Deep Learning-Based Multi-Source Precipitation Forecasting in Arid Regions Using Different Optimizations: A Case Study from Konya, Turkey
Abstract
1. Introduction
- ❖
- Integrating multi-source datasets (MGM and NASA/POWER) for precipitation forecasting in a semi-arid region.
- ❖
- Benchmarking multiple optimization algorithms within the LSTM framework.
- ❖
- Conducting cross-validation between independent data sources to test model robustness and transferability.
2. Materials and Methods
2.1. Study Area
2.2. Data
2.3. LSTM
3. Results
4. Discussion
5. Conclusions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Behzadi, S.; Jalilzadeh, A. Introducing a Novel Digital Elevation Model Using Artificial Neural Network Algorithm. Civ. Eng. Dimens. 2020, 22, 47–51. [Google Scholar] [CrossRef]
- Katipoğlu, O.M. Evaluation of the Performance of Data-Driven Approaches for Filling Monthly Precipitation Gaps in a Semi-Arid Climate Conditions. Acta Geophys. 2023, 71, 2265–2285. [Google Scholar] [CrossRef]
- Hosseiny, S.H.; Bozorg-Haddad, O.; Bocchiola, D. History. In Economical, Political, and Social Issues in Water Resources; Elsevier: Amsterdam, The Netherlands, 2021; pp. 189–216. [Google Scholar]
- Ko, J.; Lee, K.; Hwang, H.; Shin, K. Deep-Learning-Based Precipitation Nowcasting with Ground Weather Station Data and Radar Data. In Proceedings of the 2022 IEEE International Conference on Data Mining Workshops (ICDMW), Orlando, FL, USA, 28 November–1 December 2022; IEEE: Piscataway, NJ, USA, 2022; pp. 1063–1070. [Google Scholar]
- Manandhar, S.; Dev, S.; Lee, Y.H.; Meng, Y.S.; Winkler, S. A Data-Driven Approach to Detect Precipitation from Meteorological Sensor Data. In Proceedings of the IGARSS 2018—2018 IEEE International Geoscience and Remote Sensing Symposium, Valencia, Spain, 22–27 July 2018; IEEE: Piscataway, NJ, USA; pp. 3872–3875. [Google Scholar]
- Waqas, M.; Humphries, U.W.; Hlaing, P.T.; Wangwongchai, A.; Dechpichai, P. Advancements in Daily Precipitation Forecasting: A Deep Dive into Daily Precipitation Forecasting Hybrid Methods in the Tropical Climate of Thailand. MethodsX 2024, 12, 102757. [Google Scholar] [CrossRef]
- Saubhagya, S.; Tilakaratne, C.; Lakraj, P.; Mammadov, M. Granger Causality-Based Forecasting Model for Rainfall at Ratnapura Area, Sri Lanka: A Deep Learning Approach. Forecasting 2024, 6, 1124–1151. [Google Scholar] [CrossRef]
- Halimi, A.H.; Karaca, C.; Büyüktaş, D. Evaluation of NASA POWER Climatic Data against Ground-Based Observations in The Mediterranean and Continental Regions of Turkey. Tekirdağ Ziraat Fakültesi Derg. 2023, 20, 104–114. [Google Scholar] [CrossRef]
- Tan, M.L.; Armanuos, A.M.; Ahmadianfar, I.; Demir, V.; Heddam, S.; Al-Areeq, A.M.; Abba, S.I.; Halder, B.; Cagan Kilinc, H.; Yaseen, Z.M. Evaluation of NASA POWER and ERA5-Land for Estimating Tropical Precipitation and Temperature Extremes. J. Hydrol. 2023, 624, 129940. [Google Scholar] [CrossRef]
- VOSviewer. Welcome to VOSviewer. Available online: https://www.vosviewer.com/ (accessed on 1 June 2025).
- van Eck, N.J.; Waltman, L. Software Survey: VOSviewer, a Computer Program for Bibliometric Mapping. Scientometrics 2010, 84, 523–538. [Google Scholar] [CrossRef]
- Siami-Namini, S.; Tavakoli, N.; Namin, A.S. The Performance of LSTM and BiLSTM in Forecasting Time Series. In Proceedings of the 2019 IEEE International Conference on Big Data (Big Data), Los Angeles, CA, USA, 9–12 December 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 3285–3292. [Google Scholar]
- Kumar Dubey, A.; Kumar, A.; García-Díaz, V.; Kumar Sharma, A.; Kanhaiya, K. Study and Analysis of SARIMA and LSTM in Forecasting Time Series Data. Sustain. Energy Technol. Assess. 2021, 47, 101474. [Google Scholar] [CrossRef]
- El Hafyani, M.; El Himdi, K.; El Adlouni, S.E. Improving Monthly Precipitation Prediction Accuracy Using Machine Learning Models: A Multi-View Stacking Learning Technique. Front. Water 2024, 6, 1378598. [Google Scholar] [CrossRef]
- Sham, F.A.F.; El-Shafie, A.; Jaafar, W.Z.W.; S, A.; Sherif, M.; Ahmed, A.N. Advances in AI-Based Rainfall Forecasting: A Comprehensive Review of Past, Present, and Future Directions with Intelligent Data Fusion and Climate Change Models. Results Eng. 2025, 27, 105774. [Google Scholar] [CrossRef]
- Tuğrul, T.; Hinis, M.A. Improvement of Drought Forecasting by Means of Various Machine Learning Algorithms and Wavelet Transformation. Acta Geophys. 2024, 73, 855–874. [Google Scholar] [CrossRef]
- Gökteş, H.E.; Dağlı, Z. A View to Drought with NDVI and Machine Learning: Konya Closed Basin. Turkish J. Remote Sens. 2022, 4, 75–86. [Google Scholar] [CrossRef]
- Bayari, C.S.; Ozyurt, N.N.; Kilani, S. Radiocarbon Age Distribution of Groundwater in the Konya Closed Basin, Central Anatolia, Turkey. Hydrogeol. J. 2009, 17, 347–365. [Google Scholar] [CrossRef]
- Sarış, F.; Gedik, F. Meteorological Drought Analysis in Konya Closed Basin. J. Geog. 2021, 42, 295–308. Available online: https://dergipark.org.tr/en/pub/iucografya/issue/63677/885519 (accessed on 18 December 2017). [CrossRef]
- Erdogan, H.; Oktar, O.; Gezgin, C.; Poyraz, F.; Arslan, N.; Yilmazturk, F. Investigating the Effects of Groundwater Level Changes on GNSS Observations in the Konya Closed Basin. Earth Sci. Res. J. 2022, 25, 405–414. [Google Scholar] [CrossRef]
- Torun, E.; Çakmak, B. Evaluation of Water Efficiency in Agriculture: The Case of the Konya Closed Basin. Irrig. Drain. 2024, 73, 1470–1482. [Google Scholar] [CrossRef]
- Demir, V.; Uray, E.; Orhan, O.; Yavariabdi, A.; Kusetogulları, H. Trend Analysis of Ground-Water Levels and The Effect of Effective Soil Stress Change: The Case Study of Konya Closed Basin. Eur. J. Sci. Technol. 2021, 24, 515–522. [Google Scholar] [CrossRef]
- Mendyl, A.; Demir, V.; Omar, N.; Orhan, O.; Weidinger, T. Enhancing Solar Radiation Forecasting in Diverse Moroccan Climate Zones: A Comparative Study of Machine Learning Models with Sugeno Integral Aggregation. Atmosphere 2024, 15, 103. [Google Scholar] [CrossRef]
- Demir, V. Evaluation of Solar Radiation Prediction Models Using AI: A Performance Comparison in the High-Potential Region of Konya, Türkiye. Atmosphere 2025, 16, 398. [Google Scholar] [CrossRef]
- Hochreiter, S.; Schmidhuber, J. Long Short-Term Memory. Neural Comput. 1997, 9, 1735–1780. [Google Scholar] [CrossRef] [PubMed]
- Cheng, S.; Qiao, X.; Shi, Y.; Wang, D. Machine Learning for Predicting Discharge Fluctuation of a Karst Spring in North China. Acta Geophys. 2021, 69, 257–270. [Google Scholar] [CrossRef]
- Qiao, Y.; Xu, K.; Zhou, K. Research on Time Series Based on Improved LSTM. In Proceedings of the 2023 IEEE 3rd International Conference on Power, Electronics and Computer Applications (ICPECA), Shenyang, China, 29–31 January 2023; IEEE: Piscataway, NJ, USA, 2023; pp. 951–958. [Google Scholar]
- He, T.; Droppo, J. Exploiting LSTM Structure in Deep Neural Networks for Speech Recognition. In Proceedings of the 2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Shanghai, China, 20–25 March 2016; IEEE: Piscataway, NJ, USA, 2016; pp. 5445–5449. [Google Scholar]
- Wang, X.; Zhang, Y. Multi-Step-Ahead Time Series Prediction Method with Stacking LSTM Neural Network. In Proceedings of the 2020 3rd International Conference on Artificial Intelligence and Big Data (ICAIBD), Chengdu, China, 28–31 May 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 51–55. [Google Scholar]
- Wang, H.; Zhang, J.; Yang, J. Time Series Forecasting of Pedestrian-Level Urban Air Temperature by LSTM: Guidance for Practitioners. Urban Clim. 2024, 56, 102063. [Google Scholar] [CrossRef]
- Demir, V.; Citakoglu, H. Forecasting of Solar Radiation Using Different Machine Learning Approaches. Neural Comput. Appl. 2023, 35, 887–906. [Google Scholar] [CrossRef]
- Legates, D.R.; McCabe, G.J., Jr. Evaluating the Use of “Goodness-of-fit” Measures in Hydrologic and Hydroclimatic Model Validation. Water Resour. Res. 1999, 35, 233–241. [Google Scholar] [CrossRef]
- Heddam, S.; Al-Areeq, A.M.; Tan, M.L.; Ahmadianfar, I.; Halder, B.; Demir, V.; Kilinc, H.C.; Abba, S.I.; Oudah, A.Y.; Yaseen, Z.M. New Formulation for Predicting Total Dissolved Gas Supersaturation in Dam Reservoir: Application of Hybrid Artificial Intelligence Models Based on Multiple Signal Decomposition. Artif. Intell. Rev. 2024, 57, 85. [Google Scholar] [CrossRef]
- Tao, H.; Abba, S.I.; Al-Areeq, A.M.; Tangang, F.; Samantaray, S.; Sahoo, A.; Siqueira, H.V.; Maroufpoor, S.; Demir, V.; Dhanraj Bokde, N.; et al. Hybridized Artificial Intelligence Models with Nature-Inspired Algorithms for River Flow Modeling: A Comprehensive Review, Assessment, and Possible Future Research Directions. Eng. Appl. Artif. Intell. 2024, 129, 107559. [Google Scholar] [CrossRef]
- Citakoglu, H. Comparison of Multiple Learning Artificial Intelligence Models for Estimation of Long-Term Monthly Temperatures in Turkey. Arab. J. Geosci. 2021, 14, 2131. [Google Scholar] [CrossRef]
- Rayudu, D.V.; Roseline, J.F. Accurate Weather Forecasting for Rainfall Prediction Using Artificial Neural Network Compared with Deep Learning Neural Network. In Proceedings of the 2023 International Conference on Artificial Intelligence and Knowledge Discovery in Concurrent Engineering (ICECONF), Chennai, India, 5–7 January 2023; pp. 1–6. [Google Scholar] [CrossRef]
- Chai, T.; Draxler, R.R. Root Mean Square Error (RMSE) or Mean Absolute Error (MAE)? Unpaywall 2014, 15, 5481–5487. [Google Scholar]
- Li, Y.; Tong, Z.; Tong, S.; Westerdahl, D. A Data-Driven Interval Forecasting Model for Building Energy Prediction Using Attention-Based LSTM and Fuzzy Information Granulation. Sustain. Cities Soc. 2022, 76, 103481. [Google Scholar] [CrossRef]
- Willmott, C.J.; Matsuura, K. Advantages of the Mean Absolute Error (MAE) over the Root Mean Square Error (RMSE) in Assessing Average Model Performance. Clim. Res. 2005, 30, 79–82. [Google Scholar] [CrossRef]
- Balti, H.; Ben Abbes, A.; Mellouli, N.; Sang, Y.; Farah, I.R.; Lamolle, M.; Zhu, Y. Big Data Based Architecture for Drought Forecasting Using LSTM, ARIMA, and Prophet: Case Study of the Jiangsu Province, China. In Proceedings of the 2021 International Congress of Advanced Technology and Engineering (ICOTEN), Taiz, Yemen, 4–5 July 2021; IEEE: Piscataway, NJ, USA; pp. 1–8. [Google Scholar]
- Westwater, E.R. Ground-Based Microwave Remote Sensing of Meteorological Variables. In Atmospheric Remote Sensing by Microwave Radiometry; John Wiley and Sons: Hoboken, NJ, USA, 1993; pp. 145–213. ISBN 1251006011111. [Google Scholar]
- Afanasieva, T.V.; Platov, P.V. Forecasting Short-Term and Medium-Term Time Series: A Comparison of Artificial Neural Networks and Fuzzy Models. In Theory and Applications of Time Series Analysis; Springer: Cham, Switzerland, 2020; pp. 349–363. [Google Scholar]
- Wang, T.; Tu, X.; Singh, V.P.; Chen, X.; Lin, K.; Zhou, Z. Drought Prediction: Insights from the Fusion of LSTM and Multi-Source Factors. Sci. Total Environ. 2023, 902, 166361. [Google Scholar] [CrossRef]
- Kadam, C.M.; Bhosle, U.V.; Holambe, R.S. Deep Learning-Driven Regional Drought Assessment: An Optimized Perspective. Earth Sci. Inform. 2024, 17, 1523–1537. [Google Scholar] [CrossRef]
- Vo, T.Q.; Kim, S.-H.; Nguyen, D.H.; Bae, D.-H. LSTM-CM: A Hybrid Approach for Natural Drought Prediction Based on Deep Learning and Climate Models. Stoch. Environ. Res. Risk Assess. 2023, 37, 2035–2051. [Google Scholar] [CrossRef]
- Xu, D.; Zhang, Q.; Ding, Y.; Zhang, D. Application of a Hybrid ARIMA-LSTM Model Based on the SPEI for Drought Forecasting. Environ. Sci. Pollut. Res. 2022, 29, 4128–4144. [Google Scholar] [CrossRef] [PubMed]
- Kow, P.-Y.; Liou, J.-Y.; Yang, M.-T.; Lee, M.-H.; Chang, L.-C.; Chang, F.-J. Advancing Climate-Resilient Flood Mitigation: Utilizing Transformer-LSTM for Water Level Forecasting at Pumping Stations. Sci. Total Environ. 2024, 927, 172246. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.; Al-Ammar, E.A.; Naeem, M.R.; Ko, W.; Choi, H.-J.; Kang, H.-K. Forecasting Renewable Energy for Environmental Resilience through Computational Intelligence. PLoS ONE 2021, 16, e0256381. [Google Scholar] [CrossRef]
- Chang, L.-C.; Yang, M.-T.; Chang, F.-J. Flood Resilience through Hybrid Deep Learning: Advanced Forecasting for Taipei’s Urban Drainage System. J. Environ. Manag. 2025, 379, 124835. [Google Scholar] [CrossRef]
- Taslim, D.G.; Murwantara, I.M. A Comparative Study of ARIMA and LSTM in Forecasting Time Series Data. In Proceedings of the 2022 9th International Conference on Information Technology, Computer, and Electrical Engineering (ICITACEE), Semarang, Indonesia, 25–26 August 2022; IEEE: Piscataway, NJ, USA, 2022; pp. 231–235. [Google Scholar]
- Stolarski, R.S. Evaluation of Chemistry-Climate Model Results Using Long-Term Satellite and Ground-Based Data. Available online: https://ntrs.nasa.gov/citations/20060012184 (accessed on 9 April 2025).
- Arslan, S. A Hybrid Forecasting Model Using LSTM and Prophet for Energy Consumption with Decomposition of Time Series Data. PeerJ Comput. Sci. 2022, 8, e1001. [Google Scholar] [CrossRef]
Parameter | Observed MGM | Observed NASA |
---|---|---|
Mean | 26.77 | 26.77 |
Median | 20.9 | 21.63 |
Standard Deviation | 24.04 | 21.35 |
Max | 124.00 | 145.02 |
Min | 0.00 | 0.00 |
Dataset | Algorithm | Epochs | Hidden Layers | Train | Test | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Train RMSE | Train MAE | Train R2 | Train NSE | Test RMSE | Test MAE | Test R2 | Test NSE | ||||
MGM | ADAM | 100 | 10 | 1.216 | 1.089 | 0.999 | 0.997 | 3.375 | 1.851 | 0.989 | 0.982 |
100 | 20 | 1.266 | 1.090 | 0.999 | 0.997 | 3.952 | 2.150 | 0.982 | 0.975 | ||
100 | 30 | 0.907 | 0.681 | 0.999 | 0.999 | 4.080 | 2.798 | 0.990 | 0.973 | ||
200 | 10 | 0.502 | 0.395 | 0.999 | 0.999 | 3.642 | 2.440 | 0.991 | 0.979 | ||
200 | 20 | 0.263 | 0.204 | 0.999 | 0.999 | 4.306 | 2.857 | 0.985 | 0.970 | ||
200 | 30 | 0.334 | 0.276 | 0.999 | 0.999 | 4.016 | 2.993 | 0.991 | 0.974 | ||
300 | 10 | 0.348 | 0.259 | 0.999 | 0.999 | 3.765 | 2.695 | 0.991 | 0.977 | ||
300 | 20 | 0.174 | 0.138 | 0.999 | 0.999 | 4.218 | 2.802 | 0.985 | 0.971 | ||
300 | 30 | 0.180 | 0.135 | 0.999 | 0.999 | 3.874 | 2.782 | 0.991 | 0.976 | ||
RMSProp | 100 | 10 | 3.387 | 2.445 | 0.994 | 0.980 | 6.239 | 4.364 | 0.989 | 0.938 | |
100 | 20 | 3.063 | 2.421 | 0.990 | 0.983 | 5.070 | 3.400 | 0.968 | 0.959 | ||
100 | 30 | 4.352 | 3.762 | 0.994 | 0.966 | 8.284 | 6.955 | 0.984 | 0.890 | ||
200 | 10 | 1.016 | 0.784 | 0.999 | 0.998 | 4.147 | 3.240 | 0.993 | 0.972 | ||
200 | 20 | 1.293 | 1.014 | 0.999 | 0.997 | 5.312 | 3.608 | 0.985 | 0.955 | ||
200 | 30 | 0.738 | 0.586 | 0.999 | 0.999 | 4.897 | 3.707 | 0.990 | 0.962 | ||
300 | 10 | 0.647 | 0.465 | 0.999 | 0.999 | 3.520 | 2.588 | 0.995 | 0.980 | ||
300 | 20 | 0.511 | 0.354 | 0.999 | 0.999 | 4.400 | 2.956 | 0.986 | 0.969 | ||
300 | 30 | 0.386 | 0.302 | 0.999 | 0.999 | 4.679 | 3.253 | 0.987 | 0.965 | ||
SGDM | 100 | 10 | 3.917 | 3.516 | 0.995 | 0.973 | 7.628 | 6.175 | 0.970 | 0.907 | |
100 | 20 | 6.945 | 6.789 | 0.996 | 0.914 | 6.543 | 5.216 | 0.965 | 0.931 | ||
100 | 30 | 3.296 | 3.123 | 0.998 | 0.981 | 4.512 | 2.185 | 0.971 | 0.967 | ||
200 | 10 | 0.979 | 0.733 | 0.998 | 0.998 | 4.539 | 2.608 | 0.979 | 0.967 | ||
200 | 20 | 1.558 | 1.420 | 0.999 | 0.996 | 5.291 | 4.040 | 0.981 | 0.955 | ||
200 | 30 | 2.392 | 2.253 | 0.999 | 0.990 | 6.132 | 4.981 | 0.978 | 0.940 | ||
300 | 10 | 0.748 | 0.542 | 0.999 | 0.999 | 4.514 | 2.676 | 0.981 | 0.967 | ||
300 | 20 | 0.682 | 0.505 | 0.999 | 0.999 | 4.552 | 3.006 | 0.981 | 0.967 | ||
300 | 30 | 0.694 | 0.505 | 0.999 | 0.999 | 4.588 | 2.808 | 0.978 | 0.966 |
Dataset | Algorithm | Epochs | Hidden Layers | Train | Test | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Train RMSE | Train MAE | Train R2 | Train NSE | Test RMSE | Test MAE | Test R2 | Test NSE | ||||
NASA/POWER | ADAM | 100 | 10 | 1.811 | 1.607 | 0.999 | 0.993 | 2.584 | 2.185 | 0.994 | 0.984 |
100 | 20 | 1.357 | 1.259 | 0.999 | 0.996 | 2.503 | 2.044 | 0.995 | 0.985 | ||
100 | 30 | 1.104 | 0.958 | 0.999 | 0.997 | 1.926 | 1.530 | 0.997 | 0.991 | ||
200 | 10 | 0.652 | 0.526 | 0.999 | 0.999 | 1.978 | 1.165 | 0.995 | 0.991 | ||
200 | 20 | 0.282 | 0.237 | 0.999 | 0.999 | 1.783 | 1.099 | 0.996 | 0.992 | ||
200 | 30 | 0.151 | 0.113 | 0.999 | 0.999 | 1.549 | 1.062 | 0.998 | 0.994 | ||
300 | 10 | 0.292 | 0.223 | 0.999 | 0.999 | 1.848 | 1.121 | 0.995 | 0.992 | ||
300 | 20 | 0.144 | 0.109 | 0.999 | 0.999 | 1.781 | 1.159 | 0.997 | 0.992 | ||
300 | 30 | 0.110 | 0.084 | 0.999 | 0.999 | 1.521 | 1.061 | 0.998 | 0.995 | ||
RMSProp | 100 | 10 | 3.517 | 2.601 | 0.984 | 0.974 | 4.433 | 3.242 | 0.980 | 0.953 | |
100 | 20 | 4.173 | 3.206 | 0.984 | 0.963 | 4.360 | 3.630 | 0.979 | 0.955 | ||
100 | 30 | 4.654 | 3.630 | 0.981 | 0.954 | 5.768 | 4.669 | 0.963 | 0.921 | ||
200 | 10 | 1.188 | 0.876 | 0.999 | 0.997 | 1.953 | 1.405 | 0.995 | 0.991 | ||
200 | 20 | 0.984 | 0.810 | 0.999 | 0.998 | 1.902 | 1.239 | 0.994 | 0.991 | ||
200 | 30 | 0.888 | 0.700 | 0.999 | 0.998 | 1.939 | 1.289 | 0.991 | 0.991 | ||
300 | 10 | 0.535 | 0.404 | 0.999 | 0.999 | 1.488 | 1.124 | 0.996 | 0.995 | ||
300 | 20 | 0.397 | 0.311 | 0.999 | 0.999 | 1.627 | 1.211 | 0.996 | 0.994 | ||
300 | 30 | 0.382 | 0.305 | 0.999 | 0.999 | 2.014 | 1.484 | 0.992 | 0.990 | ||
SGDM | 100 | 10 | 2.577 | 2.279 | 0.996 | 0.986 | 3.020 | 2.178 | 0.989 | 0.978 | |
100 | 20 | 2.620 | 2.365 | 0.996 | 0.985 | 3.927 | 2.478 | 0.976 | 0.963 | ||
100 | 30 | 3.032 | 2.821 | 0.997 | 0.980 | 4.016 | 2.867 | 0.981 | 0.962 | ||
200 | 10 | 2.222 | 1.987 | 0.998 | 0.989 | 2.946 | 2.521 | 0.993 | 0.979 | ||
200 | 20 | 1.731 | 1.539 | 0.998 | 0.994 | 3.267 | 2.297 | 0.985 | 0.975 | ||
200 | 30 | 2.161 | 2.003 | 0.998 | 0.990 | 3.301 | 2.676 | 0.987 | 0.974 | ||
300 | 10 | 0.860 | 0.572 | 0.998 | 0.998 | 1.897 | 1.333 | 0.994 | 0.991 | ||
300 | 20 | 0.724 | 0.492 | 0.999 | 0.999 | 2.598 | 1.386 | 0.986 | 0.984 | ||
300 | 30 | 1.109 | 0.913 | 0.999 | 0.997 | 2.617 | 1.749 | 0.989 | 0.984 |
Data | Method | t-Tests | |
---|---|---|---|
t | p | ||
MGM | ADAM | 0.4665 | 0.6413 |
RMSProp | 0.7292 | 0.4667 | |
SGDM | 0.2179 | 0.8277 | |
NASA | ADAM | 0.1575 | 0.8750 |
RMSProp | 0.1143 | 0.9091 | |
SGDM | 0.1536 | 0.8791 |
Dataset | Epochs | Hidden Layers | Train | Test | ||||||
---|---|---|---|---|---|---|---|---|---|---|
RMSE | MAE | R2 | NSE | RMSE | MAE | R2 | NSE | |||
MGM to NASA | 100 | 10 | 1.2162 | 1.0885 | 0.999 | 0.9974 | 3.4302 | 2.6674 | 0.9956 | 0.9719 |
100 | 20 | 1.2664 | 1.0895 | 0.999 | 0.9971 | 3.8078 | 2.9252 | 0.9925 | 0.9654 | |
100 | 30 | 0.9066 | 0.6808 | 0.999 | 0.9985 | 3.0756 | 2.492 | 0.9963 | 0.9774 | |
200 | 10 | 0.502 | 0.3952 | 0.999 | 0.9996 | 3.3564 | 2.6891 | 0.9965 | 0.9731 | |
200 | 20 | 0.2626 | 0.2044 | 0.999 | 0.9999 | 3.784 | 3.0416 | 0.9939 | 0.9658 | |
200 | 30 | 0.3337 | 0.2763 | 0.999 | 0.9998 | 3.6826 | 2.9927 | 0.9968 | 0.9676 | |
300 | 10 | 0.3475 | 0.2594 | 0.999 | 0.9998 | 3.4171 | 2.7842 | 0.9968 | 0.9721 | |
300 | 20 | 0.1741 | 0.1376 | 0.999 | 0.9999 | 3.8089 | 3.0673 | 0.9942 | 0.9653 | |
300 | 30 | 0.1797 | 0.1348 | 0.999 | 0.9999 | 3.6238 | 2.9344 | 0.9966 | 0.9686 | |
NASA to MGM | 100 | 10 | 1.8112 | 1.6068 | 0.999 | 0.9930 | 5.971 | 4.3221 | 0.9866 | 0.9428 |
100 | 20 | 1.3571 | 1.2585 | 0.999 | 0.9960 | 5.6461 | 3.9396 | 0.9845 | 0.9488 | |
100 | 30 | 1.104 | 0.9576 | 0.999 | 0.9974 | 5.2329 | 3.7564 | 0.9909 | 0.9561 | |
200 | 10 | 0.6517 | 0.526 | 0.999 | 0.9991 | 4.3876 | 2.9649 | 0.9868 | 0.9691 | |
200 | 20 | 0.2819 | 0.2365 | 0.999 | 0.9998 | 4.5497 | 3.083 | 0.9865 | 0.9668 | |
200 | 30 | 0.1513 | 0.1127 | 0.999 | 0.9998 | 4.4567 | 3.2096 | 0.9919 | 0.9681 | |
300 | 10 | 0.2918 | 0.2226 | 0.999 | 0.9998 | 4.6575 | 3.2081 | 0.9878 | 0.9652 | |
300 | 20 | 0.1443 | 0.109 | 0.999 | 0.9998 | 4.6084 | 3.1196 | 0.9874 | 0.9659 | |
300 | 30 | 0.1101 | 0.0839 | 0.999 | 0.9998 | 4.4802 | 3.2224 | 0.9921 | 0.9678 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Demir, V. Deep Learning-Based Multi-Source Precipitation Forecasting in Arid Regions Using Different Optimizations: A Case Study from Konya, Turkey. Forecasting 2025, 7, 60. https://doi.org/10.3390/forecast7040060
Demir V. Deep Learning-Based Multi-Source Precipitation Forecasting in Arid Regions Using Different Optimizations: A Case Study from Konya, Turkey. Forecasting. 2025; 7(4):60. https://doi.org/10.3390/forecast7040060
Chicago/Turabian StyleDemir, Vahdettin. 2025. "Deep Learning-Based Multi-Source Precipitation Forecasting in Arid Regions Using Different Optimizations: A Case Study from Konya, Turkey" Forecasting 7, no. 4: 60. https://doi.org/10.3390/forecast7040060
APA StyleDemir, V. (2025). Deep Learning-Based Multi-Source Precipitation Forecasting in Arid Regions Using Different Optimizations: A Case Study from Konya, Turkey. Forecasting, 7(4), 60. https://doi.org/10.3390/forecast7040060