Eco-Friendly Synthesis of Silver Nanoparticles Using Pulsed Plasma in Liquid: Effect of Surfactants
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Khan, M.; Shaik, M.R.; Adil, S.F.; Khan, S.T.; Al-Warthan, A.; Siddiqui, M.R.H.; Tahir, M.N.; Tremel, W. Plant extracts as green reductants for the synthesis of silver nanoparticles: Lessons from chemical synthesis. Dalton Trans. 2018, 47, 11988–12010. [Google Scholar] [CrossRef] [PubMed]
- Gloag, L.; Mehdipour, M.; Chen, D.F.; Tilley, R.D.; Gooding, J.J. Advances in the application of magnetic nanoparticles for sensing. Adv. Mater. 2019, 31, 1904385. [Google Scholar] [CrossRef] [PubMed]
- Bharat, T.C.; Mondal, S.; Gupta, H.S.; Singh, P.K.; Das, A.K. Synthesis of doped zinc oxide nanoparticles: A review. Mater. Today-Proc. 2019, 11, 767–775. [Google Scholar] [CrossRef]
- Escalera-López, D.; Niu, Y.; Yin, J.; Cooke, K.; Rees, N.V.; Palmer, R.E. Enhancement of the Hydrogen Evolution Reaction from Ni-MoS2 Hybrid Nanoclusters. ACS Catal. 2016, 6, 6008–6017. [Google Scholar] [CrossRef] [Green Version]
- Liao, T.W.; Yadav, A.; Ferrari, P.; Niu, Y.B.; Wei, X.K.; Vernieres, J.; Hu, K.J.; Heggen, M.; Dunin-Borkowski, R.E.; Palmer, R.E.; et al. Composition-tuned Pt-skinned PtNi bimetallic clusters as highly efficient methanol dehydrogenation catalysts. Chem. Mater. 2019, 31, 10040–10048. [Google Scholar] [CrossRef]
- Sankar, M.; He, Q.; Engel, R.V.; Sainna, M.A.; Logsdail, A.J.; Roldan, A.; Willock, D.J.; Agarwal, N.; Kiely, C.J.; Hutchings, G.J. Role of the support in gold-containing nanoparticles as heterogeneous catalysts. Chem. Rev. 2020, 120, 3890–3938. [Google Scholar] [CrossRef] [Green Version]
- Tan, H.W.; An, J.; Chua, C.K.; Tran, T. Metallic nanoparticle inks for 3D printing of electronics. Adv. Electron. Mater. 2019, 5, 1800831. [Google Scholar] [CrossRef]
- Sharma, A.; Yu, H.; Cho, I.S.; Seo, H.; Ahn, B. ZrO2 nanoparticle embedded low silver lead free solder alloy for modern electronic devices. Electron. Mater. Lett. 2019, 15, 27–35. [Google Scholar] [CrossRef]
- Shkir, M.; Khan, M.T.; Ashraf, I.M.; AlFaify, S.; El-Toni, A.M.; Aldalbahi, A.; Ghaithan, H.; Khan, A. Rapid microwave-assisted synthesis of Ag-doped PbS nanoparticles for optoelectronic applications. Ceram. Int. 2019, 45, 21975–21985. [Google Scholar] [CrossRef]
- Baldini, E.; Chiodo, L.; Dominguez, A.; Palummo, M.; Moser, S.; Yazdi-Rizi, M.; Aubock, G.; Mallett, B.P.P.; Berger, H.; Magrez, A.; et al. Strongly bound excitons in anatase TiO2 single crystals and nanoparticles. Nat. Commun. 2017, 8, 13. [Google Scholar] [CrossRef]
- Sabela, M.; Balme, S.; Bechelany, M.; Janot, J.M.; Bisetty, K. A review of gold and silver nanoparticle-based colorimetric sensing assays. Adv. Eng. Mater. 2017, 19, 1700270. [Google Scholar] [CrossRef]
- Galdiero, S.; Falanga, A.; Vitiello, M.; Cantisani, M.; Marra, V.; Galdiero, M. Silver nanoparticles as potential antiviral agents. Molecules 2011, 16, 8894–8918. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, J.X.; Li, J.H.; Guo, G.Y.; Wang, Q.J.; Tang, J.; Zhao, Y.C.; Qin, H.; Wahafu, T.; Shen, H.; Liu, X.Y.; et al. Silver-nanoparticles-modified biomaterial surface resistant to staphylococcus: New insight into the antimicrobial action of silver. Sci. Rep. 2016, 6, 1–16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Richter, A.P.; Brown, J.S.; Bharti, B.; Wang, A.; Gangwal, S.; Houck, K.; Hubal, E.A.C.; Paunov, V.N.; Stoyanov, S.D.; Velev, O.D. An environmentally benign antimicrobial nanoparticle based on a silver-infused lignin core. Nat. Nanotechnol. 2015, 10, 817–823. [Google Scholar] [CrossRef] [PubMed]
- Duran, N.; Marcato, P.D.; De Souza, G.I.H.; Alves, O.L.; Esposito, E. Antibacterial effect of silver nanoparticles produced by fungal process on textile fabrics and their effluent treatment. J. Biomed. Nanotechnol. 2007, 3, 203–208. [Google Scholar] [CrossRef] [Green Version]
- Zheng, K.Y.; Setyawati, M.I.; Leong, D.T.; Xie, J.P. Antimicrobial silver nanomaterials. Coord. Chem. Rev. 2018, 357, 1–17. [Google Scholar] [CrossRef]
- Asoro, M.A.; Kovar, D.; Ferreira, P.J. Effect of surface carbon coating on sintering of silver nanoparticles: In situ TEM observations. Chem. Commun. 2014, 50, 4835–4838. [Google Scholar] [CrossRef]
- Murphy, C.J. Sustainability as an emerging design criterion in nanoparticle synthesis and applications. J. Mater. Chem. 2008, 18, 2173–2176. [Google Scholar] [CrossRef]
- Cinelli, M.; Coles, S.R.; Nadagouda, M.N.; Blaszczynski, J.; Slowinski, R.; Varma, R.S.; Kirwan, K. A green chemistry-based classification model for the synthesis of silver nanoparticles. Green Chem. 2015, 17, 2825–2839. [Google Scholar] [CrossRef] [Green Version]
- Sun, Y.G. Controlled synthesis of colloidal silver nanoparticles in organic solutions: Empirical rules for nucleation engineering. Chem. Soc. Rev. 2013, 42, 2497–2511. [Google Scholar] [CrossRef]
- Hu, Y.J.; Shi, Y.L.; Jiang, H.; Huang, G.J.; Li, C.Z. Scalable preparation of ultrathin silica-coated Ag nanoparticles for SERS application. Acs Appl. Mater. Interfaces 2013, 5, 10643–10649. [Google Scholar] [CrossRef]
- Nadagouda, M.N.; Speth, T.F.; Varma, R.S. Microwave-assisted green synthesis of silver nanostructures. Acc. Chem. Res. 2011, 44, 469–478. [Google Scholar] [CrossRef] [PubMed]
- Baruwati, B.; Polshettiwar, V.; Varma, R.S. Glutathione promoted expeditious green synthesis of silver nanoparticles in water using microwaves. Green Chem. 2009, 11, 926–930. [Google Scholar] [CrossRef]
- Hebbalalu, D.; Lalley, J.; Nadagouda, M.N.; Varma, R.S. Greener techniques for the synthesis of silver nanoparticles using plant extracts, enzymes, bacteria, biodegradable polymers, and microwaves. ACS Sustain. Chem. Eng. 2013, 1, 703–712. [Google Scholar] [CrossRef]
- Pansare, A.; Shedge, A.; Chhatre, S.; Punam Murkute, D.; Pansare, S.; Nagarkar, A.; Patil, V.; Chakrabarti, S. AgQDs employing black box synthetic strategy: Photocatalytic and biological behavior. J. Lumin. 2019, 212, 133–140. [Google Scholar] [CrossRef]
- Iravani, S.; Korbekandi, H.; Mirmohammadi, S.V.; Zolfaghari, B. Synthesis of silver nanoparticles: Chemical, physical and biological methods. Res. Pharm. Sci. 2014, 9, 385–406. [Google Scholar]
- Zhao, J.L.; Cao, L.; Palmer, R.E.; Nordlund, K.; Djurabekova, F. Formation and emission mechanisms of Ag nanoclusters in the Ar matrix assembly cluster source. Phys. Rev. Mater. 2017, 1, 066002. [Google Scholar] [CrossRef] [Green Version]
- Mashimo, T.; Shota, T.; Yamamoto, K.; Kelgenbaeva, Z.; Ma, W.J.; Tokuda, M.; Koinuma, M.; Isobe, H.; Yoshiasa, A. Synthesis of Pd–Ru solid-solution nanoparticles by pulsed plasma in liquid method. Rsc. Adv. 2020, 10, 13232–13236. [Google Scholar] [CrossRef] [Green Version]
- Sulaimankulova, S.; Mametova, A.; Abdullaeva, Z. Fusiform gold nanoparticles by pulsed plasma in liquid method. SN Appl. Sci. 2019, 1, 1427. [Google Scholar] [CrossRef] [Green Version]
- Kelgenbaeva, Z.; Omurzak, E.; Takebe, S.; Sulaimankulova, S.; Abdullaeva, Z.; Iwamoto, C.; Mashimo, T. Synthesis of pure iron nanoparticles at liquid–liquid interface using pulsed plasma. J. Nanopart. Res. 2014, 16, 1–11. [Google Scholar] [CrossRef]
- Omurzak, E.; Jasnakunov, J.; Mairykova, N.; Abdykerimova, A.; Maatkasymova, A.; Sulaimankulova, S.; Matsuda, M.; Nishida, M.; Ihara, H.; Mashimo, T. Synthesis method of nanomaterials by pulsed plasma in liquid. J. Nanosci. Nanotechnol. 2007, 7, 3157–3159. [Google Scholar] [CrossRef] [PubMed]
- Omurzak, E.; Abdullaeva, Z.; Iwamoto, C.; Ihare, H.; Sulaimankulova, S.; Mashimo, T. Synthesis of hollow carbon nano-onions using the pulsed plasma in liquid. J. Nanosci. Nanotechnol. 2015, 15, 3703–3709. [Google Scholar] [CrossRef]
- El-Shabasy, R.; Yosri, N.; El-Seedi, H.; Shoueir, K.; El-Kemary, M. A green synthetic approach using chili plant supported Ag/Ag2O@ P25 heterostructure with enhanced photocatalytic properties under solar irradiation. Optik 2019, 192, 162943. [Google Scholar] [CrossRef]
- Lee, H.; Park, S.H.; Jung, S.C.; Yun, J.J.; Kim, S.J.; Kim, D.H. Preparation of nonaggregated silver nanoparticles by the liquid phase plasma reduction method. J. Mater. Res. 2013, 28, 1105–1110. [Google Scholar] [CrossRef]
- Lopez-Miranda, A.; Lopez-Valdivieso, A.; Viramontes-Gamboa, G. Silver nanoparticles synthesis in aqueous solutions using sulfite as reducing agent and sodium dodecyl sulfate as stabilizer. J. Nanopart. Res. 2012, 14, 1–11. [Google Scholar] [CrossRef]
- Song, K.C.; Lee, S.M.; Park, T.S.; Lee, B.S. Korean, Preparation of colloidal silver nanoparticles by chemical reduction method. J. Chem. Eng. 2009, 26, 153–155. [Google Scholar]
- Zhang, W.Z.; Qiao, X.L.; Chen, J.G. Formation of silver nanoparticles in SDS inverse microemulsions. Mater. Chem. Phys. 2008, 109, 411–416. [Google Scholar] [CrossRef]
- Baruah, B.; Kiambuthi, M. Facile synthesis of silver and bimetallic silver–gold nanoparticles and their applications in surface-enhanced Raman scattering. RSC Adv. 2014, 4, 64860–64870. [Google Scholar] [CrossRef]
- Locke, B.R.; Sato, M.; Sunka, P.; Hoffmann, M.R.; Chang, J.S. Electrohydraulic discharge and nonthermal plasma for water treatment. Ind. Eng. Chem. Res. 2006, 45, 882–905. [Google Scholar] [CrossRef]
- Jin, W.; Liang, G.; Zhong, Y.; Yuan, Y.; Jian, Z.; Wu, Z.; Zhang, W. The Influence of CTAB-capped seeds and their aging time on the morphologies of silver nanoparticles. Nanoscale Res. Lett. 2019, 14, 81. [Google Scholar] [CrossRef] [Green Version]
- Zhong, Y.; Liang, G.; Jin, W.; Jian, Z.; Wu, Z.; Chen, Q.; Cai, Y.; Zhang, W. Preparation of triangular silver nanoplates by silver seeds capped with citrate-CTA+. RSC Adv. 2018, 8, 28934–28943. [Google Scholar] [CrossRef] [Green Version]
Samples | Constituent Phases (wt%) | Ag/Ag2O Ratio | Calculated Cell Parameters (Å) | ||
---|---|---|---|---|---|
Ag | Ag2O | Other | |||
SDS | 43.94 | 43.87 | 12.19 | 1.00 | 4.0895 |
CTAB | 72.51 | 16.75 | 10.74 | 4.33 | 4.0907 |
PVP | 64.62 | 19.92 | 15.46 | 3.24 | 4.1007 |
no surfactant | 65.52 | 20.29 | 14.19 | 3.23 | 4.1090 |
JCPDS #65-2871 | / | 4.086 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Niu, Y.; Omurzak, E.; Cai, R.; Syrgakbek kyzy, D.; Zhasnakunov, Z.; Satyvaldiev, A.; Palmer, R.E. Eco-Friendly Synthesis of Silver Nanoparticles Using Pulsed Plasma in Liquid: Effect of Surfactants. Surfaces 2022, 5, 202-208. https://doi.org/10.3390/surfaces5010013
Niu Y, Omurzak E, Cai R, Syrgakbek kyzy D, Zhasnakunov Z, Satyvaldiev A, Palmer RE. Eco-Friendly Synthesis of Silver Nanoparticles Using Pulsed Plasma in Liquid: Effect of Surfactants. Surfaces. 2022; 5(1):202-208. https://doi.org/10.3390/surfaces5010013
Chicago/Turabian StyleNiu, Yubiao, Emil Omurzak, Rongsheng Cai, Dinara Syrgakbek kyzy, Zhanarbek Zhasnakunov, Abduraim Satyvaldiev, and Richard E. Palmer. 2022. "Eco-Friendly Synthesis of Silver Nanoparticles Using Pulsed Plasma in Liquid: Effect of Surfactants" Surfaces 5, no. 1: 202-208. https://doi.org/10.3390/surfaces5010013
APA StyleNiu, Y., Omurzak, E., Cai, R., Syrgakbek kyzy, D., Zhasnakunov, Z., Satyvaldiev, A., & Palmer, R. E. (2022). Eco-Friendly Synthesis of Silver Nanoparticles Using Pulsed Plasma in Liquid: Effect of Surfactants. Surfaces, 5(1), 202-208. https://doi.org/10.3390/surfaces5010013