7%) | 62 (37.8%) |
Former | 269 (27.1%) | 49 (24.1%) | 53 (25.4%) | 67 (33.8%) | 220 (26.4%) | 40 (22.9%) | 44 (24.7%) | 48 (29.3%) |
Current | 29 (29.7%) | 49 (24.1%) | 64 (30.6%) | 53 (26.8%) | 241 (29.0%) | 58 (33.1%) | 58 (32.6%) | 54 (32.9%) |
Happiness scale; mean (SD) | 13.6 (3.4) | 12.7 (3.5) | 13.9 (3.2) | 14.2 (3.5) | 13.3 (3.4) | 12.4 (3.4) | 13.3 (3.3) | 13.7 (3.5) |
Optimism index; mean (SD) | 14.3 (4.5) | 13.0 (4.6) | 14.7 (4.5) | 15.0 (4.6) | 13.9 (4.6) | 12.6 (4.8) | 14.0 (4.1) | 14.2 (4.8) |
Physical activity; mean (SD) | ||||||||
Walking (hours/day) | 1.3 (1.8) | 0.8 (1.6) | 1.2 (1.5) | 1.8 (2.4) | 0.8 (1.6) | 0.5 (1.0) | 0.9 (1.6) | 1.2 (2.6) |
Moderate physical activity (hours/day) | 0.8 (1.6) | 0.5 (1.0) | 0.7 (1.2) | 1.0 (1.7) | ||||
Vigorous physical activity (hours/day) | 1.0 (1.9) | 0.7 (1.8) | 0.9 (1.7) | 1.1 (1.8) | ||||
Days per week with an activity (at least 10 min) that increases heart or breathing rate | 3.8 (2.4) | 3.0 (2.1) | 3.9 (2.3) | 4.2 (2.6) |
2017 Survey (N = 991) | 2020 Survey (N = 832) | |
---|---|---|
TSO (median; IQR) | ||
TSO weekday | 2.0 (3.0) | 2.0 (2.0) |
TSO weekend | 5.0 (4.0) | 3.0 (3.0) |
TSO daily average | 3.1 (2.7) | 2.1 (2.2) |
Sleep | ||
Chronic insomnia N (%) | 109 (11.0%) | 109 (13.1%) |
Short sleep N (%) | 158 (15.9%) | 126 (15.1%) |
Late chronotype N (%) | 200 (20.2%) | 195 (23.4%) |
Mood and health | ||
Optimism score (0–24) | ||
Median (IQR) | 14 (6) | 14 (6) |
Mean (SD) | 14.3 (4.5) | 13.9 (4.6) |
Happiness score (0–20) | ||
Median (IQR) | 14 (4) | 13 (5) |
Mean (SD) | 13.6 (3.4) | 13.3(3.4) |
Least optimistic tertile N (%) | 359 (36.23%) | 325 (39.1%) |
Least happy tertile N (%) | 342 (34.51%) | 346 (41.6%) |
Bad health status N (%) | 64 (6.5%) | 51 (6.1%) |
TSO-2017 Continuous OR (95% CI) | TSO-2020 Continuous OR (95% CI) | |
---|---|---|
Chronic Insomnia N (n%) | 109 [11.0%] | 109 [13.1%] |
Age adjusted | 1.02 [0.93–1.12] | 0.79 [0.69–0.90] |
MV adjusted | 1.01 [0.92–1.11] | 0.82 [0.71–0.94] |
MV adjusted + opt. + happy | 1.06 [0.96–1.16] | 0.85 [0.74–0.98] |
MV adjusted + activity | 0.98 [0.89–1.07] | 0.81 [0.70–0.93] |
MV adjusted + health | 1.00 [0.92–1.10] | 0.89 [0.78–1.03] |
Short sleep N (%) | 158 [15.9%] | 126 [15.1%] |
Age adjusted | 0.89 [0.82–0.97] | 0.86 [0.77–0.97] |
MV adjusted | 0.88 [0.80–0.96] | 0.89 [0.79–1.00] |
MV adjusted + opt. + happy | 0.89 [0.81–0.97] | 0.91 [0.80–1.02] |
MV adjusted + activity | 0.88 [0.81–0.97] | 0.91 [0.81–1.02] |
MV adjusted + health | 0.90 [0.82–0.98] | 0.89 [0.80–1.01] |
Late chronotype N (%) | 200 [20.2%] | 195 [23.4%] |
Age adjusted | 0.87 [0.81–0.95] | 0.86 [0.78–0.95] |
MV adjusted | 0.87 [0.80–0.95] | 0.87 [0.79–0.96] |
MV adjusted + opt. + happy | 0.88 [0.81–0.96] | 0.89 [0.80–0.98] |
MV adjusted + activity | 0.90 [0.82–0.97] | 0.81 [0.70–0.93] |
MV adjusted + health | 0.88 [0.81–0.96] | 0.89 [0.80–0.98] |
TSO-2017 Continuous OR (95%CI) | TSO-2020 Continuous OR (95%CI) | |
---|---|---|
Least happy tertile | ||
N (%) | 342 [34.5%] | 346 [41.6%] |
Age adjusted | 0.89 [0.83–0.95] | 0.93 [0.86–1.00] |
MV adjusted | 0.88 [0.83–0.95] | 0.94 [0.87–1.02] |
MV adjusted + opt. | 0.91 [0.84–0.99] | 0.97 [0.88–1.07] |
MV adjusted + activity | 0.89 [0.83–0.95] | 0.96 [0.88–1.04] |
MV adjusted + health | 0.91 [0.85–0.98] | 0.98 [0.90–1.06] |
Least optimistic tertile | ||
N (%) | 359 [36.2%] | 325 [39.1%] |
Age adjusted | 0.93 [0.88–0.99] | 0.89 [0.82–0.96] |
MV adjusted | 0.92 [0.87–0.98] | 0.90 [0.83–0.98] |
MV adjusted + happy | 0.98 [0.91–1.06] | 0.92 [0.83–1.01] |
MV adjusted + activity | 0.91 [0.85–0.97] | 0.92 [0.85–1.00] |
MV adjusted + health | 0.95 [0.89–1.01] | 0.94 [0.86–1.02] |
Bad health status | ||
N (%) | 64 [6.5%] | 51 [6.1%] |
Age adjusted | 0.80 [0.69–0.92] | 0.59 [0.46–0.75] |
MV adjusted | 0.80 [0.69–0.92] | 0.62 [0.48–0.79] |
MV adjusted + happy | 0.83 [0.72–0.96] | 0.63 [0.49–0.80] |
MV adjusted + opt. | 0.83 [0.72–0.96] | 0.62 [0.48–0.79] |
MV adjusted+ activity | 0.81 [0.70–0.94] | 0.64 [0.50–0.82] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schamilow, S.; Santonja, I.; Weitzer, J.; Strohmaier, S.; Klösch, G.; Seidel, S.; Schernhammer, E.; Papantoniou, K. Time Spent Outdoors and Associations with Sleep, Optimism, Happiness and Health before and during the COVID-19 Pandemic in Austria. Clocks & Sleep 2023, 5, 358-372. https://doi.org/10.3390/clockssleep5030027
Schamilow S, Santonja I, Weitzer J, Strohmaier S, Klösch G, Seidel S, Schernhammer E, Papantoniou K. Time Spent Outdoors and Associations with Sleep, Optimism, Happiness and Health before and during the COVID-19 Pandemic in Austria. Clocks & Sleep. 2023; 5(3):358-372. https://doi.org/10.3390/clockssleep5030027
Chicago/Turabian StyleSchamilow, Simon, Isabel Santonja, Jakob Weitzer, Susanne Strohmaier, Gerhard Klösch, Stefan Seidel, Eva Schernhammer, and Kyriaki Papantoniou. 2023. "Time Spent Outdoors and Associations with Sleep, Optimism, Happiness and Health before and during the COVID-19 Pandemic in Austria" Clocks & Sleep 5, no. 3: 358-372. https://doi.org/10.3390/clockssleep5030027
APA StyleSchamilow, S., Santonja, I., Weitzer, J., Strohmaier, S., Klösch, G., Seidel, S., Schernhammer, E., & Papantoniou, K. (2023). Time Spent Outdoors and Associations with Sleep, Optimism, Happiness and Health before and during the COVID-19 Pandemic in Austria. Clocks & Sleep, 5(3), 358-372. https://doi.org/10.3390/clockssleep5030027