# Monolayer Gas Adsorption on Graphene-Based Materials: Surface Density of Adsorption Sites and Adsorption Capacity

^{*}

## Abstract

**:**

## 1. Introduction

**equilibrium**surface density of adsorbate molecules. The expression given in [40] that refers to the equilibrium coverage of adsorbate molecules, is used here reversely, for the calculation of the surface density of adsorption sites on the surface of the sensing or adsorbent device in case adsorption kinetics resembles the kinetics of the first order reactions. This agrees with the criteria investigated in [6] and is valid for a broad range of gas adsorption applications. Hence, our work provides a practical method to calculate a parameter that is of primary importance to theoretical and experimental determination of adsorption-desorption reaction kinetics on graphene and other surfaces.

## 2. Methods

## 3. Results and Discussion

## Author Contributions

## Funding

## Acknowledgments

## Conflicts of Interest

## References

- Abdulhalim, I.; Zourob, M.; Lakhtakia, A. Surface plasmon resonance for biosensing: A mini-review. Electromagnetics
**2008**, 28, 214–242. [Google Scholar] [CrossRef] - Tian, W.; Liu, X.; Yu, W. Research progress of gas sensor based on graphene and its derivatives: A review. Appl. Sci.
**2018**, 8, 1118. [Google Scholar] [CrossRef] [Green Version] - Schedin, F.; Geim, A.K.; Morozov, S.V.; Hill, E.W.; Blake, P.; Katsnelson, M.I.; Novoselov, K.S. Detection of individual gas molecules adsorbed on graphene. Nat. Mater.
**2007**, 6, 652–655. [Google Scholar] [CrossRef] - Djurić, Z.; Jokić, I.; Djukić, M.; Frantlović, M. Fluctuations of the adsorbed mass and the resonant frequency of vibrating MEMS/NEMS structures due to multilayer adsorption. Microelecron. Eng.
**2010**, 87, 1181–1184. [Google Scholar] [CrossRef] - Lagergren, S.Y. Zur Theorie Der Sogenannten Adsorption Gelöster Stoffe. Zeitschr f Chem und Ind der Kolloide
**1907**, 2, 15. [Google Scholar] [CrossRef] - Jakšić, O.; Jokić, I.; Jakšić, Z.; Mladenović, I.; Radulović, K.; Frantlović, M. The time response of plasmonic sensors due to binary adsorption: Analytical versus numerical modeling. Appl. Phys. A
**2020**, 126, 1–13. [Google Scholar] [CrossRef] - Weinan, E. Principles of Multiscale Modeling; Cambridge University Press: London, UK, 2011; ISBN 9781107096547. [Google Scholar]
- González-Hernández, J.L.; Canedo, M.M.; Encinar, S. Application of a Robust Hybrid Algorithm (Neural Networks-AGDC) for the Determination of Kinetic Parameters and Discrimination among Reaction Mechanisms. MATCH Commun. Math. Comput. Chem.
**2018**, 79, 619–644. [Google Scholar] - Kumar, G.P.; Malla, K.A.; Yerra, B.; Rao, K.S. Removal of Cu(II) using three low-cost adsorbents and prediction of adsorption using artificial neural networks. Appl. Water Sci.
**2019**, 9, 44. [Google Scholar] [CrossRef] [Green Version] - Ullah, S.; Assiri, M.A.; Al-Sehemi, A.G.; Bustam, M.A.; Sagir, M.; Abdulkareem, F.A.; Raza, M.R.; Ayoub, M.; Irfan, A. Characteristically Insights, Artificial Neural Network (ANN), Equilibrium, and Kinetic Studies of Pb(II) Ion Adsorption on Rice Husks Treated with Nitric Acid. Intern. J. Environ. Res.
**2020**, 14, 43–60. [Google Scholar] [CrossRef] - Anderson, R.; Rodgers, J.; Argueta, E.; Biong, A.; Gomez-Gualdron, D.A. Role of pore chemistry and topology in the CO
_{2}capture capabilities of MOFs: From molecular simulation to machine learning. Chem. Mater.**2018**, 30, 6325–6337. [Google Scholar] [CrossRef] - Do, D.D.; Do, H.D.; Nicholson, D. Effects of surface structure and temperature on the surface mediation, layer concentration and molecular projection area: Adsorption of argon and nitrogen onto graphitized thermal carbon black. Adsorpt. Sci. Technol.
**2007**, 25, 347–363. [Google Scholar] [CrossRef] [Green Version] - Jakšić, O.M.; Randjelović, D.V.; Jakšić, Z.S.; Čupić, Ž.D.; Kolar-Anić, L.Z. Plasmonic sensors in multi-analyte environment: Rate constants and transient analysis. Chem. Eng. Res. Des.
**2014**, 92, 91–101. [Google Scholar] [CrossRef] [Green Version] - Conti, S.; Cecchini, M. Accurate and efficient calculation of the desorption energy of small molecules from graphene. J. Phys. Chem. C
**2015**, 119, 1867–1879. [Google Scholar] [CrossRef] - Leenaerts, O.; Partoens, B.; Peeters, F.M. Adsorption of H
_{2}O, NH_{3}, CO, NO_{2}, and NO on graphene: A first-principles study. Phys. Rev. B**2008**, 77, 125416. [Google Scholar] [CrossRef] [Green Version] - Casolo, S.; Løvvik, O.M.; Martinazzo, R.; Tantardini, G.F. Understanding adsorption of hydrogen atoms on graphene. J. Chem. Phys.
**2009**, 130, 054704. [Google Scholar] [CrossRef] - Lee, G.; Lee, B.; Kim, J.; Cho, K. Ozone adsorption on graphene: Ab initio study and experimental validation. J. Phys. Chem. C.
**2009**, 113, 14225–14229. [Google Scholar] [CrossRef] [Green Version] - Wang, W.; Zhang, Y.; Shen, C.; Chai, Y. Adsorption of CO molecules on doped graphene: A first-principles study. AIP Adv.
**2016**, 6, 025317. [Google Scholar] [CrossRef] - Lin, X.; Ni, J.; Fang, C. Adsorption capacity of H
_{2}O, NH_{3}, CO, and NO_{2}on the pristine graphene. J. Appl. Phys.**2013**, 113, 034306. [Google Scholar] [CrossRef] - Kong, L.; Enders, A.; Rahman, T.S.; Dowben, P.A. Molecular adsorption on graphene. J. Phys. Cond. Matt.
**2014**, 26, 443001. [Google Scholar] [CrossRef] - Jakšić, O. Parameters for modeling and analysis of adsorption kinetics and dynamics in adsorption based refractometric gas sensors. Mendeley Data
**2020**. [Google Scholar] [CrossRef] - Jakšić, O. Parameters for adsorption of (CWA) chemical warfare agents and CWA simulants. Harvard Dataverse
**2018**. [Google Scholar] [CrossRef] - Ulissi, Z.W.; Tang, M.T.; Xiao, J.; Liu, X.; Torelli, D.A.; Karamad, M.; Cummins, K.; Hahn, C.; Lewis, N.S.; Jaramillo, T.F.; et al. Machine-learning methods enable exhaustive searches for active bimetallic facets and reveal active site motifs for CO
_{2}reduction. ACS Catal.**2017**, 7, 6600–6608. [Google Scholar] [CrossRef] [Green Version] - Novoselov, K.S.; Geim, A.K. The rise of graphene. Nat. Mater.
**2007**, 6, 183–191. [Google Scholar] [CrossRef] - Geim, A.K. Graphene: Status and prospects. Science
**2009**, 32, 1530–1534. [Google Scholar] [CrossRef] [Green Version] - Neto, C.; Guinea, F.; Peres, N.; Novoselov, K.S.; Geim, A.K. The electronic properties of graphene. Rev. Mod. Phys.
**2009**, 81, 109–162. [Google Scholar] [CrossRef] [Green Version] - Novoselov, K.S.; Geim, A.K.; Morozov, S.V.; Jiang, D.; Katsnelson, M.I.; Grigorieva, I.V.; Dubonos, S.V.; Firsov, A.A. Two-dimensional gas of massless Dirac fermions in graphene. Nature
**2005**, 438, 197–200. [Google Scholar] [CrossRef] - Mohan, V.B.; Lau, K.; Hui, D.; Bhattacharyya, D. Graphene-based materials and their composites: A review on production, applications and product limitations. Compos. Part B Eng.
**2018**, 142, 200–220. [Google Scholar] [CrossRef] - Nag, A.; Arkadeep, M.; Mukhopadhyay, S.C. Graphene and its sensor-based applications: A review. Sens. Actuators A Phys.
**2018**, 270, 177–194. [Google Scholar] [CrossRef] - Wu, Y.; Jianhua, Z.; Huang, L. A review of three-dimensional graphene-based materials: Synthesis and applications to energy conversion/storage and environment. Carbon
**2019**, 143, 610–640. [Google Scholar] [CrossRef] - Rosli, N.N.; Ibrahim, M.A.; Ludin, N.A.; Mat-Teridi, M.A.; Sopian, K. A review of graphene based transparent conducting films for use in solar photovoltaic applications. Renew. Sustain. Energy Rev.
**2019**, 99, 83–99. [Google Scholar] [CrossRef] - Lawal, A.T. Graphene-based nano composites and their applications: A review. Biosens. Bioelectr.
**2019**, 141, 111384. [Google Scholar] [CrossRef] [PubMed] - Spasenović, M. Applications of Graphene. In Surface and Interface Science: Volume 10: Applications of Surface Science II; Wandelt, K., Ed.; Wiley-VCH: Weinheim, Germany, 2020. [Google Scholar] [CrossRef]
- Balog, R.; Jørgensen, B.; Nilsson, L.; Andersen, M.; Rienks, E.; Bianchi, M.; Fanetti, M.; Lægsgaard, E.; Baraldi, A.; Lizzit, S.; et al. Bandgap opening in graphene induced by patterned hydrogen adsorption. Nat. Mater.
**2010**, 9, 315–319. [Google Scholar] [CrossRef] - Grimme, S.; Jens, A.; Ehrlich, S.; Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys.
**2010**, 132, 154104. [Google Scholar] [CrossRef] [Green Version] - Chan, K.T.; Neaton, J.B.; Cohen, M.L. First-principles study of metal adatom adsorption on graphene. Phys. Rev. B
**2008**, 77, 235430. [Google Scholar] [CrossRef] [Green Version] - Leenaerts, O.; Partoens, B.; Peeters, F.M. Water on graphene: Hydrophobicity and dipole moment using density functional theory. Phys. Rev. B
**2009**, 79, 235440. [Google Scholar] [CrossRef] [Green Version] - Ambrosetti, A.; Silvestrelli, P.L. Adsorption of rare-gas atoms and water on graphite and graphene by van der Waals-corrected density functional theory. J. Phys. Chem. C
**2011**, 115, 3695–3702. [Google Scholar] [CrossRef] - Toth, J. Adsorption: Theory, Modeling, and Analysis; Surfactant Sciences Series; Marcel Dekker Inc: New York, NY, USA, 2002; Volume 107. [Google Scholar] [CrossRef]
- Pu, H.H.; Rhim, S.H.; Gajdardziksa-Josifovska, M.; Hirschmugl, C.J.; Weinert, M.; Chen, J.H. A statistical thermodynamics model for monolayer gas adsorption on graphene-based materials: Implications for gas sensing applications. RSC Adv.
**2014**, 4, 47481–47487. [Google Scholar] [CrossRef] [Green Version] - Jakšić, O. ADmoND: MathWorks Matlab Package for simulation of monolayer adsorption processes in nano devices. Mendeley Data
**2019**. [Google Scholar] [CrossRef] - Nakada, K.; Akira, I. DFT calculation for adatom adsorption on graphene. In Graphene Simulation; Gong, J.R., Ed.; IntechOpen: Rijeka, Croatia, 2011; pp. 1–20. [Google Scholar] [CrossRef] [Green Version]
- Jette, E.R.; Foote, F. Precision determination of lattice constants. J. Chem. Phys.
**1935**, 3, 605–616. [Google Scholar] [CrossRef] - Jakšić, O.; Jakšić, Z.; Čupić, Ž.; Randjelović, D.; Kolar-Anić, L. Fluctuations in transient response of adsorption-based plasmonic sensors. Sens. Actuators B
**2014**, 190, 419–428. [Google Scholar] [CrossRef] - Jakšić, O.; Jakšić, Z.; Rašljić, M.; Kolar-Anić, L. On Oscillations and Noise in Multicomponent Adsorption: The Nature of Multiple Stationary States. Adv. Math. Phys.
**2019**, 2019. [Google Scholar] [CrossRef] - Do, D.D. Adsorption Analysis: Equilibria and Kinetics; Imperial College Press: London, UK, 1998; p. 15. [Google Scholar] [CrossRef]
- Yong, Y.K.; Vig, J.R. Resonator Surface Contamination—A Cause of Frequency fluctuations? IEEE Trans. Ultrason. Ferroelectr. Freq. Control.
**1989**, 36, 452–458. [Google Scholar] [CrossRef] [PubMed] - Barakat, T.; Abodayeh, K.; Al-Dossary, O.M. Exact solutions for vibrational levels of the Morse potential via the asymptotic iteration method. Czech J. Phys.
**2006**, 56, 583–590. [Google Scholar] [CrossRef] [Green Version] - Langmuir, I. The adsorption of gases on plane surfaces of glass, mica and platinum. J. Am. Chem. Soc.
**1918**, 40, 1361–1403. [Google Scholar] [CrossRef] [Green Version] - Ambrosetti, A.; Ferri, N.; DiStasio, R.A.; Tkatchenko, A. Wavelike charge density fluctuations and van der Waals interactions at the nanoscale. Science
**2016**, 351, 1171–1176. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Ambrosetti, A.; Silvestrelli, P.L.; Tkatchenko, A. Physical adsorption at the nanoscale: Towards controllable scaling of the substrate-adsorbate van der Waals interaction. Phys. Rev. B.
**2017**, 95, 235417. [Google Scholar] [CrossRef] [Green Version] - Ambrosetti, A.; Silvestrelli, P.L. Hidden by graphene—Towards effective screening of interface van der Waals interactions via monolayer coating. Carbon
**2018**, 139, 486–491. [Google Scholar] [CrossRef] [Green Version] - Ambrosetti, A.; Silvestrelli, P.L. Faraday-like screening by two-dimensional nanomaterials: A scale-dependent tunable effect. J. Phys. Chem. Lett.
**2019**, 10, 2044–2050. [Google Scholar] [CrossRef] - Ambrosetti, A.; Silvestrelli, P.L. Trends in the change in graphene conductivity upon gas adsorption: The relevance of orbital distortion. J. Phys. Chem. Lett.
**2020**, 11, 2737–2741. [Google Scholar] [CrossRef]

**Figure 1.**(

**a**) ADmoND-generated picture of a crystal surface surrounded by a mixture of three monatomic gases moving freely, adsorbing and desorbing in a stochastic manner. (

**b**) Graphene structure.

**Figure 2.**Possible spacial orientations of (

**a**) carbon monoxide, (

**b**) chlorine and (

**c**) hexane whose range of molecular projection areas are (8.13–11.01), (9.62–16.70) and (21.59–40.59) angström, respectively.

**Figure 3.**(

**a**) The ratio of the adsorption capacities for the monolayer adsorption of carbon monoxide on graphene, calculated with and without neglecting the depletion of the number of the molecules in the gas phase. (

**b**) Surface densities are calculated in three ways: based on the crystallographic surface of graphene (the plane with red dots), based on the molecular size and orientation (the plane with green plus symbols) and by using the expression from [40] based on the desorption energy (mesh).

Gas | CH${}_{4}$ | CO | N${}_{2}$ | A${}_{\mathrm{r}}$ | O${}_{2}$ | CO${}_{2}$ |
---|---|---|---|---|---|---|

[49], p.1390 | 6.3 | 6.6 | 6.6 | 7.7 | 7.7 | 6.1 |

our data | 6.52 | 7.15 | 7.5 | 7.08 | 7.34 | 6.52 |

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Jakšić, O.; Spasenović, M.; Jakšić, Z.; Vasiljević-Radović, D.
Monolayer Gas Adsorption on Graphene-Based Materials: Surface Density of Adsorption Sites and Adsorption Capacity. *Surfaces* **2020**, *3*, 423-432.
https://doi.org/10.3390/surfaces3030031

**AMA Style**

Jakšić O, Spasenović M, Jakšić Z, Vasiljević-Radović D.
Monolayer Gas Adsorption on Graphene-Based Materials: Surface Density of Adsorption Sites and Adsorption Capacity. *Surfaces*. 2020; 3(3):423-432.
https://doi.org/10.3390/surfaces3030031

**Chicago/Turabian Style**

Jakšić, Olga, Marko Spasenović, Zoran Jakšić, and Dana Vasiljević-Radović.
2020. "Monolayer Gas Adsorption on Graphene-Based Materials: Surface Density of Adsorption Sites and Adsorption Capacity" *Surfaces* 3, no. 3: 423-432.
https://doi.org/10.3390/surfaces3030031