The Devastating Effects of Sleep Deprivation on Memory: Lessons from Rodent Models
Abstract
:1. Introduction
Method
2. Impaired Memory Function
3. Potentially Relevant Mechanisms
3.1. Disruption of Synaptic Plasticity
3.2. Affecting Neurons
3.2.1. Damage to Neurons of the Hippocampus
3.2.2. Neurological Inflammation
3.3. Activation of Oxidative Stress
3.4. Affects Related Genes
3.5. Neurotransmitter Changes
3.5.1. Amino Acids
3.5.2. Monoamines
3.5.3. Acetylcholine
3.5.4. Peptides
3.6. Circadian Rhythms
3.7. Rodent-to-Human Complexities
4. Summary and Prospects
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ding, C.; Wu, Y.; Chen, X.; Chen, Y.; Wu, Z.; Lin, Z.; Kang, D.; Fang, W.; Chen, F. Global, regional, and national burden and attributable risk factors of neurological disorders: The Global Burden of Disease study 1990–2019. Front. Public Health 2022, 10, 952161. [Google Scholar] [CrossRef] [PubMed]
- Yuan, K.; Zheng, Y.B.; Wang, Y.J.; Sun, Y.K.; Gong, Y.M.; Huang, Y.T.; Chen, X.; Liu, X.X.; Zhong, Y.; Su, S.Z.; et al. A systematic review and meta-analysis on prevalence of and risk factors associated with depression, anxiety and insomnia in infectious diseases, including COVID-19: A call to action. Mol. Psychiatry 2022, 27, 3214–3222. [Google Scholar] [CrossRef] [PubMed]
- Chowdhury, A.I.; Ghosh, S.; Hasan, M.F.; Khandakar, K.A.S.; Azad, F. Prevalence of insomnia among university students in South Asian Region: A systematic review of studies. J. Prev. Med. Hyg. 2020, 61, e525–e529. [Google Scholar] [CrossRef]
- Hung, C.M.; Li, Y.C.; Chen, H.J.; Lu, K.; Liang, C.L.; Liliang, P.C.; Tsai, Y.D.; Wang, K.W. Risk of dementia in patients with primary insomnia: A nationwide population-based case-control study. BMC Psychiatry 2018, 18, 38. [Google Scholar] [CrossRef]
- Creery, J.D.; Brang, D.J.; Arndt, J.D.; Bassard, A.; Towle, V.L.; Tao, J.X.; Wu, S.; Rose, S.; Warnke, P.C.; Issa, N.P.; et al. Electrophysiological markers of memory consolidation in the human brain when memories are reactivated during sleep. Proc. Natl. Acad. Sci. USA 2022, 119, e2123430119. [Google Scholar] [CrossRef] [PubMed]
- Crowley, R.; Bendor, D.; Javadi, A.H. A review of neurobiological factors underlying the selective enhancement of memory at encoding, consolidation, and retrieval. Prog. Neurobiol. 2019, 179, 101615. [Google Scholar] [CrossRef] [PubMed]
- Yoo, S.S.; Hu, P.T.; Gujar, N.; Jolesz, F.A.; Walker, M.P. A deficit in the ability to form new human memories without sleep. Nat. Neurosci. 2007, 10, 385–392. [Google Scholar] [CrossRef]
- Chowdhury, A.; Chandra, R.; Jha, S.K. Total sleep deprivation impairs the encoding of trace-conditioned memory in the rat. Neurobiol. Learn. Mem. 2011, 95, 355–360. [Google Scholar] [CrossRef]
- Lu, C.; Lv, J.; Jiang, N.; Wang, H.; Huang, H.; Zhang, L.; Li, S.; Zhang, N.; Fan, B.; Liu, X.; et al. Protective effects of Genistein on the cognitive deficits induced by chronic sleep deprivation. Phytother. Res. 2020, 34, 846–858. [Google Scholar] [CrossRef]
- Esposito, M.J.; Occhionero, M.; Cicogna, P. Sleep Deprivation and Time-Based Prospective Memory. Sleep 2015, 38, 1823–1826. [Google Scholar] [CrossRef]
- Menz, M.M.; Rihm, J.S.; Salari, N.; Born, J.; Kalisch, R.; Pape, H.C.; Marshall, L.; Büchel, C. The role of sleep and sleep deprivation in consolidating fear memories. Neuroimage 2013, 75, 87–96. [Google Scholar] [CrossRef] [PubMed]
- Cipolli, C.; Mazzetti, M.; Plazzi, G. Sleep-dependent memory consolidation in patients with sleep disorders. Sleep Med. Rev. 2013, 17, 91–103. [Google Scholar] [CrossRef] [PubMed]
- Grundgeiger, T.; Bayen, U.J.; Horn, S.S. Effects of sleep deprivation on prospective memory. Memory 2014, 22, 679–686. [Google Scholar] [CrossRef] [PubMed]
- Cho, J.W.; Duffy, J.F. Sleep, Sleep Disorders, and Sexual Dysfunction. World J. Men’s Health 2019, 37, 261–275. [Google Scholar] [CrossRef]
- Clark, A.J.; Salo, P.; Lange, T.; Jennum, P.; Virtanen, M.; Pentti, J.; Kivimäki, M.; Rod, N.H.; Vahtera, J. Onset of Impaired Sleep and Cardiovascular Disease Risk Factors: A Longitudinal Study. Sleep 2016, 39, 1709–1718. [Google Scholar] [CrossRef]
- Sumowski, J.F.; Horng, S.; Brandstadter, R.; Krieger, S.; Leavitt, V.M.; Katz Sand, I.; Fabian, M.; Klineova, S.; Graney, R.; Riley, C.S.; et al. Sleep disturbance and memory dysfunction in early multiple sclerosis. Ann. Clin. Transl. Neurol. 2021, 8, 1172–1182. [Google Scholar] [CrossRef]
- Zhu, B.; Dong, Y.; Xu, Z.; Gompf, H.S.; Ward, S.A.; Xue, Z.; Miao, C.; Zhang, Y.; Chamberlin, N.L.; Xie, Z. Sleep disturbance induces neuroinflammation and impairment of learning and memory. Neurobiol. Dis. 2012, 48, 348–355. [Google Scholar] [CrossRef]
- Newbury, C.R.; Crowley, R.; Rastle, K.; Tamminen, J. Sleep deprivation and memory: Meta-analytic reviews of studies on sleep deprivation before and after learning. Psychol. Bull. 2021, 147, 1215–1240. [Google Scholar] [CrossRef]
- Xu, M.; Liu, X.; Wang, Q.; Zhu, Y.; Jia, C. Phosphoproteomic analysis reveals the effects of sleep deprivation on the hippocampus in mice. Mol. Omics 2022, 18, 677–685. [Google Scholar] [CrossRef]
- Aijuan, T.; Anding, D.; Mengmeng, Z.; Shiming, L.; Guili, Y. The role of c-fos gene in the enhancement of memory in the hippocampus of mouse. J. Yangzhou Univ. 2022, 43, 67–72. [Google Scholar] [CrossRef]
- Zhou, H.; Wu, J.; Gong, Y.; Zhou, Z.; Wang, J. Isoquercetin alleviates sleep deprivation dependent hippocampal neurons damage by suppressing NLRP3-induced pyroptosis. Immunopharmacol. Immunotoxicol. 2022, 44, 766–772. [Google Scholar] [CrossRef] [PubMed]
- Krause, A.J.; Simon, E.B.; Mander, B.A.; Greer, S.M.; Saletin, J.M.; Goldstein-Piekarski, A.N.; Walker, M.P. The sleep-deprived human brain. Nat. Rev. Neurosci. 2017, 18, 404–418. [Google Scholar] [CrossRef] [PubMed]
- Li, B.Z.; Cao, Y.; Zhang, Y.; Chen, Y.; Gao, Y.H.; Peng, J.X.; Shao, Y.C.; Zhang, X. Relation of Decreased Functional Connectivity Between Left Thalamus and Left Inferior Frontal Gyrus to Emotion Changes Following Acute Sleep Deprivation. Front. Neurol. 2021, 12, 642411. [Google Scholar] [CrossRef]
- Chen, Y.; Pan, L.; Ma, N. Altered effective connectivity of thalamus with vigilance impairments after sleep deprivation. J. Sleep Res. 2022, 31, e13693. [Google Scholar] [CrossRef] [PubMed]
- Bahmani, Z.; Clark, K.; Merrikhi, Y.; Mueller, A.; Pettine, W.; Isabel Vanegas, M.; Moore, T.; Noudoost, B. Prefrontal Contributions to Attention and Working Memory. Curr. Top. Behav. Neurosci. 2019, 41, 129–153. [Google Scholar] [CrossRef] [PubMed]
- Dixsaut, L.; Gräff, J. The Medial Prefrontal Cortex and Fear Memory: Dynamics, Connectivity, and Engrams. Int. J. Mol. Sci. 2021, 22, 12113. [Google Scholar] [CrossRef]
- Feng, P.; Becker, B.; Zheng, Y.; Feng, T. Sleep deprivation affects fear memory consolidation: Bi-stable amygdala connectivity with insula and ventromedial prefrontal cortex. Soc. Cogn. Affect. Neurosci. 2018, 13, 145–155. [Google Scholar] [CrossRef]
- Chauveau, F.; Laudereau, K.; Libourel, P.A.; Gervasoni, D.; Thomasson, J.; Poly, B.; Pierard, C.; Beracochea, D. Ciproxifan improves working memory through increased prefrontal cortex neural activity in sleep-restricted mice. Neuropharmacology 2014, 85, 349–356. [Google Scholar] [CrossRef]
- Di, X.; Zhang, H.; Biswal, B.B. Anterior cingulate cortex differently modulates frontoparietal functional connectivity between resting-state and working memory tasks. Hum. Brain Mapp. 2020, 41, 1797–1805. [Google Scholar] [CrossRef]
- Zhang, L.; Shao, Y.; Jin, X.; Cai, X.; Du, F. Decreased effective connectivity between insula and anterior cingulate cortex during a working memory task after prolonged sleep deprivation. Behav. Brain Res. 2021, 409, 113263. [Google Scholar] [CrossRef]
- Noorafshan, A.; Karimi, F.; Karbalay-Doust, S.; Kamali, A.M. Using curcumin to prevent structural and behavioral changes of medial prefrontal cortex induced by sleep deprivation in rats. EXCLI J. 2017, 16, 510–520. [Google Scholar] [CrossRef] [PubMed]
- Chun, W.; Xu, C.; Jing, Y.; Wen-Rui, G.; Wei-Ran, L.; Jin-Shun, Q.; Mei-Na, W. Chronic sleep deprivation exacerbates cognitive and pathological impairments inAPP/PS1/tau triple transgenic Alzheimer’s disease model mice. Acta Physiol. Sin. 2021, 73, 471–481. [Google Scholar] [CrossRef]
- Zare Khormizi, H.; Salehinejad, M.A.; Nitsche, M.A.; Nejati, V. Sleep-deprivation and autobiographical memory: Evidence from sleep-deprived nurses. J. Sleep Res. 2019, 28, e12683. [Google Scholar] [CrossRef] [PubMed]
- Hennecke, E.; Lange, D.; Steenbergen, F.; Fronczek-Poncelet, J.; Elmenhorst, D.; Bauer, A.; Aeschbach, D.; Elmenhorst, E.M. Adverse interaction effects of chronic and acute sleep deficits on spatial working memory but not on verbal working memory or declarative memory. J. Sleep Res. 2021, 30, e13225. [Google Scholar] [CrossRef] [PubMed]
- Ward, C.P.; Wooden, J.I.; Kieltyka, R. Effects of Sleep Deprivation on Spatial Learning and Memory in Juvenile and Young Adult Rats. Psychol. Neurosci. 2017, 10, 109–116. [Google Scholar] [CrossRef]
- Mhaidat, N.M.; Alzoubi, K.H.; Khabour, O.F.; Tashtoush, N.H.; Banihani, S.A.; Abdul-razzak, K.K. Exploring the effect of vitamin C on sleep deprivation induced memory impairment. Brain Res. Bull. 2015, 113, 41–47. [Google Scholar] [CrossRef]
- Massadeh, A.M.; Alzoubi, K.H.; Milhem, A.M.; Rababa’h, A.M.; Khabour, O.F. Evaluating the effect of selenium on spatial memory impairment induced by sleep deprivation. Physiol. Behav. 2022, 244, 113669. [Google Scholar] [CrossRef]
- Alzoubi, K.H.; Al Mosabih, H.S.; Mahasneh, A.F. The protective effect of edaravone on memory impairment induced by chronic sleep deprivation. Psychiatry Res. 2019, 281, 112577. [Google Scholar] [CrossRef]
- Krishnan, H.C.; Noakes, E.J.; Lyons, L.C. Chronic sleep deprivation differentially affects short and long-term operant memory in Aplysia. Neurobiol. Learn. Mem. 2016, 134 Pt B, 349–359. [Google Scholar] [CrossRef]
- Salehpour, F.; Farajdokht, F.; Erfani, M.; Sadigh-Eteghad, S.; Shotorbani, S.S.; Hamblin, M.R.; Karimi, P.; Rasta, S.H.; Mahmoudi, J. Transcranial near-infrared photobiomodulation attenuates memory impairment and hippocampal oxidative stress in sleep-deprived mice. Brain Res. 2018, 1682, 36–43. [Google Scholar] [CrossRef]
- Krishnan, H.C.; Gandour, C.E.; Ramos, J.L.; Wrinkle, M.C.; Sanchez-Pacheco, J.J.; Lyons, L.C. Acute Sleep Deprivation Blocks Short- and Long-Term Operant Memory in Aplysia. Sleep 2016, 39, 2161–2171. [Google Scholar] [CrossRef] [PubMed]
- Cousins, J.N.; Fernández, G. The impact of sleep deprivation on declarative memory. Prog. Brain Res. 2019, 246, 27–53. [Google Scholar] [CrossRef] [PubMed]
- Baena, D.; Cantero, J.L.; Fuentemilla, L.; Atienza, M. Weakly encoded memories due to acute sleep restriction can be rescued after one night of recovery sleep. Sci. Rep. 2020, 10, 1449. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Peng, X.; Peng, P.; Li, L.; Lei, X.; Yu, J. The age differences of sleep disruption on mood states and memory performance. Aging Ment. Health 2020, 24, 1444–1451. [Google Scholar] [CrossRef] [PubMed]
- Sauvet, F.; Arnal, P.J.; Tardo-Dino, P.E.; Drogou, C.; Van Beers, P.; Erblang, M.; Guillard, M.; Rabat, A.; Malgoyre, A.; Bourrilhon, C.; et al. Beneficial effects of exercise training on cognitive performances during total sleep deprivation in healthy subjects. Sleep Med. 2020, 65, 26–35. [Google Scholar] [CrossRef]
- Patti, C.L.; Zanin, K.A.; Sanday, L.; Kameda, S.R.; Fernandes-Santos, L.; Fernandes, H.A.; Andersen, M.L.; Tufik, S.; Frussa-Filho, R. Effects of sleep deprivation on memory in mice: Role of state-dependent learning. Sleep 2010, 33, 1669–1679. [Google Scholar] [CrossRef]
- Prince, T.M.; Wimmer, M.; Choi, J.; Havekes, R.; Aton, S.; Abel, T. Sleep deprivation during a specific 3-hour time window post-training impairs hippocampal synaptic plasticity and memory. Neurobiol. Learn. Mem. 2014, 109, 122–130. [Google Scholar] [CrossRef]
- Le Glou, E.; Seugnet, L.; Shaw, P.J.; Preat, T.; Goguel, V. Circadian modulation of consolidated memory retrieval following sleep deprivation in Drosophila. Sleep 2012, 35, 1377–1384. [Google Scholar] [CrossRef]
- Estrada, C.; Fernández-Gómez, F.J.; López, D.; Gonzalez-Cuello, A.; Tunez, I.; Toledo, F.; Blin, O.; Bordet, R.; Richardson, J.C.; Fernandez-Villalba, E.; et al. Transcranial magnetic stimulation and aging: Effects on spatial learning and memory after sleep deprivation in Octodon degus. Neurobiol. Learn. Mem. 2015, 125, 274–281. [Google Scholar] [CrossRef]
- Lv, D.J.; Li, L.X.; Chen, J.; Wei, S.Z.; Wang, F.; Hu, H.; Xie, A.M.; Liu, C.F. Sleep deprivation caused a memory defects and emotional changes in a rotenone-based zebrafish model of Parkinson’s disease. Behav. Brain Res. 2019, 372, 112031. [Google Scholar] [CrossRef]
- Xiong, X.; Zuo, Y.; Cheng, L.; Yin, Z.; Hu, T.; Guo, M.; Han, Z.; Ge, X.; Li, W.; Wang, Y.; et al. Modafinil Reduces Neuronal Pyroptosis and Cognitive Decline After Sleep Deprivation. Front. Neurosci. 2022, 16, 816752. [Google Scholar] [CrossRef] [PubMed]
- Jiao, Q.; Dong, X.; Guo, C.; Wu, T.; Chen, F.; Zhang, K.; Ma, Z.; Sun, Y.; Cao, H.; Tian, C.; et al. Effects of sleep deprivation of various durations on novelty-related object recognition memory and object location memory in mice. Behav. Brain Res. 2022, 418, 113621. [Google Scholar] [CrossRef] [PubMed]
- Yan-yan, W.; Hong-sheng, B.; Hai-ni, L.; Yu-fei, C.; Wen-wen, L.; Ting-li, L.; Li-li, H. Effects of L-tetrahydropalmatine on learning and memory, and sleep rhythm in rats with rapid eye movement sleep deprivation. Chin. Tradit. Pat. Med. 2022, 44, 2812–2817. [Google Scholar]
- Qianwei, Y.; Xingping, Z.; Deqi, Y.; Kaikai, W.; Zhenpeng, T.; Ning, D. Expression differences of orexin receptors in related organs of insomnia rats with lung storing no inferior spirit. Shanghai J. Tradit. Chin. Med. 2022, 56, 75–80. [Google Scholar] [CrossRef]
- Hu, Y.; Yin, J.; Yang, G. Melatonin upregulates BMAL1 to attenuate chronic sleep deprivation-related cognitive impairment by alleviating oxidative stress. Brain Behav. 2023, 13, e2836. [Google Scholar] [CrossRef]
- Tianshan, B.; Zhirong, L.; Ping, H.; Ye, X.; Wenhua, L. The Ameliorating Effect of Venlafaxine on the Depressive Symptoms of Depression Model Rats and Its Effect on Pl3K/Akt/mTORC1 Signaling Pathway in Hippocampus. Chin. J. Integr. Med. Cardio-Cerebrovasc. Dis. 2021, 19, 2348–2352. [Google Scholar]
- Wadhwa, M.; Kumari, P.; Chauhan, G.; Roy, K.; Alam, S.; Kishore, K.; Ray, K.; Panjwani, U. Sleep deprivation induces spatial memory impairment by altered hippocampus neuroinflammatory responses and glial cells activation in rats. J. Neuroimmunol. 2017, 312, 38–48. [Google Scholar] [CrossRef]
- Almaspour, M.B.; Nasehi, M.; Khalifeh, S.; Zarrindast, M.R. The effect of fish oil on social interaction memory in total sleep-deprived rats with respect to the hippocampal level of stathmin, TFEB, synaptophysin and LAMP-1 proteins. Prostaglandins Leukot Essent Fat. Acids 2020, 157, 102097. [Google Scholar] [CrossRef]
- Alzoubi, K.H.; Mayyas, F.A.; Khabour, O.F.; Bani Salama, F.M.; Alhashimi, F.H.; Mhaidat, N.M. Chronic Melatonin Treatment Prevents Memory Impairment Induced by Chronic Sleep Deprivation. Mol. Neurobiol. 2016, 53, 3439–3447. [Google Scholar] [CrossRef]
- Ocalan, B.; Cakir, A.; Koc, C.; Suyen, G.G.; Kahveci, N. Uridine treatment prevents REM sleep deprivation-induced learning and memory impairment. Neurosci. Res. 2019, 148, 42–48. [Google Scholar] [CrossRef]
- Rajizadeh, M.A.; Esmaeilpour, K.; Haghparast, E.; Ebrahimi, M.N.; Sheibani, V. Voluntary exercise modulates learning & memory and synaptic plasticity impairments in sleep deprived female rats. Brain Res. 2020, 1729, 146598. [Google Scholar] [CrossRef] [PubMed]
- Rennó-Costa, C.; da Silva, A.C.C.; Blanco, W.; Ribeiro, S. Computational models of memory consolidation and long-term synaptic plasticity during sleep. Neurobiol. Learn. Mem. 2019, 160, 32–47. [Google Scholar] [CrossRef] [PubMed]
- Hou, J.; Shen, Q.; Wan, X.; Zhao, B.; Wu, Y.; Xia, Z. REM sleep deprivation-induced circadian clock gene abnormalities participate in hippocampal-dependent memory impairment by enhancing inflammation in rats undergoing sevoflurane inhalation. Behav. Brain Res. 2019, 364, 167–176. [Google Scholar] [CrossRef] [PubMed]
- Meerlo, P.; Mistlberger, R.E.; Jacobs, B.L.; Heller, H.C.; McGinty, D. New neurons in the adult brain: The role of sleep and consequences of sleep loss. Sleep Med. Rev. 2009, 13, 187–194. [Google Scholar] [CrossRef] [PubMed]
- Sportiche, N.; Suntsova, N.; Methippara, M.; Bashir, T.; Mitrani, B.; Szymusiak, R.; McGinty, D. Sustained sleep fragmentation results in delayed changes in hippocampal-dependent cognitive function associated with reduced dentate gyrus neurogenesis. Neuroscience 2010, 170, 247–258. [Google Scholar] [CrossRef] [PubMed]
- Acosta-Peña, E.; Camacho-Abrego, I.; Melgarejo-Gutiérrez, M.; Flores, G.; Drucker-Colín, R.; García-García, F. Sleep deprivation induces differential morphological changes in the hippocampus and prefrontal cortex in young and old rats. Synapse 2015, 69, 15–25. [Google Scholar] [CrossRef]
- Gisabella, B.; Scammell, T.; Bandaru, S.S.; Saper, C.B. Regulation of hippocampal dendritic spines following sleep deprivation. J. Comp. Neurol. 2020, 528, 380–388. [Google Scholar] [CrossRef]
- Havekes, R.; Park, A.J.; Tudor, J.C.; Luczak, V.G.; Hansen, R.T.; Ferri, S.L.; Bruinenberg, V.M.; Poplawski, S.G.; Day, J.P.; Aton, S.J.; et al. Sleep deprivation causes memory deficits by negatively impacting neuronal connectivity in hippocampal area CA1. Elife 2016, 5, e13424. [Google Scholar] [CrossRef]
- Dincheva, I.; Lynch, N.B.; Lee, F.S. The Role of BDNF in the Development of Fear Learning. Depress. Anxiety 2016, 33, 907–916. [Google Scholar] [CrossRef]
- Leal, G.; Bramham, C.R.; Duarte, C.B. BDNF and Hippocampal Synaptic Plasticity. Vitam. Horm. 2017, 104, 153–195. [Google Scholar] [CrossRef]
- Acheson, A.; Conover, J.C.; Fandl, J.P.; DeChiara, T.M.; Russell, M.; Thadani, A.; Squinto, S.P.; Yancopoulos, G.D.; Lindsay, R.M. A BDNF autocrine loop in adult sensory neurons prevents cell death. Nature 1995, 374, 450–453. [Google Scholar] [CrossRef] [PubMed]
- Domitrovic Spudic, S.; Nikolac Perkovic, M.; Uzun, S.; Nedic Erjavec, G.; Kozumplik, O.; Svob Strac, D.; Mimica, N.; Pivac, N. Reduced plasma BDNF concentration and cognitive decline in veterans with PTSD. Psychiatry Res. 2022, 316, 114772. [Google Scholar] [CrossRef] [PubMed]
- Rahmani, M.; Rahmani, F.; Rezaei, N. The Brain-Derived Neurotrophic Factor: Missing Link Between Sleep Deprivation, Insomnia, and Depression. Neurochem. Res. 2020, 45, 221–231. [Google Scholar] [CrossRef] [PubMed]
- Lim, S.; Moon, M.; Oh, H.; Kim, H.G.; Kim, S.Y.; Oh, M.S. Ginger improves cognitive function via NGF-induced ERK/CREB activation in the hippocampus of the mouse. J. Nutr. Biochem. 2014, 25, 1058–1065. [Google Scholar] [CrossRef] [PubMed]
- Ballesio, A.; Zagaria, A.; Curti, D.G.; Moran, R.; Goadsby, P.J.; Rosenzweig, I.; Lombardo, C. Peripheral brain-derived neurotrophic factor (BDNF) in insomnia: A systematic review and meta-analysis. Sleep Med. Rev. 2022, 67, 101738. [Google Scholar] [CrossRef]
- Kuhn, M.; Wolf, E.; Maier, J.G.; Mainberger, F.; Feige, B.; Schmid, H.; Bürklin, J.; Maywald, S.; Mall, V.; Jung, N.H.; et al. Sleep recalibrates homeostatic and associative synaptic plasticity in the human cortex. Nat. Commun. 2016, 7, 12455. [Google Scholar] [CrossRef]
- Torabi-Nami, M.; Nasehi, M.; Razavi, S.; Zarrindast, M.R. Aversive Memory, Anxiety-Related Behaviors, and Serum Neurochemical Levels in a Rat Model of Labored. Sleep Loss. Shiraz E-Med. J. 2014, 15, e22358. [Google Scholar] [CrossRef]
- Alzoubi, K.H.; Khabour, O.F.; Salah, H.A.; Abu Rashid, B.E. The combined effect of sleep deprivation and Western diet on spatial learning and memory: Role of BDNF and oxidative stress. J. Mol. Neurosci. 2013, 50, 124–133. [Google Scholar] [CrossRef]
- Mahboubi, S.; Nasehi, M.; Imani, A.; Sadat-Shirazi, M.S.; Zarrindast, M.R.; Vousooghi, N.; Noroozian, M. Benefit effect of REM-sleep deprivation on memory impairment induced by intensive exercise in male wistar rats: With respect to hippocampal BDNF and TrkB. Nat. Sci. Sleep 2019, 11, 179–188. [Google Scholar] [CrossRef]
- Saadati, H.; Sheibani, V.; Esmaeili-Mahani, S.; Darvishzadeh-Mahani, F.; Mazhari, S. Prior regular exercise reverses the decreased effects of sleep deprivation on brain-derived neurotrophic factor levels in the hippocampus of ovariectomized female rats. Regul. Pept. 2014, 194–195, 11–15. [Google Scholar] [CrossRef]
- Gulyássy, P.; Todorov-Völgyi, K.; Tóth, V.; Györffy, B.A.; Puska, G.; Simor, A.; Juhász, G.; Drahos, L.; Kékesi, K.A. The Effect of Sleep Deprivation and Subsequent Recovery Period on the Synaptic Proteome of Rat Cerebral Cortex. Mol. Neurobiol. 2022, 59, 1301–1319. [Google Scholar] [CrossRef] [PubMed]
- Zagaar, M.A.; Dao, A.T.; Alhaider, I.A.; Alkadhi, K.A. Prevention by Regular Exercise of Acute Sleep Deprivation-Induced Impairment of Late Phase LTP and Related Signaling Molecules in the Dentate Gyrus. Mol. Neurobiol. 2016, 53, 2900–2910. [Google Scholar] [CrossRef] [PubMed]
- Xu, Z.Q.; Gao, C.Y.; Fang, C.Q.; Zhou, H.D.; Jiang, X.J. The mechanism and characterization of learning and memory impairment in sleep-deprived mice. Cell Biochem. Biophys. 2010, 58, 137–140. [Google Scholar] [CrossRef] [PubMed]
- Xiao, L.Y.; Wang, X.R.; Yang, Y.; Yang, J.W.; Cao, Y.; Ma, S.M.; Li, T.R.; Liu, C.Z. Applications of Acupuncture Therapy in Modulating Plasticity of Central Nervous System. Neuromodulation 2018, 21, 762–776. [Google Scholar] [CrossRef] [PubMed]
- Campbell, I.G.; Guinan, M.J.; Horowitz, J.M. Sleep deprivation impairs long-term potentiation in rat hippocampal slices. J. Neurophysiol. 2002, 88, 1073–1076. [Google Scholar] [CrossRef] [PubMed]
- Ishikawa, A.; Kanayama, Y.; Matsumura, H.; Tsuchimochi, H.; Ishida, Y.; Nakamura, S. Selective rapid eye movement sleep deprivation impairs the maintenance of long-term potentiation in the rat hippocampus. Eur. J. Neurosci. 2006, 24, 243–248. [Google Scholar] [CrossRef]
- Kim, E.Y.; Mahmoud, G.S.; Grover, L.M. REM sleep deprivation inhibits LTP in vivo in area CA1 of rat hippocampus. Neurosci. Lett. 2005, 388, 163–167. [Google Scholar] [CrossRef]
- Marks, C.A.; Wayner, M.J. Effects of sleep disruption on rat dentate granule cell LTP in vivo. Brain Res. Bull. 2005, 66, 114–119. [Google Scholar] [CrossRef]
- Davis, C.J.; Harding, J.W.; Wright, J.W. REM sleep deprivation-induced deficits in the latency-to-peak induction and maintenance of long-term potentiation within the CA1 region of the hippocampus. Brain Res. 2003, 973, 293–297. [Google Scholar] [CrossRef]
- Aleisa, A.M.; Helal, G.; Alhaider, I.A.; Alzoubi, K.H.; Srivareerat, M.; Tran, T.T.; Al-Rejaie, S.S.; Alkadhi, K.A. Acute nicotine treatment prevents REM sleep deprivation-induced learning and memory impairment in rat. Hippocampus 2011, 21, 899–909. [Google Scholar] [CrossRef]
- Tadavarty, R.; Kaan, T.K.; Sastry, B.R. Long-term depression of excitatory synaptic transmission in rat hippocampal CA1 neurons following sleep-deprivation. Exp. Neurol. 2009, 216, 239–242. [Google Scholar] [CrossRef] [PubMed]
- Xue, R.; Wan, Y.; Sun, X.; Zhang, X.; Gao, W.; Wu, W. Nicotinic Mitigation of Neuroinflammation and Oxidative Stress After Chronic Sleep Deprivation. Front. Immunol. 2019, 10, 2546. [Google Scholar] [CrossRef] [PubMed]
- Piber, D. The role of sleep disturbance and inflammation for spatial memory. Brain Behav. Immun. Health 2021, 17, 100333. [Google Scholar] [CrossRef]
- Tang, T.; Guo, Y.; Xu, X.; Zhao, L.; Shen, X.; Sun, L.; Xie, P. BoDV-1 infection induces neuroinflammation by activating the TLR4/MyD88/IRF5 signaling pathway, leading to learning and memory impairment in rats. J. Med. Virol. 2021, 93, 6163–6171. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.; Li, J.; Wang, X.; Liu, H.; Wang, T.; Lin, Z.; Xiong, N. Neuroprotective Effect of Melatonin on Sleep Disorders Associated with Parkinson’s Disease. Antioxidants 2023, 12, 396. [Google Scholar] [CrossRef] [PubMed]
- Hagewoud, R.; Havekes, R.; Novati, A.; Keijser, J.N.; Van der Zee, E.A.; Meerlo, P. Sleep deprivation impairs spatial working memory and reduces hippocampal AMPA receptor phosphorylation. J. Sleep Res. 2010, 19, 280–288. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Wang, Z.; Cao, J.; Dong, Y.; Chen, Y. Dim Blue Light at Night Induces Spatial Memory Impairment in Mice by Hippocampal Neuroinflammation and Oxidative Stress. Antioxidants 2022, 11, 1218. [Google Scholar] [CrossRef] [PubMed]
- Chennaoui, M.; Gomez-Merino, D.; Drogou, C.; Geoffroy, H.; Dispersyn, G.; Langrume, C.; Ciret, S.; Gallopin, T.; Sauvet, F. Effects of exercise on brain and peripheral inflammatory biomarkers induced by total sleep deprivation in rats. J. Inflamm. 2015, 12, 56. [Google Scholar] [CrossRef]
- Dumaine, J.E.; Ashley, N.T. Acute sleep fragmentation induces tissue-specific changes in cytokine gene expression and increases serum corticosterone concentration. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2015, 308, R1062–R1069. [Google Scholar] [CrossRef]
- Austin, P.J.; Berglund, A.M.; Siu, S.; Fiore, N.T.; Gerke-Duncan, M.B.; Ollerenshaw, S.L.; Leigh, S.J.; Kunjan, P.A.; Kang, J.W.; Keay, K.A. Evidence for a distinct neuro-immune signature in rats that develop behavioural disability after nerve injury. J. Neuroinflamm. 2015, 12, 96. [Google Scholar] [CrossRef]
- Patanella, A.K.; Zinno, M.; Quaranta, D.; Nociti, V.; Frisullo, G.; Gainotti, G.; Tonali, P.A.; Batocchi, A.P.; Marra, C. Correlations between peripheral blood mononuclear cell production of BDNF, TNF-alpha, IL-6, IL-10 and cognitive performances in multiple sclerosis patients. J. Neurosci. Res. 2010, 88, 1106–1112. [Google Scholar] [CrossRef] [PubMed]
- Manchanda, S.; Singh, H.; Kaur, T.; Kaur, G. Low-grade neuroinflammation due to chronic sleep deprivation results in anxiety and learning and memory impairments. Mol. Cell. Biochem. 2018, 449, 63–72. [Google Scholar] [CrossRef] [PubMed]
- Zielinski, M.R.; Kim, Y.; Karpova, S.A.; McCarley, R.W.; Strecker, R.E.; Gerashchenko, D. Chronic sleep restriction elevates brain interleukin-1 beta and tumor necrosis factor-alpha and attenuates brain-derived neurotrophic factor expression. Neurosci. Lett. 2014, 580, 27–31. [Google Scholar] [CrossRef]
- Lu, C.; Wei, Z.; Jiang, N.; Chen, Y.; Wang, Y.; Li, S.; Wang, Q.; Fan, B.; Liu, X.; Wang, F. Soy isoflavones protects against cognitive deficits induced by chronic sleep deprivation via alleviating oxidative stress and suppressing neuroinflammation. Phytother. Res. 2022, 36, 2072–2080. [Google Scholar] [CrossRef] [PubMed]
- Xing, C.; Zhou, Y.; Xu, H.; Ding, M.; Zhang, Y.; Zhang, M.; Hu, M.; Huang, X.; Song, L. Sleep disturbance induces depressive behaviors and neuroinflammation by altering the circadian oscillations of clock genes in rats. Neurosci. Res. 2021, 171, 124–132. [Google Scholar] [CrossRef]
- Fan, K.; Yang, J.; Gong, W.Y.; Pan, Y.C.; Zheng, P.; Yue, X.F. NLRP3 inflammasome activation mediates sleep deprivation-induced pyroptosis in mice. PeerJ 2021, 9, e11609. [Google Scholar] [CrossRef]
- Bezzi, P.; Volterra, A. Astrocytes: Powering memory. Cell 2011, 144, 644–645. [Google Scholar] [CrossRef]
- Frankland, P.W.; Josselyn, S.A. Starring role for astrocytes in memory. Nat. Neurosci. 2020, 23, 1181–1182. [Google Scholar] [CrossRef]
- Osso, L.A.; Chan, J.R. Astrocytes Underlie Neuroinflammatory Memory Impairment. Cell 2015, 163, 1574–1576. [Google Scholar] [CrossRef]
- Gentry, N.W.; McMahon, T.; Yamazaki, M.; Webb, J.; Arnold, T.D.; Rosi, S.; Ptáček, L.J.; Fu, Y.-H. Microglia are involved in the protection of memories formed during sleep deprivation. Neurobiol. Sleep Circadian Rhythm. 2022, 12, 100073. [Google Scholar] [CrossRef]
- Tan, S.; Gao, H.; Sun, J.; Li, N.; Zhang, Y.; Yang, L.; Wang, M.; Wang, Q.; Zhai, Q. CD33/TREM2 Signaling Mediates Sleep Deprivation-Induced Memory Impairment by Regulating Microglial Phagocytosis. Neuromol. Med. 2023. [Google Scholar] [CrossRef] [PubMed]
- Wadhwa, M.; Prabhakar, A.; Ray, K.; Roy, K.; Kumari, P.; Jha, P.K.; Kishore, K.; Kumar, S.; Panjwani, U. Inhibiting the microglia activation improves the spatial memory and adult neurogenesis in rat hippocampus during 48 h of sleep deprivation. J. Neuroinflamm. 2017, 14, 222. [Google Scholar] [CrossRef] [PubMed]
- Villafuerte, G.; Miguel-Puga, A.; Rodríguez, E.M.; Machado, S.; Manjarrez, E.; Arias-Carrión, O. Sleep deprivation and oxidative stress in animal models: A systematic review. Oxid. Med. Cell. Longev. 2015, 2015, 234952. [Google Scholar] [CrossRef] [PubMed]
- Alzoubi, K.H.; Khabour, O.F.; Rashid, B.A.; Damaj, I.M.; Salah, H.A. The neuroprotective effect of vitamin E on chronic sleep deprivation-induced memory impairment: The role of oxidative stress. Behav. Brain Res. 2012, 226, 205–210. [Google Scholar] [CrossRef]
- McCord, M.C.; Aizenman, E. The role of intracellular zinc release in aging, oxidative stress, and Alzheimer’s disease. Front. Aging Neurosci. 2014, 6, 77. [Google Scholar] [CrossRef]
- Fifel, K.; Meijer, J.H.; Deboer, T. Long-term effects of sleep deprivation on neuronal activity in four hypothalamic areas. Neurobiol. Dis. 2018, 109, 54–63. [Google Scholar] [CrossRef]
- Ke, B.; Zhang, T.; An, T.; Lu, R. Soy isoflavones ameliorate the cognitive dysfunction of Goto-Kakizaki rats by activating the Nrf2-HO-1 signalling pathway. Aging 2020, 12, 21344–21354. [Google Scholar] [CrossRef]
- Alzoubi, K.H.; Mayyas, F.; Abu Zamzam, H.I. Omega-3 fatty acids protects against chronic sleep-deprivation induced memory impairment. Life Sci. 2019, 227, 1–7. [Google Scholar] [CrossRef]
- Ozturk, I.; Elbe, H.; Bicer, Y.; Karayakali, M.; Onal, M.O.; Altinoz, E. Therapeutic role of melatonin on acrylamide-induced hepatotoxicity in pinealectomized rats: Effects on oxidative stress, NF-κB signaling pathway, and hepatocellular proliferation. Food Chem. Toxicol. 2023, 174, 113658. [Google Scholar] [CrossRef]
- Kim, H.K.; Yang, K.I. Melatonin and melatonergic drugs in sleep disorders. Transl. Clin. Pharmacol. 2022, 30, 163–171. [Google Scholar] [CrossRef]
- Alzoubi, K.H.; Rababa’h, A.M.; Owaisi, A.; Khabour, O.F. L-carnitine prevents memory impairment induced by chronic REM-sleep deprivation. Brain Res. Bull. 2017, 131, 176–182. [Google Scholar] [CrossRef] [PubMed]
- Singh, R.; Kiloung, J.; Singh, S.; Sharma, D. Effect of paradoxical sleep deprivation on oxidative stress parameters in brain regions of adult and old rats. Biogerontology 2008, 9, 153–162. [Google Scholar] [CrossRef] [PubMed]
- Yazici-Mutlu, Ç.; Keskin-Aktan, A.; Akbulut, K.G. Effects of curcumin and melatonin treatment in the cerebral cortex of adult rats. Gen. Physiol. Biophys. 2023, 42, 49–57. [Google Scholar] [CrossRef]
- Ke, P.; Zheng, C.; Liu, F.; Wu, L.; Tang, Y.; Wu, Y.; Lv, D.; Chen, H.; Qian, L.; Wu, X.; et al. Relationship between circadian genes and memory impairment caused by sleep deprivation. PeerJ 2022, 10, e13165. [Google Scholar] [CrossRef] [PubMed]
- Vecsey, C.G.; Peixoto, L.; Choi, J.H.; Wimmer, M.; Jaganath, D.; Hernandez, P.J.; Blackwell, J.; Meda, K.; Park, A.J.; Hannenhalli, S.; et al. Genomic analysis of sleep deprivation reveals translational regulation in the hippocampus. Physiol. Genom. 2012, 44, 981–991. [Google Scholar] [CrossRef]
- Gaine, M.E.; Bahl, E.; Chatterjee, S.; Michaelson, J.J.; Abel, T.; Lyons, L.C. Altered hippocampal transcriptome dynamics following sleep deprivation. Mol. Brain 2021, 14, 125. [Google Scholar] [CrossRef]
- Grant, L.K.; Cain, S.W.; Chang, A.M.; Saxena, R.; Czeisler, C.A.; Anderson, C. Impaired cognitive flexibility during sleep deprivation among carriers of the Brain Derived Neurotrophic Factor (BDNF) Val66Met allele. Behav. Brain Res. 2018, 338, 51–55. [Google Scholar] [CrossRef]
- Cheng, O.; Li, R.; Zhao, L.; Yu, L.; Yang, B.; Wang, J.; Chen, B.; Yang, J. Short-term sleep deprivation stimulates hippocampal neurogenesis in rats following global cerebral ischemia/reperfusion. PLoS ONE 2015, 10, e0125877. [Google Scholar] [CrossRef]
- Radiske, A.; Gonzalez, M.C.; Nôga, D.A.; Rossato, J.I.; Bevilaqua, L.R.M.; Cammarota, M. mTOR inhibition impairs extinction memory reconsolidation. Learn. Mem. 2021, 28, 1–6. [Google Scholar] [CrossRef]
- Pereyra, M.; Katche, C.; de Landeta, A.B.; Medina, J.H. mTORC1 controls long-term memory retrieval. Sci. Rep. 2018, 8, 8759. [Google Scholar] [CrossRef]
- Blázquez, C.; Chiarlone, A.; Bellocchio, L.; Resel, E.; Pruunsild, P.; García-Rincón, D.; Sendtner, M.; Timmusk, T.; Lutz, B.; Galve-Roperh, I.; et al. The CB₁ cannabinoid receptor signals striatal neuroprotection via a PI3K/Akt/mTORC1/BDNF pathway. Cell Death Differ. 2015, 22, 1618–1629. [Google Scholar] [CrossRef] [PubMed]
- Tudor, J.C.; Davis, E.J.; Peixoto, L.; Wimmer, M.E.; van Tilborg, E.; Park, A.J.; Poplawski, S.G.; Chung, C.W.; Havekes, R.; Huang, J.; et al. Sleep deprivation impairs memory by attenuating mTORC1-dependent protein synthesis. Sci. Signal. 2016, 9, ra41. [Google Scholar] [CrossRef] [PubMed]
- Price, K.; Obrietan, K. Modulation of learning and memory by the genetic disruption of circadian oscillator populations. Physiol. Behav. 2018, 194, 387–393. [Google Scholar] [CrossRef] [PubMed]
- Wardlaw, S.M.; Phan, T.X.; Saraf, A.; Chen, X.; Storm, D.R. Genetic disruption of the core circadian clock impairs hippocampus-dependent memory. Learn. Mem. 2014, 21, 417–423. [Google Scholar] [CrossRef]
- Kondratova, A.A.; Dubrovsky, Y.V.; Antoch, M.P.; Kondratov, R.V. Circadian clock proteins control adaptation to novel environment and memory formation. Aging 2010, 2, 285–297. [Google Scholar] [CrossRef]
- Kwapis, J.L.; Alaghband, Y.; Kramár, E.A.; López, A.J.; Vogel Ciernia, A.; White, A.O.; Shu, G.; Rhee, D.; Michael, C.M.; Montellier, E.; et al. Epigenetic regulation of the circadian gene Per1 contributes to age-related changes in hippocampal memory. Nat. Commun. 2018, 9, 3323. [Google Scholar] [CrossRef]
- Rawashdeh, O.; Jilg, A.; Maronde, E.; Fahrenkrug, J.; Stehle, J.H. Period1 gates the circadian modulation of memory-relevant signaling in mouse hippocampus by regulating the nuclear shuttling of the CREB kinase pP90RSK. J. Neurochem. 2016, 138, 731–745. [Google Scholar] [CrossRef] [PubMed]
- Yue, Y.; Zeming, G.; Haoshu, H.; Weitian, L.; Ting, G.; Xintong, W.; Yaoxing, C. Effect of Acute Sleep Deprivation on Melatonin Level of Plasma and Clock Gene Expression of Hypothalamus in Mice. Acta Vet. Zootech. Sin. 2020, 51, 2609–2612. [Google Scholar]
- Diering, G.H.; Nirujogi, R.S.; Roth, R.H.; Worley, P.F.; Pandey, A.; Huganir, R.L. Homer1a drives homeostatic scaling-down of excitatory synapses during sleep. Science 2017, 355, 511–515. [Google Scholar] [CrossRef]
- Maret, S.; Dorsaz, S.; Gurcel, L.; Pradervand, S.; Petit, B.; Pfister, C.; Hagenbuchle, O.; O’Hara, B.F.; Franken, P.; Tafti, M. Homer1a is a core brain molecular correlate of sleep loss. Proc. Natl. Acad. Sci. USA 2007, 104, 20090–20095. [Google Scholar] [CrossRef]
- Noya, S.B.; Colameo, D.; Brüning, F.; Spinnler, A.; Mircsof, D.; Opitz, L.; Mann, M.; Tyagarajan, S.K.; Robles, M.S.; Brown, S.A. The forebrain synaptic transcriptome is organized by clocks but its proteome is driven by sleep. Science 2019, 366, eaav2642. [Google Scholar] [CrossRef] [PubMed]
- Hansen, J.Y.; Shafiei, G.; Markello, R.D.; Smart, K.; Cox, S.M.L.; Nørgaard, M.; Beliveau, V.; Wu, Y.; Gallezot, J.D.; Aumont, É.; et al. Mapping neurotransmitter systems to the structural and functional organization of the human neocortex. Nat. Neurosci. 2022, 25, 1569–1581. [Google Scholar] [CrossRef]
- Omond, S.E.T.; Hale, M.W.; Lesku, J.A. Neurotransmitters of sleep and wakefulness in flatworms. Sleep 2022, 45, zsac053. [Google Scholar] [CrossRef]
- Xiong, M.; Li, F.; Liu, Z.; Xie, X.; Shen, H.; Li, W.; Wei, L.; He, R. Efficacy of Melatonin for Insomnia in Children with Autism Spectrum Disorder: A Meta-analysis. Neuropediatrics 2023, 54, 167–173. [Google Scholar] [CrossRef]
- Carroll, B.J.; Greden, J.F.; Haskett, R.; Feinberg, M.; Albala, A.A.; Martin, F.I.R.; Rubin, R.T.; Heath, B.; Sharp, P.T.; McLeod, W.L.; et al. Neurotransmitter studies of neuroendocrine pathology in depression. Acta Psychiatr. Scand. 1980, 61, 183–199. [Google Scholar] [CrossRef]
- Xiao, F.; Shao, S.; Zhang, H.; Li, G.; Piao, S.; Zhao, D.; Li, G.; Yan, M. Neuroprotective effect of Ziziphi Spinosae Semen on rats with p-chlorophenylalanine-induced insomnia via activation of GABA(A) receptor. Front. Pharmacol. 2022, 13, 965308. [Google Scholar] [CrossRef] [PubMed]
- Wimmer, G.E.; Poldrack, R.A. Reward learning and working memory: Effects of massed versus spaced training and post-learning delay period. Mem. Cognit. 2022, 50, 312–324. [Google Scholar] [CrossRef]
- Yang, P.; Cai, G.; Cai, Y.; Fei, J.; Liu, G. Gamma aminobutyric acid transporter subtype 1 gene knockout mice: A new model for attention deficit/hyperactivity disorder. Acta Biochim. Biophys. Sin. 2013, 45, 578–585. [Google Scholar] [CrossRef]
- Inkster, B.E.; Zammitt, N.N.; Ritchie, S.J.; Deary, I.J.; Morrison, I.; Frier, B.M. Effects of Sleep Deprivation on Hypoglycemia-Induced Cognitive Impairment and Recovery in Adults With Type 1 Diabetes. Diabetes Care 2016, 39, 750–756. [Google Scholar] [CrossRef]
- Schmidt, S.D.; Zinn, C.G.; Cavalcante, L.E.; Ferreira, F.F.; Furini, C.R.G.; Izquierdo, I.; de Carvalho Myskiw, J. Participation of Hippocampal 5-HT(5A), 5-HT(6) and 5-HT(7) Serotonin Receptors on the Consolidation of Social Recognition Memory. Neuroscience 2022, 497, 171–183. [Google Scholar] [CrossRef] [PubMed]
- Kjaerby, C.; Andersen, M.; Hauglund, N.; Untiet, V.; Dall, C.; Sigurdsson, B.; Ding, F.; Feng, J.; Li, Y.; Weikop, P.; et al. Memory-enhancing properties of sleep depend on the oscillatory amplitude of norepinephrine. Nat. Neurosci. 2022, 25, 1059–1070. [Google Scholar] [CrossRef]
- Ye, H.; Ji, M.; Wang, C.; Wang, C.; Li, Y.; Chen, Y.; Cheng, L.; Li, Y.; Yang, J.J. Integrated Functional Neuroimaging, Monoamine Neurotransmitters, and Behavioral Score on Depressive Tendency in Intensive Care Unit Medical Staffs Induced by Sleep Deprivation After Night Shift Work. Front. Psychiatry 2022, 13, 848709. [Google Scholar] [CrossRef]
- Guo, S.; Wamg, X.; Ma, J.; Han, C.; Li, F. Effect of Different Duration of Sleep Deprivation on Monoamine Neurotransmitter Levels in Hypothalamus of Rats. Prog. Mod. Biomed. 2016, 16, 1032–1035. [Google Scholar] [CrossRef]
- Brady, K.; Brown, J.W.; Thurmond, J.B. Behavioral and neurochemical effects of dietary tyrosine in young and aged mice following cold-swim stress. Pharmacol. Biochem. Behav. 1980, 12, 667–674. [Google Scholar] [CrossRef]
- Sharma, A.; Muresanu, D.F.; Lafuente, J.V.; Patnaik, R.; Tian, Z.R.; Buzoianu, A.D.; Sharma, H.S. Sleep Deprivation-Induced Blood-Brain Barrier Breakdown and Brain Dysfunction are Exacerbated by Size-Related Exposure to Ag and Cu Nanoparticles. Neuroprotective Effects of a 5-HT3 Receptor Antagonist Ondansetron. Mol. Neurobiol. 2015, 52, 867–881. [Google Scholar] [CrossRef]
- Miyamoto, H.; Nakamaru-Ogiso, E.; Hamada, K.; Hensch, T.K. Serotonergic integration of circadian clock and ultradian sleep-wake cycles. J. Neurosci. 2012, 32, 14794–14803. [Google Scholar] [CrossRef]
- Dugovic, C. Role of serotonin in sleep mechanisms. Rev. Neurol. 2001, 157, S16–S19. [Google Scholar]
- Baufreton, J.; Zhu, Z.T.; Garret, M.; Bioulac, B.; Johnson, S.W.; Taupignon, A.I. Dopamine receptors set the pattern of activity generated in subthalamic neurons. FASEB J. 2005, 19, 1771–1777. [Google Scholar] [CrossRef] [PubMed]
- Jones, B.E.; Bobillier, P.; Pin, C.; Jouvet, M. The effect of lesions of catecholamine-containing neurons upon monoamine content of the brain and EEG and behavioral waking in the cat. Brain Res. 1973, 58, 157–177. [Google Scholar] [CrossRef] [PubMed]
- Sirichoat, A.; Suwannakot, K.; Chaisawang, P.; Pannangrong, W.; Aranarochana, A.; Wigmore, P.; Welbat, J.U. Melatonin attenuates 5-fluorouracil-induced spatial memory and hippocampal neurogenesis impairment in adult rats. Life Sci. 2020, 248, 117468. [Google Scholar] [CrossRef] [PubMed]
- Lin, X.J.; Liu, R.; Li, C.; Yi, X.; Fu, B.; Walker, M.J.; Xu, X.M.; Sun, G.; Lin, C.H. Melatonin ameliorates spatial memory and motor deficits via preserving the integrity of cortical and hippocampal dendritic spine morphology in mice with neurotrauma. Inflammopharmacology 2020, 28, 1553–1566. [Google Scholar] [CrossRef] [PubMed]
- Zakaria, R.; Ahmad, A.H.; Othman, Z. The Potential Role of Melatonin on Memory Function: Lessons from Rodent Studies. Folia Biol. 2016, 62, 181–187. [Google Scholar]
- Gao, T.; Wang, Z.; Dong, Y.; Cao, J.; Lin, R.; Wang, X.; Yu, Z.; Chen, Y. Role of melatonin in sleep deprivation-induced intestinal barrier dysfunction in mice. J. Pineal Res. 2019, 67, e12574. [Google Scholar] [CrossRef] [PubMed]
- Xuan, L.; Shuang, H.; Peng-xiang, L.; Rong, Z.; Jing, L.; Shou-gang, W. Long-term sleep deprivation down-regulates AMPK/SIRT1 /PGC-1α pathway and causes lipid metabolism disorder in mice. Pract. Prev. Med. 2022, 29, 678–682. [Google Scholar]
- Li, W.; Cheng, Y.; Zhang, Y.; Qian, Y.; Wu, M.; Huang, W.; Yang, N.; Liu, Y. Shumian Capsule Improves the Sleep Disorder and Mental Symptoms Through Melatonin Receptors in Sleep-Deprived Mice. Front. Pharmacol. 2022, 13, 925828. [Google Scholar] [CrossRef]
- Juanjuan, L. Clinical Study of Plasma GABA, Glu and Ach Levels in Patients with Insomnia Combined with Cerebral lnfarction. Med. Innov. China 2019, 16, 37–40. [Google Scholar]
- Suyun, M.; Liyan, N.; Li, W.; Limin, S.; Jiyou, T. Effects of orexin receptors on the spatial learning and memory and proliferation of dentate gyrus cells in rats with sleep deprivation. J. Shandong Univ. (Health Sci.) 2019, 57, 41–47. [Google Scholar]
- Zucheng, L.; Zechun, K.; Shucui, L.; Yuanfang, W. Effects of caffeine on learning memory and hippocampal antioxidant capacity and cholinergic system in sleep deprived aged mice cholinergic system. Chin. J. Gerontol. 2016, 36, 2583–2585. [Google Scholar]
- Tong, L.; Shumei, X. Effect of sleep deprivation on Ach level in hippocampus and learning ability of rats. J. Clin. Exp. Med. 2007, 31, 12–13. [Google Scholar]
- Zhao, X.; Zhang, R.; Tang, S.; Ren, Y.; Yang, W.; Liu, X.; Tang, J. Orexin-A-induced ERK1/2 activation reverses impaired spatial learning and memory in pentylenetetrazol-kindled rats via OX1R-mediated hippocampal neurogenesis. Peptides 2014, 54, 140–147. [Google Scholar] [CrossRef]
- Tang, S.; Huang, W.; Lu, S.; Lu, L.; Li, G.; Chen, X.; Liu, X.; Lv, X.; Zhao, Z.; Duan, R.; et al. Increased plasma orexin-A levels in patients with insomnia disorder are not associated with prepro-orexin or orexin receptor gene polymorphisms. Peptides 2017, 88, 55–61. [Google Scholar] [CrossRef] [PubMed]
- Lili, L.; Weiwei, H.; Jiyou, T. Study of correlation between orexin-A and memory in the patients with primary insomnia. Chin. J. Nerv. Ment. Dis. 2014, 40, 542–546. [Google Scholar]
- Yun, S.; Wei, Z.; Meimei, Z. A preliminary study on the relationships among orexin-A, psychiatric symptoms, sleep quality, sleepiness and cognitive functions in patients with Alzheimer’s disease. J. Psychiatry 2021, 34, 132–135. [Google Scholar]
- Aou, S.; Li, X.L.; Li, A.J.; Oomura, Y.; Shiraishi, T.; Sasaki, K.; Imamura, T.; Wayner, M.J. Orexin-A (hypocretin-1) impairs Morris water maze performance and CA1-Schaffer collateral long-term potentiation in rats. Neuroscience 2003, 119, 1221–1228. [Google Scholar] [CrossRef] [PubMed]
- Briggs, C.; Bowes, S.C.; Semba, K.; Hirasawa, M. Sleep deprivation-induced pre- and postsynaptic modulation of orexin neurons. Neuropharmacology 2019, 154, 50–60. [Google Scholar] [CrossRef]
- Ni, L.Y.; Zhu, M.J.; Song, Y.; Liu, X.M.; Tang, J.Y. Pentylenetetrazol-induced seizures are exacerbated by sleep deprivation through orexin receptor-mediated hippocampal cell proliferation. Neurol. Sci. 2014, 35, 245–252. [Google Scholar] [CrossRef]
- Huang, H.; Jiang, N.; Zhang, Y.W.; Lv, J.W.; Wang, H.X.; Lu, C.; Liu, X.M.; Lu, G.H. Gastrodia elata blume ameliorates circadian rhythm disorder-induced mice memory impairment. Life Sci. Space Res. 2021, 31, 51–58. [Google Scholar] [CrossRef]
- Meyer, N.; Harvey, A.G.; Lockley, S.W.; Dijk, D.J. Circadian rhythms and disorders of the timing of sleep. Lancet 2022, 400, 1061–1078. [Google Scholar] [CrossRef]
- Reid, K.J.; McGee-Koch, L.L.; Zee, P.C. Cognition in circadian rhythm sleep disorders. Prog. Brain Res. 2011, 190, 3–20. [Google Scholar] [CrossRef]
- Craig, L.A.; McDonald, R.J. Chronic disruption of circadian rhythms impairs hippocampal memory in the rat. Brain Res. Bull. 2008, 76, 141–151. [Google Scholar] [CrossRef]
- Müller, L.; Fritzsche, P.; Weinert, D. Novel object recognition of Djungarian hamsters depends on circadian time and rhythmic phenotype. Chronobiol. Int. 2015, 32, 458–467. [Google Scholar] [CrossRef] [PubMed]
- Xu, S.; Akioma, M.; Yuan, Z. Relationship between circadian rhythm and brain cognitive functions. Front. Optoelectron. 2021, 14, 278–287. [Google Scholar] [CrossRef] [PubMed]
- Garren, M.V.; Sexauer, S.B.; Page, T.L. Effect of circadian phase on memory acquisition and recall: Operant conditioning vs. classical conditioning. PLoS ONE 2013, 8, e58693. [Google Scholar] [CrossRef] [PubMed]
- Gerstner, J.R.; Yin, J.C. Circadian rhythms and memory formation. Nat. Rev. Neurosci. 2010, 11, 577–588. [Google Scholar] [CrossRef] [PubMed]
- Eckel-Mahan, K.L.; Storm, D.R. Circadian rhythms and memory: Not so simple as cogs and gears. EMBO Rep. 2009, 10, 584–591. [Google Scholar] [CrossRef] [PubMed]
- Sherman, S.M.; Mumford, J.A.; Schnyer, D.M. Hippocampal activity mediates the relationship between circadian activity rhythms and memory in older adults. Neuropsychologia 2015, 75, 617–625. [Google Scholar] [CrossRef]
- Muto, V.; Jaspar, M.; Meyer, C.; Kussé, C.; Chellappa, S.L.; Degueldre, C.; Balteau, E.; Shaffii-Le Bourdiec, A.; Luxen, A.; Middleton, B.; et al. Local modulation of human brain responses by circadian rhythmicity and sleep debt. Science 2016, 353, 687–690. [Google Scholar] [CrossRef]
- Niu, L.; Zhang, F.; Xu, X.; Yang, Y.; Li, S.; Liu, H.; Le, W. Chronic sleep deprivation altered the expression of circadian clock genes and aggravated Alzheimer’s disease neuropathology. Brain Pathol. 2022, 32, e13028. [Google Scholar] [CrossRef]
- Kim, J.H.; Kim, J.H.; Cho, Y.E.; Baek, M.C.; Jung, J.Y.; Lee, M.G.; Jang, I.S.; Lee, H.W.; Suk, K. Chronic sleep deprivation-induced proteome changes in astrocytes of the rat hypothalamus. J. Proteome Res. 2014, 13, 4047–4061. [Google Scholar] [CrossRef]
- Sun, W.; Li, J.; Cui, S.; Luo, L.; Huang, P.; Tang, C.; An, L. Sleep Deprivation Disrupts Acquisition of Contextual Fear Extinction by Affecting Circadian Oscillation of Hippocampal-Infralimbic proBDNF. eNeuro 2019, 6, 31585927. [Google Scholar] [CrossRef]
- Chee, M.W.; Chuah, L.Y. Functional neuroimaging insights into how sleep and sleep deprivation affect memory and cognition. Curr. Opin. Neurol. 2008, 21, 417–423. [Google Scholar] [CrossRef] [PubMed]
- Kopasz, M.; Loessl, B.; Hornyak, M.; Riemann, D.; Nissen, C.; Piosczyk, H.; Voderholzer, U. Sleep and memory in healthy children and adolescents—A critical review. Sleep Med. Rev. 2010, 14, 167–177. [Google Scholar] [CrossRef] [PubMed]
- Pasula, E.Y.; Brown, G.G.; McKenna, B.S.; Mellor, A.; Turner, T.; Anderson, C.; Drummond, S.P.A. Effects of sleep deprivation on component processes of working memory in younger and older adults. Sleep 2018, 41, zsx213. [Google Scholar] [CrossRef]
- Kim, T.; Kim, S.; Kang, J.; Kwon, M.; Lee, S.H. The Common Effects of Sleep Deprivation on Human Long-Term Memory and Cognitive Control Processes. Front. Neurosci. 2022, 16, 883848. [Google Scholar] [CrossRef] [PubMed]
- Baratta, A.M.; Buck, S.A.; Buchla, A.D.; Fabian, C.B.; Chen, S.; Mong, J.A.; Pocivavsek, A. Sex Differences in Hippocampal Memory and Kynurenic Acid Formation Following Acute Sleep Deprivation in Rats. Sci. Rep. 2018, 8, 6963. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.M.; Zhang, S.; Park, J.; Sung, H.J.; Tran, T.T.; Chung, C.; Han, I.O. REM Sleep Deprivation Impairs Learning and Memory by Decreasing Brain O-GlcNAc Cycling in Mouse. Neurotherapeutics 2021, 18, 2504–2517. [Google Scholar] [CrossRef] [PubMed]
- Semple, B.D.; Blomgren, K.; Gimlin, K.; Ferriero, D.M.; Noble-Haeusslein, L.J. Brain development in rodents and humans: Identifying benchmarks of maturation and vulnerability to injury across species. Prog. Neurobiol. 2013, 106–107, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Vaseghi, S.; Arjmandi-Rad, S.; Kholghi, G.; Nasehi, M. Inconsistent effects of sleep deprivation on memory function. EXCLI J. 2021, 20, 1011–1027. [Google Scholar] [CrossRef]
- Zhang, Y.W.; Li, X.Q.; Tan, W.F.; Fang, B.; Ma, H. Postoperative 24-h Acute Sleep Deprivation Improves Learning and Memory Through Inhibition of Tau Phosphorylation in the Hippocampal Neurons of Splenectomized Rats. Nat. Sci. Sleep 2020, 12, 603–613. [Google Scholar] [CrossRef]
- Clark, R.E.; Squire, L.R. Similarity in form and function of the hippocampus in rodents, monkeys, and humans. Proc. Natl. Acad. Sci. USA 2013, 110 (Suppl. 2), 10365–10370. [Google Scholar] [CrossRef]
- Balsters, J.H.; Zerbi, V.; Sallet, J.; Wenderoth, N.; Mars, R.B. Primate homologs of mouse cortico-striatal circuits. Elife 2020, 9, e53680. [Google Scholar] [CrossRef] [PubMed]
- Chini, M.; Hanganu-Opatz, I.L. Prefrontal Cortex Development in Health and Disease: Lessons from Rodents and Humans. Trends Neurosci. 2021, 44, 227–240. [Google Scholar] [CrossRef] [PubMed]
- Bakken, T.E.; Jorstad, N.L.; Hu, Q.; Lake, B.B.; Tian, W.; Kalmbach, B.E.; Crow, M.; Hodge, R.D.; Krienen, F.M.; Sorensen, S.A.; et al. Comparative cellular analysis of motor cortex in human, marmoset and mouse. Nature 2021, 598, 111–119. [Google Scholar] [CrossRef]
- Schaeffer, D.J.; Hori, Y.; Gilbert, K.M.; Gati, J.S.; Menon, R.S.; Everling, S. Divergence of rodent and primate medial frontal cortex functional connectivity. Proc. Natl. Acad. Sci. USA 2020, 117, 21681–21689. [Google Scholar] [CrossRef] [PubMed]
Subject | Methods | SD Duration | Behavioral Tests | Impaired Memory | References |
---|---|---|---|---|---|
Humanity | Staying awake | 25 h | Recognition test | Prospective memory Recognition memory | [13] |
ICR mice | SIA | 25 d | OLR, NOR, MWM | Short-term spatial and short-term nonspatial recognition memory; long-term spatial memory | [9] |
C57BL/6 mice | Treadmill | 3 d | MWM | Spatial memory | [51] |
C57BL/6 mice | MMPM | 72 h | OLR, NOR | Object position memory Object recognition memory | [52] |
C57BL/6 mice | Gentle stimulation method | 3 h | OPR | Long-term memory | [47] |
3xTg-AD mice | MMPM | 21 d | Y-maze Object identification | Recognition of memories Working memory Conditioned Fear Memory Y-maze memory | [32] |
Mice | MMPM | 72 h | Barnes maze task | Spatial learning and memory | [40] |
SD rat | MMWP | 7 d | Hexagonal Labyrinth Box | Recognition of memory | [53] |
SD rat | Small platform–water environment | 9 d | Small platform–water environment | Memory | [54] |
SD rat | MMPM | 7 d | MWM | Spatial memory | [55] |
SD rat | Chronic and mild unpredictable stimulation | 21 d | RAWM | Target quadrant memory | [56] |
SD rat | MMPM | 30 d | MWM | Memories of learning | [57] |
SD rat | Automated cage-shaking apparatus | 48 h | MWM | Spatial memory | [57] |
SD rat | Gentle stimulation method | 72 h | MWM | Spatial memory | [57] |
SD rat | MMPM | 72 h | Y-maze MWM | Spatial memory Recognition of memories Recognition of memories | [34] |
SD rat | Gentle stimulation method | 12 h | NOR, RAM | Spatial learning and memory | [35] |
SD rat | Automatic TSD water box | 24 h | The three-chamber paradigm test | Social interaction memory | [58] |
Octodon degus | Automated device | 24 h | MWM, NOR | Spatial learning and memory | [49] |
Wistar rats | MMW | 21 d | RAWM | Short- and long-term spatial memory | [37] |
Wistar rats | MMPM | 28 d | RAWM | Short- and long-term memory | [59] |
Wistar rats | “Flower pot” | 96 h | MWM | Memories of learning | [60] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, P.; Ban, W.; Wang, W.; You, Y.; Yang, Z. The Devastating Effects of Sleep Deprivation on Memory: Lessons from Rodent Models. Clocks & Sleep 2023, 5, 276-294. https://doi.org/10.3390/clockssleep5020022
Chen P, Ban W, Wang W, You Y, Yang Z. The Devastating Effects of Sleep Deprivation on Memory: Lessons from Rodent Models. Clocks & Sleep. 2023; 5(2):276-294. https://doi.org/10.3390/clockssleep5020022
Chicago/Turabian StyleChen, Pinqiu, Weikang Ban, Wenyan Wang, Yuyang You, and Zhihong Yang. 2023. "The Devastating Effects of Sleep Deprivation on Memory: Lessons from Rodent Models" Clocks & Sleep 5, no. 2: 276-294. https://doi.org/10.3390/clockssleep5020022
APA StyleChen, P., Ban, W., Wang, W., You, Y., & Yang, Z. (2023). The Devastating Effects of Sleep Deprivation on Memory: Lessons from Rodent Models. Clocks & Sleep, 5(2), 276-294. https://doi.org/10.3390/clockssleep5020022