Cavefishes in Chronobiological Research: A Narrative Review
Abstract
:1. Introduction
2. Results
2.1. Rhythms in Cavefish Behavior
2.2. Molecular Circadian Oscillations in Cavefish
2.3. Microevolutional Aspects of Circadian Clock Reduction in Cavefish
3. Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Subterranean Fishes of the World [Internet]. Available online: https://cavefishes.org.uk/ (accessed on 29 November 2022).
- Borowsky, R. Cavefishes. Curr. Biol. 2018, 28, R60–R64. [Google Scholar] [CrossRef] [PubMed]
- Leys, R.; Watts, C.H.S.; Cooper, S.J.B.; Humphreys, W.F. Evolution of subterranean diving beetles (Coleoptera: Dytiscidae: Hydroporini, Bidessini) in the arid zone of Australia. Evolution 2003, 57, 2819–2834. [Google Scholar] [PubMed]
- Niemiller, M.L.; Soares, D. Cave Environments. In Extremophile Fishes: Ecology, Evolution, and Physiology of Teleosts in Extreme Environments; Riesch, R., Tobler, M., Plath, M., Eds.; Springer: Cham, Switzerland, 2015; pp. 161–191. [Google Scholar]
- Pati, A.K.; Agrawal, A. Studies on the behavioural ecology and physiology of a hypogean loach, Nemacheilus evezardi, from the Kotumsar Cave, India. Curr. Sci. 2002, 83, 1112–1116. [Google Scholar]
- Poulson, T.L.; White, W.B. The cave environment. Science 1969, 165, 971–981. [Google Scholar] [CrossRef] [PubMed]
- Beale, A.; Guibal, C.; Tamai, T.K.; Klotz, L.; Cowen, S.; Peyric, E.; Reynoso, V.H.; Yamamoto, Y.; Whitmore, D. Circadian rhythms in Mexican blind cavefish Astyanax mexicanus in the lab and in the field. Nat. Commun. 2013, 4, 2769. [Google Scholar] [CrossRef] [PubMed]
- Mack, K.L.; Jaggard, J.B.; Persons, J.L.; Roback, E.Y.; Passow, C.N.; Stanhope, B.A.; Ferrufino, E.; Tsuchiya, D.; Smith, S.E.; Slaughter, B.D.; et al. Repeated evolution of circadian clock dysregulation in cavefish populations. PLoS Genet. 2021, 17, e1009642. [Google Scholar] [CrossRef]
- Trajano, E.; Carvalho, M.R.; Duarte, L.; Menna-Barreto, L. Comparative study on free-running locomotor activity circadian rhythms in Brazilian subterranean fishes with different degrees of specialization to the hypogean life (Teleostei: Siluriformes; Characiformes). Biol. Rhythm Res. 2009, 40, 477–489. [Google Scholar] [CrossRef]
- Trajano, E.; Menna-Barreto, L. Free-running locomotor activity rhythms in cave-dwelling catfishes, Trichomycterus sp., from Brazil (Teleostei, Siluriformes). Biol. Rhythm Res. 1996, 27, 329–335. [Google Scholar] [CrossRef]
- Trajano, E.; Menna-Barreto, L. Locomotor Activity Pattern of Brazilian Cave Catfishes under constant Darkness (Siluriformes, Pimelodidae). Biol. Rhythm Res. 1995, 26, 341–353. [Google Scholar] [CrossRef]
- Trajano, E.; Menna-Barreto, L. Locomotor activity rhythms in cave catfishes, genus Taunayia, from Eastern Brazil (Teleostei: Siluriformes: Heptapterinae). Biol. Rhythm Res. 2000, 31, 469–480. [Google Scholar] [CrossRef]
- Trajano, E.; Duarte, L.; Menna-Barreto, L. Locomotor activity rhythms in cave fishes from Chapada Diamantina, Northeastern Brazil (Teleostei: Siluriformes). Biol. Rhythm Res. 2005, 36, 229–236. [Google Scholar] [CrossRef]
- Pati, A.K. Temporal organization in locomotor activity of the hypogean loach, Nemacheilus evezardi, and its epigean ancestor. Environ. Biol. Fishes 2001, 62, 119–129. [Google Scholar] [CrossRef]
- Biswas, J.; Ramteke, A.K. Timed feeding synchronizes circadian rhythm in vertical swimming activity in cave loach, Nemacheilus evezardi. Biol. Rhythm Res. 2008, 39, 405–412. [Google Scholar] [CrossRef]
- Erckens, W.; Martin, W. Exogenous and Endogenous Control of Swimming Activity in Astyanax mexicanus (Characidae, Pisces) by Direct Light Response and by a Circadian Oscillator. II. Features of Time-Controlled Behaviour of a Cave Population and their Comparison to a Epigean Ancestral Form. Z. Naturforsch. 1982, 37, 1266–1273. [Google Scholar]
- Duboué, E.R.; Borowsky, R.L. Altered rest-activity patterns evolve via circadian independent mechanisms in cave adapted balitorid loaches. PLoS ONE 2012, 7, e30868. [Google Scholar] [CrossRef]
- Cavallari, N.; Frigato, E.; Vallone, D.; Fröhlich, N.; Lopez-Olmeda, J.F.; Foa, A.; Berti, R.; Sánchez-Vázquez, F.J.; Bertolucci, C.; Foulkes, N.S. A Blind Circadian Clock in Cavefish Reveals that Opsins Mediate Peripheral Clock Photoreception. PLoS Biol. 2011, 9, e1001142. [Google Scholar] [CrossRef]
- Trajano, E. Diversity of brazilian troglobitic fishes: Models of colonization and differentiation in subterranean habitats. Diversity 2021, 13, 106. [Google Scholar] [CrossRef]
- Pradhan, R.K.; Pati, A.K.; Agarwal, S.M. Meal scheduling modulation of circadian rhythm of phototactic behaviour in cave dwelling fish. Chronobiol. Int. 1989, 6, 245–249. [Google Scholar] [CrossRef]
- Biswas, J.; Pradhan, R.K.; Pati, A.K. Studies on burying behavior in epigean and hypogean fish, Oreonectes evezardi: An example of behavioral divergence. Mem. Biospeol. 1990, 17, 33–42. [Google Scholar]
- Biswas, J.; Pati, A.K.; Pradhan, R.K. Circadian and circannual rhythms in air gulping behaviour of cave fish. J. Interdiscipl. Cycle Res. 1990, 21, 257–268. [Google Scholar] [CrossRef]
- Pradhan, R.K. Biochemical Studies of Some Tissues of Nemacheilus evezardi Day from Kotumsar Cave. Ph.D. Thesis, Pandit Ravishankar Shukla University, Raipur, India, 1984; 195p. [Google Scholar]
- Pradhan, R.; Biswas, J. Towards regressive evolution: The periodic colour change behaviour of a troglophilic fish Nemacheilus evezardi (Day). Int. J. Speleol. 1994, 23, 191–201. [Google Scholar] [CrossRef]
- Jeffery, W.R. Astyanax surface and cave fish morphs. EvoDevo 2020, 11, 14. [Google Scholar] [CrossRef] [PubMed]
- Carlson, B.M.; Gross, J.B. Characterization and comparison of activity profiles exhibited by the cave and surface morphotypes of the blind Mexican tetra, Astyanax mexicanus. Comp. Biochem. Physiol. Part-C Toxicol. Pharmacol. 2018, 208, 114–129. [Google Scholar] [CrossRef] [PubMed]
- Menna-Barreto, L.; Trajano, E. Biological Rhythmicity in Subterranean Animals: A Function Risking Extinction? In Mechanisms of Circadian Systems in Animals and Their Clinical Relevance; Aguilar-Roblero, R., Díaz-Muñoz, M., Fanjul-Moles, M.L., Eds.; Springer: Cham, Switzerland, 2015; pp. 55–68. [Google Scholar]
- Calderoni, L.; Rota-Stabelli, O.; Frigato, E.; Panziera, A.; Kirchner, S.; Foulkes, N.S.; Kruckenhauser, L.; Bertolucci, C.; Fuselli, S. Relaxed selective constraints drove functional modifications in peripheral photoreception of the cavefish P. andruzzii and provide insight into the time of cave colonization. Heredity 2016, 117, 383–392. [Google Scholar] [CrossRef] [PubMed]
- Stemmer, M.; Schuhmacher, L.N.; Foulkes, N.S.; Bertolucci, C.; Wittbrodt, J. Cavefish eye loss in response to an early block in retinal differentiation progression. Development 2015, 142, 743–752. [Google Scholar] [CrossRef] [PubMed]
- Fumey, J.; Hinaux, H.; Noirot, C.; Thermes, C.; Rétaux, S.; Casane, D. Evidence for late Pleistocene origin of Astyanax mexicanus cavefish. BMC Evol. Biol. 2018, 18, 43. [Google Scholar] [CrossRef]
- Ziv, L.; Levkovitz, S.; Toyama, R.; Falcon, J.; Gothilf, Y. Functional development of the zebrafish pineal gland: Light-induced expression of period2 is required for onset of the circadian clock. J. Neuroendocrinol. 2005, 17, 314–320. [Google Scholar] [CrossRef]
- Tamai, T.K.; Young, L.C.; Whitmore, D. Light signaling to the zebrafish circadian clock by Cryptochrome 1a. Proc. Natl. Acad. Sci. USA 2007, 104, 14712–14717. [Google Scholar] [CrossRef]
- Frøland Steindal, I.A.; Beale, A.D.; Yamamoto, Y.; Whitmore, D. Development of the Astyanax mexicanus circadian clock and non-visual light responses. Dev. Biol. 2018, 441, 345–354. [Google Scholar] [CrossRef]
- Tamai, T.K.; Vardhanabhuti, V.; Foulkes, N.S.; Whitmore, D. Early embryonic light detection improves survival. Curr. Biol. 2004, 14, R104–R105. [Google Scholar] [CrossRef]
- Gavriouchkina, D.; Fischer, S.; Ivacevic, T.; Stolte, J.; Benes, V.; Dekens, M.P.S. Thyrotroph embryonic factor regulates light-induced transcription of repair genes in zebrafish embryonic cells. PLoS ONE 2010, 5, e12542. [Google Scholar] [CrossRef] [PubMed]
- Colli, L.; Paglianti, A.; Berti, R.; Gandolfi, G.; Tagliavini, J. Molecular phylogeny of the blind cavefish Phreatichthys andruzzii and Garra barreimiae within the family Cyprinidae. Environ. Biol. Fishes 2009, 84, 95–107. [Google Scholar] [CrossRef]
- Frøland Steindal, I.A.; Whitmore, D. Circadian clocks in fish-what have we learned so far? Biology 2019, 8, 17. [Google Scholar] [CrossRef] [Green Version]
- Pittendrigh, C.S. Temporal organization: Reflections of a Darwinian clock-watcher. Annu. Rev. Physiol. 1993, 55, 16–54. [Google Scholar] [CrossRef] [PubMed]
- Beale, A.D.; Whitmore, D. Daily Rhythms in a Timeless Environment: Circadian Clocks in Astyanax mexicanus. In Biology and Evolution of the Mexican Cavefish; Keene, A.C., Yoshizawa, M., McGaugh, S.E., Eds.; Academic Press: Cambridge, MA, USA, 2016; pp. 309–333. [Google Scholar]
- Friedrich, M. Biological clocks and visual systems in cave-adapted animals at the dawn of speleogenomics. Integr. Comp. Biol. 2013, 53, 50–67. [Google Scholar] [CrossRef]
- Yoshizawa, M.; Gorički, Š.; Soares, D.; Jeffery, W.R. Evolution of a behavioral shift mediated by superficial neuromasts helps cavefish find food in darkness. Curr. Biol. 2010, 20, 1631–1636. [Google Scholar] [CrossRef]
- Moran, D.; Softley, R.; Warrant, E.J. Eyeless mexican cavefish save energy by eliminating the circadian rhythm in metabolism. PLoS ONE 2014, 9, e107877. [Google Scholar] [CrossRef]
- Blin, M.; Fumey, J.; Lejeune, C.; Policarpo, M.; Leclercq, J.; Père, S.; Torres-Paz, J.; Pierre, C.; Imarazene, B.; Rétaux, S. Diversity of Olfactory Responses and Skills in Astyanax Mexicanus Cavefish Populations Inhabiting different Caves. Diversity 2020, 12, 395. [Google Scholar] [CrossRef]
- Mulder, C.; Gerkema, M.P.; Van der Zee, E.A. Circadian clocks and memory: Time-place learning. Front. Mol. Neurosci. 2013, 6, 8. [Google Scholar] [CrossRef]
- Lunghi, E.; Bilandžija, H. Longevity in Cave Animals. Front. Ecol. Evol. 2022, 10, 874123. [Google Scholar] [CrossRef]
- Voituron, Y.; de Fraipont, M.; Issartel, J.; Guillaume, O.; Clobert, J. Extreme lifespan of the human fish (Proteus anguinus): A challenge for ageing mechanisms. Biol. Lett. 2011, 7, 105–107. [Google Scholar] [CrossRef] [PubMed]
- Puljas, S.; Peharda, M.; Morton, B.; Giljanović, N.Š.; Jurić, I. Growth and Longevity of the „Living fossil” Congeria kusceri (Bivalvia: Dreissenidae) from the Subterranean Dinaric Karst of Croatia. Malacologia 2014, 57, 353–364. [Google Scholar] [CrossRef]
- Poulson, T.L. Cave adaptation in Amblyopsid fishes. Am. Midl. Nat. 1963, 70, 257–290. [Google Scholar] [CrossRef]
- Secutti, S.; Trajano, E. Reproductive behavior, development and eye regression in the cave armored catfish, Ancistrus cryptophthalmus Reis, 1987 (Siluriformes: Loricariidae), breed in laboratory. Neotrop. Ichthyol. 2009, 7, 479–490. [Google Scholar] [CrossRef]
- Heuts, M.J. Ecology, variation and adaptationof the blind African cave fish Caecobarbus geertsii Blgr. Ann. Soc. R. Zool. Belg. 1951, 82, 155–230. [Google Scholar]
- Trajano, E. Population ecology of Pimelodella kronei, troglobitic catfish from Southeastern Brazil (Siluriformes, Pimelodiae). Environ. Biol. Fishes 1991, 30, 407–421. [Google Scholar] [CrossRef]
- Proudlove, G.S.; Romero, A. Threatened fishes of the world: Caecobarbus geertsii Boulenger, 1921 (Cyprinidae). Environ. Biol. Fishes 2001, 62, 238. [Google Scholar] [CrossRef]
- Secutti, S.; Trajano, E. Reproduction, development, asymmetry and late eye regression in the Brazilian cave catfish Ituglanis passensis (Siluriformes, Trichomycteridae): Evidence contributing to the neutral mutation theory. Subterr. Biol. 2021, 38, 91–112. [Google Scholar] [CrossRef]
- Fonseca Costa, S.S.; Ripperger, J.A. Impact of the circadian clock on the aging process. Front. Neurol. 2015, 6, 43. [Google Scholar] [CrossRef]
- Froy, O. Circadian rhythms, aging, and life span in mammals. Physiology 2011, 26, 225–235. [Google Scholar] [CrossRef]
- Ghosh, S.; Lewis, K.N.; Tulsian, R.; Astafev, A.A.; Buffenstein, R.; Kondratov, R.V. It’s about time; divergent circadian clocks in livers of mice and naked mole-rats. FASEB J. 2021, 35, e21590. [Google Scholar] [CrossRef] [PubMed]
Species | Degree of Troglomorphism * | Light Mode or Feeding Regime ** | Periods of Rhythms, h | Arrhythmic Individuals, % | References | ||
---|---|---|---|---|---|---|---|
Ultradian | Circadian | Infradian | |||||
Stygichthys typhlops | ++++ | DD | - | - | - | 100 | [9] a |
Aspidoras mephisto | + | DD | 3.8–14 | 24.3–25.2 | - | - | [9] a |
Rhamdia enfurnada | ++ | DD | 6.4–18.9 | 21.7–27.0 | - | 14.3 | [9] a |
Trichomycterus itacarambiensis | ++ | DD | 2.4–19.7 | 21.4–26.1 | 28.5–128 | - | [9,10] a,b |
Pimelodella spelaea | + | DD | 7.9–18.4 | 20.25–25.9 | - | 9.1 | [9] a |
Pimelodella kronei | ++ | DD | 4.6–19.7 | 22–27.5 | 28.4–128 | - | [9,11] a,b |
Rhamdiopsis sp. (from Salitre Cave) | + | DD | 7.7–16.5 | 20.66–26.7 | 28.25 | 22.2 | [9] a |
Rhamdiopsis sp. (from Toca do Gonçalo cave) | ++++ | DD | 1.1–14.5 | - | - | 40 | [12] b |
LD (12:12) | 8–14 | 24 | 42 | - | |||
LD → DD | 2.8–5.3 | 24 | - | 25 | |||
Rhamdiopsis krugi | ++++ | DD | 1–13.5 | 23.3–24 | 28.4–128 | 2 | [13] c |
LD (12:12) | 1.8–12 | 23.58–24.25 | - | - | |||
LD → DD | 1.1–10.9 | 23.4–24 | - | - | |||
Indoreonectes (Nemacheilus) evezardi | + | LD (12:12) | 12 | 24–26.18 | - | - | [14,15] d |
LD → DD | 8.29–12.32 | 21.71–25.33 | 28.5 | 0–42.9 | |||
SF | - | 24 | - | - | |||
Astyanax mexicanus | ++ | LD (12:12) | - | 23.95–25.6 | - | - | [7,16] e,f |
LD (9:9) | 18 | - | - | - | |||
LD (3:7) | 10 | - | - | - | |||
LD → DD | - | - *** | - | - | |||
Schistura jaruthanini | + | DD | - | 23.19 | - | - | [17] g |
S. spiesi | ++ | DD | - | 24.06 | - | - | [17] g |
S. oedipus | ++ | DD | - | - | 38.5 | - | [17] g |
Nemacheilus troglocataractus | +++ | DD | - | 24.92 | - | - | [17] g |
Phreatichthys andruzzii | ++++ | LD (12:12) | - | - | - | 100 | [18] h |
SF | - | 24 | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pavlova, V.V.; Krylov, V.V. Cavefishes in Chronobiological Research: A Narrative Review. Clocks & Sleep 2023, 5, 62-71. https://doi.org/10.3390/clockssleep5010007
Pavlova VV, Krylov VV. Cavefishes in Chronobiological Research: A Narrative Review. Clocks & Sleep. 2023; 5(1):62-71. https://doi.org/10.3390/clockssleep5010007
Chicago/Turabian StylePavlova, Vera V., and Viacheslav V. Krylov. 2023. "Cavefishes in Chronobiological Research: A Narrative Review" Clocks & Sleep 5, no. 1: 62-71. https://doi.org/10.3390/clockssleep5010007
APA StylePavlova, V. V., & Krylov, V. V. (2023). Cavefishes in Chronobiological Research: A Narrative Review. Clocks & Sleep, 5(1), 62-71. https://doi.org/10.3390/clockssleep5010007