Navigating AI-Driven Financial Forecasting: A Systematic Review of Current Status and Critical Research Gaps
Abstract
1. Introduction
1.1. Applications of Artificial Intelligence in Finance
1.1.1. The Efficient Market Hypothesis and Its Challenges
1.1.2. Intertwining Adaptive Markets Theory and Artificial Intelligence
1.1.3. Asymmetric Information and the Role of Alternative Data Sources
1.1.4. Big Data and the Issue of Information Efficiency
1.2. Novelty and Significance of the Study
1.3. Research Questions
2. Methodology
3. Literature Review of the Examined Markets
3.1. Stock Market Forecasts
Summary and Critical Reflection
3.2. Commodity Market Forecasts
Summary and Critical Reflection
3.3. Cryptocurrency Forecasts
Summary and Critical Reflection
3.4. Foreign Exchange Market Forecasts
Summary and Critical Reflection
4. Evaluation Metrics for Financial Forecasting Models
4.1. Regression Model Evaluation Metrics
4.1.1. Mean Absolute Error (MAE)
4.1.2. Mean Squared Error (MSE)
4.1.3. Root Mean Squared Error (RMSE)
4.1.4. Mean Absolute Percentage Error (MAPE)
4.1.5. Symmetric MAPE (sMAPE)
4.1.6. R-Squared (R2)
4.2. Classification Model Evaluation Metrics
4.2.1. Accuracy
4.2.2. Precision and Recall
4.2.3. F1-Score
4.2.4. Specificity
4.2.5. ROC Curve and AUC
- An AUC of 0.5 indicates random guessing.
- An AUC close to 1 suggests excellent classification performance.
4.3. Summary
5. The Role of Hyperparameter Tuning in the Performance of Financial Forecasting Models
5.1. Key Hyperparameters
5.1.1. Learning Rate
5.1.2. Number of Epochs
5.1.3. Batch Size
5.1.4. Number of Hidden Layers and Neurons per Layer
5.1.5. Dropout Rate
5.1.6. Activation Function
5.1.7. Optimizer
5.2. Hyperparameter Optimization Techniques
5.2.1. Grid Search
5.2.2. Random Search
5.2.3. Bayesian Optimization
5.2.4. Evolutionary Algorithms (e.g., Genetic Algorithms, Particle Swarm Optimization)
5.3. Challenges in Financial Applications
- Non-stationarity and Evolving Patterns: Financial markets are notoriously non-stationary, meaning their statistical properties change over time. This implies that hyperparameters optimized for one period (e.g., a bull market) might perform poorly in another (e.g., a crisis period). Continuous fine-tuning and adaptive strategies are often required.
- High Risk of Overfitting: The dynamic and often noisy nature of financial data, coupled with the complexity of deep learning models, increases the risk of overfitting. Models tuned too precisely to historical data over a long period may fail dramatically when market regimes change. Robust validation strategies, such as rolling-window cross-validation, are crucial.
- Time-Varying Optimality: Hyperparameters may not be universally optimal across different time periods. A model optimized for a crisis period might significantly underperform in a calm market environment, highlighting the need for dynamic hyperparameter adaptation.
- Computational Cost: Tuning complex deep learning models for financial time series is computationally expensive, especially when using exhaustive search methods or models with long training times.
6. Feature Selection and Explainability in Financial Forecasting Models
6.1. Feature Selection Techniques
6.1.1. Filter Methods
- Correlation analysis: Selecting features highly correlated with the target variable (e.g., Pearson correlation, Spearman’s rank correlation). For financial time series, this can involve analyzing lead–lag relationships or co-movements between assets (e.g., between a stock and an economic indicator).
- ANOVA (Analysis of Variance): Used for categorical features to determine if there are statistically significant differences in means across groups.
- Chi-squared test: For categorical features, assessing their independence from the target variable.
- Mutual Information (MI): Measures the dependency between two variables (feature and target), capturing both linear and non-linear relationships. Higher MI indicates greater relevance. MI is particularly useful for financial data where complex non-linear dependencies are prevalent.
6.1.2. Wrapper Methods
- Recursive Feature Elimination (RFE): This iterative method trains a model, ranks features by importance, and then eliminates the least important features, repeating the process until the desired number of features is reached. It is often used with linear models or tree-based models.
- Sequential Feature Selection (SFS): This can be forward (adding features one by one) or backward (removing features one by one), evaluating the model’s performance at each step to determine the optimal subset.
6.1.3. Embedded Methods
- Lasso Regression (Least Absolute Shrinkage and Selection Operator): This linear regression technique adds an L1 regularization penalty to the loss function, which has the effect of shrinking the coefficients of less important variables to exactly zero, effectively performing feature selection.
- Tree-based Algorithms (e.g., XGBoost, LightGBM, random forest): These algorithms inherently provide “feature importance” scores based on how often a feature is used in decision splits or how much it reduces impurity (e.g., Gini impurity for classification, variance reduction for regression). Features with higher importance scores are considered more relevant.
- Regularization in Neural Networks: Techniques such as L1 regularization (similar to Lasso) or Dropout can implicitly act as feature selection mechanisms by penalizing or randomly deactivating weights of less important connections, driving them towards zero or reducing their influence.
6.2. Explainable AI (XAI) in Financial Forecasting
6.2.1. SHAP (SHapley Additive exPlanations)
6.2.2. LIME (Local Interpretable Model-Agnostic Explanations)
6.2.3. Attention Mechanisms
6.3. Summary
7. Advanced Machine Learning Architectures in Financial Time-Series Forecasting and Explainability (XAI)
7.1. Transformer-Based Models: Long-Term Dependencies and Explainability
7.2. Graph-Based Models (Graph Neural Networks, GNN): Modeling Network Interactions
7.3. GAN-Based Time-Series Models (TimeGAN): Synthetic Data Generation and Extreme Conditions
7.4. Hybrid and Ensemble-Based Models: The Synergy of Algorithms
7.5. Meta-Learning and Few-Shot Learning: Learning from Scarce Data
8. Results of the Literature Database Analysis
9. Identifying Research Gaps
9.1. Practical Applicability of Models in Trading Strategies
9.2. The Relationship Between Volatility and Predictive Performance Indicators, with a Special Focus on MAPE
9.3. Temporal Robustness and Stability of Models in Different Market Environments
10. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
LR | Linear Regression |
BLR | Bayesian Linear Regression |
DT | Decision Tree |
RF | Random Forest |
ELM | Extreme Learning Machine |
Adaboost | Adaptive Boosting Regression |
Gredient Boost | Gradient Boosting Regression |
XGBoost | Extreme Gradient Boosting |
LightGBM | Light Gradient Boosting Machine |
SVR | Support Vector Regression |
SVM | Support Vector Machine |
MVaR | Mean Value-at-Risk |
ABC-SVR | Artificial Bee Colony-Support Vector Regression |
SSA-SVR | Strategic Seasonality-Adjusted-Support Vector Regression |
OGA-SVR | Optimized Genetic Algorithm-Based-Support Vector Regression |
FS-GA-SVR | Feature Selection-Genetic Algorithm-Support Vector Regression |
WAMC | Weighted Memory Channels Regression |
ANFIS | Adaptive Network Fuzzy Inference System |
TDNN | Time-Delay Neural Network |
GINN | Generalized Improved Neural Network |
DNPP | Dynamic Noisy Proximal Policy |
DBN | Deep Belief Network |
GVMD-Q-DBN-LSTM-GRU | Generalized Variational Mode Decomposition-Q-Learning Algorithm-Deep Belief Network-Long Short-Term Memory-Gated Recurrent Unit |
KNN | K-Nearest Neighbors |
KNN-XGB-SVR | K-Nearest Neighbors-Extreme Gradient Boosting-Support Vector Regression |
ENN | Elman Neural Network |
ANN | Artificial Neural Networks |
DNN | Deep Neural Network |
RNN | Recurrent Neural Network |
BSd-RNN | B-Spline-Recurrent Neural Network |
DWT-RNN | Discrete Wavelet Transform-Recurrent Neural Network |
CNN | Convolutional Neural Network |
CNN-RNN | Convolutional Neural Network-Recurrent Neural Network |
TCN | Temporal Convolutional Network |
GRU | Gated Recurrent Unit |
LSTNet | Long- and Short-Term Time-Series Network |
LSTM | Long Short-Term Memory |
LSTM-GRU | Long Short-Term Memory-Gated Recurrent Unit |
GRU-LSTM | Gated Recurrent Unit-Long Short-Term Memory |
BiLSTM | Bidirectional Long Short-Term Memory |
BiLSTM-BR | Bidirectional Long Short-Term Memory-Bagging Ridge |
SLSTM | Stacked Long Short-Term Memory |
LSTM-DNN | Long Short-Term Memory-Deep Neural Network |
XGBoost-LSTM | Extreme Gradient Boosting-Long Short-Term Memory |
CNN-Bi-LSTM-AM | Convolutional Neural Network-Bidirectional Long Short-Term Memory-Attention Mechanism |
SFM | State Frequency Memory |
GA | Genetic Algorithms |
MLP | Multilayer Perceptron |
CNN-LSTM | Convolutional Neural Network-Long Short-Term Memory |
LSTM-CNN | Long Short-Term Memory-Convolutional Neural Network |
LSTM-ARO | Long Short-Term Memory-Artificial Rabbits Optimization |
DC-LSTM | Deep Coupled-Long Short-Term Memory |
GWO-CNN-LSTM | Gray Wolf Optimizer-Convolutional Neural Network-Long Short-Term Memory |
CNN-GRU | Convolutional Neural Network-Gated Recurrent Unit |
EMD-CNN-GRU | Empirical Mode Decomposition-Convolutional Neural Network-Gated Recurrent Unit |
VMD-CNN-GRU | Variational Mode Decomposition-Convolutional Neural Network-Gated Recurrent Unit |
AR | Autoregressive |
AR-DNN | Autoregressive-Deep Neural Network |
ARIMA | Autoregressive Integrated Moving Average |
VAR | Vector Autoregression |
GARCH | Generalized Autoregressive Conditional Heteroskedasticity |
APGARCH | Asymmetric Power Generalized Autoregressive Conditional Heteroskedasticity |
WT-LSTM | Wavelet Transform-Long Short-Term Memory |
WT-GRU | Wavelet Transform-Gated Recurrent Unit |
WT-TCN | Wavelet Transform-Temporal Convolutional Network |
LSTM-RL | Long Short-Term Memory-Reinforcement Learning |
HMM-ALSTM | Hidden Markov Model-Attentive Long Short-Term Memory |
RMT-LSTM | Removing outliers Mahalanobis Transformation-Long Short-Term Memory |
RZT-LSTM | Removing Outliers Z-Score Transformation-Long Short-Term Memory |
ANN-GARCH | Artificial Neural Networks-Generalized Autoregressive Conditional Heteroskedasticity |
ANN-GJR | Artificial Neural Networks-Glosten, Jagannathan, and Runkle |
CEEMDAN-LSTM | Complete Ensemble Empirical Mode Decomposition Adaptive Noise-Long Short-Term Memory |
CEEMDAN-SVR | Complete Ensemble Empirical Mode Decomposition Adaptive Noise-Support Vector Regression |
CEEMDAN-MLP | Complete Ensemble Empirical Mode Decomposition Adaptive Noise-Multilayer Perceptron |
CEEMDAN-GRU | Complete Ensemble Empirical Mode Decomposition Adaptive Noise-Gated Recurrent Unit |
CEEMDAN-CNN | Complete Ensemble Empirical Mode Decomposition Adaptive Noise-Convolutional Neural Network |
CEEMDAN-CNN-GRU | Complete Ensemble Empirical Mode Decomposition Adaptive Noise-Convolutional Neural Network-Gated Recurrent Unit |
CEEMDAN-TCN | Complete Ensemble Empirical Mode Decomposition Adaptive Noise-Temporal Convolutional Network |
MEMD-GRU | Multivariate Empirical Mode Decomposition-Gated Recurrent Unit |
MEMD-TCN | Multivariate Empirical Mode Decomposition-Temporal Convolutional Network |
CATN | Cross Attentive Tree-Aware Network |
ICEEMDAN-LSTM-CNN-CBAM | Improved Complete Ensemble Empirical Mode Decomposition Adaptive Noise-Long Short-Term Memory-Convolutional Neural Network-Convolutional Block Attention Module |
DWT-FFNN | Discrete Wavelet Transform-Feed-Forward Neural Network |
WNN | Wavelet Neural Network |
GRNN | Generalized Regression Neural Networks |
FFNN | Feed-Forward Neural Network |
NSE | Indian Stock Exchange |
Nifty50 | Indian Stock Market Benchmark Index |
DJIA | Dow Jones Industrial Average |
DAX | Deutscher Aktienindex |
Nikkei225 | Leading index of Japan’s top 225 companies traded on the Tokyo Stock Exchange |
SSE | Shanghai Stock Exchange |
NYSE | New York Stock Exchange |
S&P500 | Standard and Poor’s 500 |
FAANG | Facebook, Amazon, Apple, Netflix, and Google |
HSI | Hang Seng Index |
NASDAQ | NASDAQ Composite Index |
IBEX | IBerian IndEX |
SSE50 | Shanghai Stock Exchange Index |
CSI100 | China Securities Index 100 |
CSI200 | China Securities Index 200 |
CSI500 | China Securities Index 500 |
GEI100 | Growth Enterprise Index 100 |
NASDAQ100 | NASDAQ 100 Index |
NYSE100 | New York Stock Exchange Index 100 |
CAC40 | French Stock Market Index („Cotation assistée en continu”) |
RTSI | Russian Trading System Index |
FTSE100 | Financial Times Stock Exchange 100 |
BSE | Bombay Stock Exchange |
EUR-USD | Euro-US Dollar |
GBP-USD | Pound Sterling-US Dollar |
USD-CHF | US Dollar-Swiss Franc |
USD-CAD | US Dollar-Canadian Dollar |
AUD-USD | Australian Dollar-US Dollar |
GBP-JPY | Pound Sterling-Japanese Yen |
EUR-JPY | Euro-Japanese Yen |
USD-JPY | US Dollar-Japanese Yen |
USD-AUD | US Dollar-Australian Dollar |
JPY-USD | Japanese Yen-US Dollar |
CHF-USD | Swiss Franc-US Dollar |
EUR-GBP | Euro-Pound Sterling |
CAD-CHF | Canadian Dollar-Swiss Franc |
CAD-USD | Canadian Dollar-US Dollar |
AUD-RMB | Australian Dollar-Renminbi |
EUR-RMB | Euro-Renminbi |
USD-RMB | US Dollar-Renminbi |
RMB-JPY | Renminbi-Japanese Yen |
ZAR-USD | South African Rand-US Dollar |
NGN-USD | Nigerian Naira-US Dollar |
RMB-USD | Renminbi-US Dollar |
USD-CNY | US Dollar-Chinese Yuan |
References
- Li, X.; Tang, P. Stock Index Prediction Based on Wavelet Transform and FCD-MLGRU. J. Forecast. 2020, 39, 1229–1237. [Google Scholar] [CrossRef]
- Wall, L.D. Some financial regulatory implications of artificial intelligence. J. Econ. Bus. 2018, 100, 55–63. [Google Scholar] [CrossRef]
- Goodell, J.W.; Kumar, S.; Lim, W.M.; Pattnaik, D. Artificial Intelligence and Machine Learning in Finance: Identifying Foundations, Themes, and Research Clusters from Bibliometric Analysis. J. Behav. Exp. Financ. 2021, 32, 100577. [Google Scholar] [CrossRef]
- In, S.Y.; Rook, D.; Monk, A. Integrating Alternative Data (Also Known as ESG Data) in Investment Decision Making. Glob. Econ. Rev. 2019, 48, 237–260. [Google Scholar] [CrossRef]
- López de Prado, M. Beyond Econometrics: A Roadmap Towards Financial Machine Learning. SSRN Electron. J. 2019. [Google Scholar] [CrossRef]
- Duan, Y.; Goodell, J.W.; Li, H.; Li, X. Assessing Machine Learning for Forecasting Economic Risk: Evidence from an Expanded Chinese Financial Information Set. Financ. Res. Lett. 2022, 46, 102273. [Google Scholar] [CrossRef]
- Goulet Coulombe, P.; Leroux, M.; Stevanovic, D.; Surprenant, S. How Is Machine Learning Useful for Macroeconomic Forecasting? J. Appl. Econom. 2022, 37, 920–964. [Google Scholar] [CrossRef]
- Dixon, M.F.; Halperin, I.; Bilokon, P. Machine Learning in Finance; Springer International Publishing: New York, NY, USA, 2020. [Google Scholar] [CrossRef]
- Nazareth, N.; Reddy, Y.Y.R. Financial Applications of Machine Learning: A Literature Review. Expert Syst. Appl. 2023, 219, 119640. [Google Scholar] [CrossRef]
- Chan, T.L.; Hale, N. Pricing European-Type, Early-Exercise and Discrete Barrier Options Using an Algorithm for the Convolution of Legendre Series. Quant. Financ. 2020, 20, 1307–1324. [Google Scholar] [CrossRef]
- Gao, B. The Use of Machine Learning Combined with Data Mining Technology in Financial Risk Prevention. Comput. Econ. 2022, 59, 1385–1405. [Google Scholar] [CrossRef]
- Gómez Martínez, R.; Prado Román, M.; Plaza Casado, P. Big Data Algorithmic Trading Systems Based on Investors’ Mood. J. Behav. Financ. 2019, 20, 227–238. [Google Scholar] [CrossRef]
- Houlihan, P.; Creamer, G.G. Leveraging Social Media to Predict Continuation and Reversal in Asset Prices. Comput. Econ. 2021, 57, 433–453. [Google Scholar] [CrossRef]
- Kokina, J.; Gilleran, R.; Blanchette, S.; Stoddard, D. Accountant as Digital Innovator: Roles and Competencies in the Age of Automation. Account. Horiz. 2021, 35, 153–184. [Google Scholar] [CrossRef]
- Teng, H.W.; Lee, M. Estimation procedures of using five alternative machine learning methods for predicting credit card default. Rev. Pac. Basin Financ. Mark. Policies 2019, 22, 1950021. [Google Scholar] [CrossRef]
- Bee, M.; Hambuckers, J.; Trapin, L. Estimating Large Losses in Insurance Analytics and Operational Risk Using the g-and-h Distribution. Quant. Financ. 2021, 21, 1207–1221. [Google Scholar] [CrossRef]
- Li, Q.; Xu, Z.; Shen, X.; Zhong, J. Predicting Business Risks of Commercial Banks Based on BP-GA Optimized Model. Comput. Econ. 2021, 59, 1423–1441. [Google Scholar] [CrossRef]
- Chen, Z.; Li, C.; Sun, W. Bitcoin Price Prediction Using Machine Learning: An Approach to Sample Dimension Engineering. J. Comput. Appl. Math. 2020, 365, 112395. [Google Scholar] [CrossRef]
- Fama, E.F. Efficient Capital Markets: A Review of Theory and Empirical Work. J. Financ. 1970, 25, 383–417. [Google Scholar] [CrossRef]
- Fama, E.F. Efficient capital markets: II. J. Financ. 1991, 46, 1575–1617. [Google Scholar] [CrossRef]
- Fama, E.F. Random Walks in Stock Market Prices. Financ. Anal. J. 1965, 21, 55–59. [Google Scholar] [CrossRef]
- Samuelson, P.A. Proof That Properly Anticipated Prices Fluctuate Randomly. Ind. Manag. Rev. 1965, 6, 41–49. [Google Scholar]
- Van Horne, J.C.; Parker, G.G. The Random-Walk Theory: An Empirical Test. Financ. Anal. J. 1967, 23, 87–92. [Google Scholar] [CrossRef]
- Levy, R.A. Random Walks: Reality or Myth. Financ. Anal. J. 1967, 23, 69–77. [Google Scholar] [CrossRef]
- Shiller, R.J. From efficient markets theory to behavioral finance. J. Econ. Perspect. 2003, 17, 83–104. [Google Scholar] [CrossRef]
- Jegadeesh, N.; Titman, S. Returns to buying winners and selling losers: Implications for stock market efficiency. J. Financ. 1993, 48, 65–91. [Google Scholar] [CrossRef]
- Fama, E.F.; French, K.R. The cross-section of expected stock returns. J. Financ. 1992, 47, 427–465. [Google Scholar] [CrossRef]
- Chopra, R.; Sharma, G.D. Application of artificial intelligence in stock market forecasting: A critique, review, and research agenda. J. Risk Financ. Manag. 2021, 14, 526. [Google Scholar] [CrossRef]
- Kahneman, D.; Tversky, A. Prospect theory: An analysis of decision under risk. Econometrica 1979, 47, 363–391. [Google Scholar] [CrossRef]
- Lo, A.W.; Zhang, R. The Adaptive Markets Hypothesis: An Evolutionary Approach to Understanding Financial System Dynamics; Oxford University Press: Oxford, UK, 2024. [Google Scholar] [CrossRef]
- Akerlof, G.A. The market for “lemons”: Quality uncertainty and the market mechanism. In Uncertainty in Economics; Academic Press: New York, NY, USA, 1978; pp. 235–251. [Google Scholar] [CrossRef]
- Stiglitz, J.E. The contributions of the economics of information to twentieth century economics. Q. J. Econ. 2000, 115, 1441–1478. [Google Scholar] [CrossRef]
- Williams, L.V. (Ed.) Information Efficiency in Financial and Betting Markets; Cambridge University Press: Cambridge, UK, 2005. [Google Scholar] [CrossRef]
- Ahern, K.R.; Peress, J. The role of media in financial decision-making. In Handbook of Financial Decision Making; Edward Elgar Publishing: Gloucestershire, UK, 2023; pp. 192–212. [Google Scholar] [CrossRef]
- Sun, Y.; Liu, L.; Xu, Y.; Zeng, X.; Shi, Y.; Hu, H.; Jiang, J.; Abraham, A. Alternative data in finance and business: Emerging applications and theory analysis. Financ. Innov. 2024, 10, 127. [Google Scholar] [CrossRef]
- Shiller, R.J. Narrative Economics: How Stories Go Viral and Drive Major Economic Events; Princeton University Press: Princeton, NJ, USA, 2020. [Google Scholar]
- Hasan, M.M.; Popp, J.; Oláh, J. Current landscape and influence of big data on finance. J. Big Data 2020, 7, 21. [Google Scholar] [CrossRef]
- Goldstein, I.; Spatt, C.S.; Ye, M. The Next Chapter of Big Data in Finance. Rev. Financ. Stud. 2024, 38, hhae083. [Google Scholar] [CrossRef]
- Gandhmal, D.P.; Kumar, K. Systematic Analysis and Review of Stock Market Prediction Techniques. Comput. Sci. Rev. 2019, 34, 100190. [Google Scholar] [CrossRef]
- Li, A.W.; Bastos, G.S. Stock Market Forecasting Using Deep Learning and Technical Analysis: A Systematic Review. IEEE Access 2020, 8, 185232–185242. [Google Scholar] [CrossRef]
- Kumbure, M.M.; Lohrmann, C.; Luukka, P.; Porras, J. Machine Learning Techniques and Data for Stock Market Forecasting: A Literature Review. Expert Syst. Appl. 2022, 197, 116659. [Google Scholar] [CrossRef]
- Noor, K.; Fatima, U. Meta Learning Strategies for Comparative and Efficient Adaptation to Financial Datasets. IEEE Access 2025, 13, 24158–24170. [Google Scholar] [CrossRef]
- Shi, C.; Zhuang, X. A Study Concerning Soft Computing Approaches for Stock Price Forecasting. Axioms 2019, 8, 116. [Google Scholar] [CrossRef]
- Khattak, B.H.A.; Shafi, I.; Khan, A.S.; Flores, E.S.; Lara, R.G.; Samad, M.A.; Ashraf, I. A Systematic Survey of AI Models in Financial Market Forecasting for Profitability Analysis. IEEE Access 2023, 11, 125359–125380. [Google Scholar] [CrossRef]
- Gunnarsson, E.S.; Isern, H.R.; Kaloudis, A.; Risstad, M.; Vigdel, B.; Westgaard, S. Prediction of Realized Volatility and Implied Volatility Indices Using AI and Machine Learning: A Review. Int. Rev. Financ. Anal. 2024, 93, 103221. [Google Scholar] [CrossRef]
- Ardabili, S.; Abdolalizadeh, L.; Mako, C.; Torok, B.; Mosavi, A. Systematic Review of Deep Learning and Machine Learning for Building Energy. Front. Energy Res. 2022, 10, 1–19. [Google Scholar] [CrossRef]
- Moher, D.; Liberati, A.; Altman, D.G. PRISMA: Preferred Reporting Items for Systematic Reviews and Meta-Analyses. PLoS Med. 2009, 6, e1000097. [Google Scholar] [CrossRef] [PubMed]
- Hajiabotorabi, Z.; Kazemi, A.; Samavati, F.F.; Ghaini, F.M.M. Improving DWT-RNN Model via B-Spline Wavelet Multiresolution to Forecast a High-Frequency Time Series. Expert Syst. Appl. 2019, 138, 112842. [Google Scholar] [CrossRef]
- Nabipour, M.; Nayyeri, P.; Jabani, H.; Shahab, S.; Mosavi, A. Predicting Stock Market Trends Using Machine Learning and Deep Learning Algorithms via Continuous and Binary Data; A Comparative Analysis on the Tehran Stock Exchange. IEEE Access 2020, 8, 150199–150212. [Google Scholar] [CrossRef]
- Hiransha, M.; Gopalakrishnan, E.A.; Menon, V.K.; Soman, K.P. NSE Stock Market Prediction Using Deep-Learning Models. Procedia Comput. Sci. 2018, 132, 1351–1362. [Google Scholar] [CrossRef]
- Beniwal, M.; Singh, A.; Kumar, N. Forecasting Long-Term Stock Prices of Global Indices: A Forward-Validating Genetic Algorithm Optimization Approach for Support Vector Regression. Appl. Soft Comput. 2023, 145, 110566. [Google Scholar] [CrossRef]
- Rather, A.M. LSTM-Based Deep Learning Model for Stock Prediction and Predictive Optimization Model. Eur. J. Decis. Process. 2021, 9, 100001. [Google Scholar] [CrossRef]
- Banik, S.; Sharma, N.; Mangla, M.; Mohanty, S.N.; Shitharth, S. LSTM Based Decision Support System for Swing Trading in Stock Market. Knowl.-Based Syst. 2022, 239, 107994. [Google Scholar] [CrossRef]
- Fischer, T.; Krauss, C. Deep Learning with Long Short-Term Memory Networks for Financial Market Predictions. Eur. J. Oper. Res. 2018, 270, 654–669. [Google Scholar] [CrossRef]
- Siami-Namini, S.; Tavakoli, N.; Namin, A.S. A comparison of ARIMA and LSTM in forecasting time series. In Proceedings of the 2018 17th IEEE International Conference on Machine Learning and Applications (ICMLA), Orlando, FL, USA, 17–20 December 2018; pp. 1394–1401. [Google Scholar] [CrossRef]
- Liu, Y. Novel Volatility Forecasting Using Deep Learning–Long Short Term Memory Recurrent Neural Networks. Expert Syst. Appl. 2019, 132, 99–109. [Google Scholar] [CrossRef]
- Bhandari, H.N.; Rimal, B.; Pokhrel, N.R.; Rimal, R.; Dahal, K.R.; Khatri, R.K. Predicting Stock Market Index Using LSTM. Mach. Learn. Appl. 2022, 9, 100320. [Google Scholar] [CrossRef]
- Liang, X.; Ge, Z.; Sun, L.; He, M.; Chen, H. LSTM with Wavelet Transform Based Data Preprocessing for Stock Price Prediction. Math. Probl. Eng. 2019, 2019, 1–8. [Google Scholar] [CrossRef]
- Qiu, J.; Wang, B.; Zhou, C. Forecasting Stock Prices with Long-Short Term Memory Neural Network Based on Attention Mechanism. PLoS ONE 2020, 15, e0227222. [Google Scholar] [CrossRef]
- Skehin, T.; Crane, M.; Bezbradica, M. Day ahead forecasting of FAANG stocks using ARIMA, LSTM networks and wavelets. In CEUR Workshop Proceedings; RWTH Aachen University: Aachen, Germany, 2018. [Google Scholar]
- Cao, J.; Li, Z.; Li, J. Financial Time Series Forecasting Model Based on CEEMDAN and LSTM. Phys. A 2019, 519, 127–139. [Google Scholar] [CrossRef]
- Gülmez, B. Stock Price Prediction with Optimized Deep LSTM Network with Artificial Rabbits Optimization Algorithm. Expert Syst. Appl. 2023, 227, 120346. [Google Scholar] [CrossRef]
- Zhang, L.; Aggarwal, C.; Qi, G.-J. Stock Price Prediction via Discovering Multi-Frequency Trading Patterns. In Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, New York, NY, USA, 13–17 August 2017. [Google Scholar] [CrossRef]
- Hanauer, M.X.; Kalsbach, T. Machine Learning and the Cross-Section of Emerging Market Stock Returns. Emerg. Mark. Rev. 2023, 55, 101022. [Google Scholar] [CrossRef]
- Nelson, D.M.; Pereira, A.C.; De Oliveira, R.A. Stock Market’s Price Movement Prediction with LSTM Neural Networks. In Proceedings of the 2017 International Joint Conference on Neural Networks (IJCNN), Anchorage, AK, USA, 14–19 May 2017; pp. 1419–1426. [Google Scholar] [CrossRef]
- Kristjanpoller, W.; Fadic, A.; Minutolo, M.C. Volatility Forecast Using Hybrid Neural Network Models. Expert Syst. Appl. 2014, 41, 2437–2442. [Google Scholar] [CrossRef]
- Nikou, M.; Mansourfar, G.; Bagherzadeh, J. Stock Price Prediction Using Deep Learning Algorithm and Its Comparison with Machine Learning Algorithms. Intell. Syst. Account. Financ. Manag. 2019, 26, 164–174. [Google Scholar] [CrossRef]
- Ayala, J.; García-Torres, M.; Noguera, J.L.V.; Gómez-Vela, F.; Divina, F. Technical Analysis Strategy Optimization Using a Machine Learning Approach in Stock Market Indices. Knowl.-Based Syst. 2021, 225, 107119. [Google Scholar] [CrossRef]
- Ballings, M.; Van den Poel, D.; Hespeels, N.; Gryp, R. Evaluating Multiple Classifiers for Stock Price Direction Prediction. Expert Syst. Appl. 2015, 42, 7046–7056. [Google Scholar] [CrossRef]
- Basak, S.; Kar, S.; Saha, S.; Khaidem, L.; Dey, S.R. Predicting the Direction of Stock Market Prices Using Tree-Based Classifiers. N. Am. J. Econ. Financ. 2019, 47, 552–567. [Google Scholar] [CrossRef]
- Chong, E.; Han, C.; Park, F.C. Deep Learning Networks for Stock Market Analysis and Prediction: Methodology, Data Representations, and Case Studies. Expert Syst. Appl. 2017, 83, 187–205. [Google Scholar] [CrossRef]
- Md, A.Q.; Kapoor, S.; AV, C.J.; Sivaraman, A.K.; Tee, K.F.; Sabireen, H.; Janakiraman, N. Novel Optimization Approach for Stock Price Forecasting Using Multi-Layered Sequential LSTM. Appl. Soft Comput. 2023, 134, 109830. [Google Scholar] [CrossRef]
- Liu, K.; Zhou, J.; Dong, D. Improving Stock Price Prediction Using the Long Short-Term Memory Model Combined with Online Social Networks. J. Behav. Exp. Financ. 2021, 30, 100507. [Google Scholar] [CrossRef]
- Long, J.; Chen, Z.; He, W.; Wu, T.; Ren, J. An Integrated Framework of Deep Learning and Knowledge Graph for Prediction of Stock Price Trend: An Application in Chinese Stock Exchange Market. Appl. Soft Comput. 2020, 106205. [Google Scholar] [CrossRef]
- Jiang, J.; Wu, L.; Zhao, H.; Zhu, H.; Zhang, W. Forecasting Movements of Stock Time Series Based on Hidden State Guided Deep Learning Approach. Inf. Process. Manag. 2023, 60, 103328. [Google Scholar] [CrossRef]
- Yao, Y.; Zhang, Z.Y.; Zhao, Y. Stock index forecasting based on multivariate empirical mode decomposition and temporal convolutional networks. Appl. Soft Comput. 2023, 142, 110356. [Google Scholar] [CrossRef]
- Behera, J.; Pasayat, A.K.; Behera, H.; Kumar, P. Prediction Based Mean-Value-at-Risk Portfolio Optimization Using Machine Learning Regression Algorithms for Multi-National Stock Markets. Eng. Appl. Artif. Intell. 2023, 120, 105843. [Google Scholar] [CrossRef]
- Yu, Y.; Lin, Y.; Hou, X.; Zhang, X. Novel optimization approach for realized volatility forecast of stock price index based on deep reinforcement learning model. Expert Syst. Appl. 2023, 233, 120880. [Google Scholar] [CrossRef]
- Jing, N.; Wu, Z.; Wang, H. A Hybrid Model Integrating Deep Learning with Investor Sentiment Analysis for Stock Price Prediction. Expert Syst. Appl. 2021, 178, 115019. [Google Scholar] [CrossRef]
- Alzaman, C. Forecasting and Optimization Stock Predictions: Varying Asset Profile, Time Window, and Hyperparameter Factors. Syst. Soft Comput. 2023, 5, 200052. [Google Scholar] [CrossRef]
- Liang, Y.; Lin, Y.; Lu, Q. Forecasting Gold Price Using a Novel Hybrid Model with ICEEMDAN and LSTM-CNN-CBAM. Expert Syst. Appl. 2022, 206, 117847. [Google Scholar] [CrossRef]
- Livieris, I.E.; Pintelas, E.; Pintelas, P. A CNN–LSTM Model for Gold Price Time-Series Forecasting. Neural Comput. Appl. 2020, 32, 17351–17360. [Google Scholar] [CrossRef]
- Ozdemir, A.C.; Buluş, K.; Zor, K. Medium-to Long-Term Nickel Price Forecasting Using LSTM and GRU Networks. Resour. Policy 2022, 78, 102906. [Google Scholar] [CrossRef]
- Shi, T.; Li, C.; Zhang, W.; Zhang, Y. Forecasting on metal resource spot settlement price: New evidence from the machine learning model. Resour. Policy 2023, 81, 103360. [Google Scholar] [CrossRef]
- Zhang, H.; Nguyen, H.; Vu, D.-A.; Bui, X.-N.; Pradhan, B. Forecasting monthly copper price: A comparative study of various machine learning-based methods. Resour. Policy 2021, 73, 102189. [Google Scholar] [CrossRef]
- Fang, Y.; Guan, B.; Wu, S.; Heravi, S. Optimal Forecast Combination Based on Ensemble Empirical Mode Decomposition for Agricultural Commodity Futures Prices. J. Forecast. 2020, 39, 877–886. [Google Scholar] [CrossRef]
- Ribeiro, M.H.D.M.; dos Santos Coelho, L. Ensemble Approach Based on Bagging, Boosting and Stacking for Short-Term Prediction in Agribusiness Time Series. Appl. Soft Comput. 2020, 86, 105837. [Google Scholar] [CrossRef]
- Liu, D.; Tang, Z.; Cai, Y. A Hybrid Model for China’s Soybean Spot Price Prediction by Integrating CEEMDAN with Fuzzy Entropy Clustering and CNN-GRU-Attention. Sustainability 2022, 14, 15522. [Google Scholar] [CrossRef]
- RL, M.; Mishra, A.K. Forecasting Spot Prices of Agricultural Commodities in India: Application of Deep-Learning Models. Intell. Syst. Account. Financ. Manag. 2021, 28, 72–83. [Google Scholar] [CrossRef]
- Deepa, S.; Alli, A.; Gokila, S. Machine Learning Regression Model for Material Synthesis Prices Prediction in Agriculture. Mater. Today Proc. 2021, 81, 989–993. [Google Scholar] [CrossRef]
- Ouyang, H.; Wei, X.; Wu, Q. Agricultural Commodity Futures Prices Prediction via Long-and Short-Term Time Series Network. J. Appl. Econ. 2019, 22, 468–483. [Google Scholar] [CrossRef]
- Liang, J.; Jia, G. China Futures Price Forecasting Based on Online Search and Information Transfer. Data Sci. Manag. 2022, 5, 187–198. [Google Scholar] [CrossRef]
- Weng, Y.; Wang, X.; Hua, J.; Wang, H.; Kang, M.; Wang, F.-Y. Forecasting Horticultural Products Price Using ARIMA Model and Neural Network Based on a Large-Scale Data Set Collected by Web Crawler. IEEE Trans. Comput. Soc. Syst. 2019, 1–7. [Google Scholar] [CrossRef]
- Deina, C.; do Amaral Prates, M.H.; Alves, C.H.R.; Martins, M.S.R.; Trojan, F.; Stevan Jr, S.L.; Siqueira, H.V. A Methodology for Coffee Price Forecasting Based on Extreme Learning Machines. Inf. Process. Agric. 2022, 9, 556–565. [Google Scholar] [CrossRef]
- Liang, X.; Luo, P.; Li, X.; Wang, X.; Shu, L. Crude Oil Price Prediction Using Deep Reinforcement Learning. Resour. Policy 2023, 81, 103363. [Google Scholar] [CrossRef]
- Sadefo Kamdem, J.; Bandolo Essomba, R.; Njong Berinyuy, J. Deep Learning Models for Forecasting and Analyzing the Implications of COVID-19 Spread on Some Commodities Markets Volatilities. Chaos Solitons Fractals 2020, 140, 110215. [Google Scholar] [CrossRef] [PubMed]
- Urolagin, S.; Sharma, N.; Datta, T.K. A combined architecture of multivariate LSTM with Mahalanobis and Z-Score transformations for oil price forecasting. Energy 2021, 231, 120963. [Google Scholar] [CrossRef]
- Xu, Z.; Mohsin, M.; Ullah, K.; Ma, X. Using econometric and machine learning models to forecast crude oil prices: Insights from economic history. Resour. Policy 2023, 83, 103614. [Google Scholar] [CrossRef]
- Niu, T.; Wang, J.; Lu, H.; Yang, W.; Du, P. A Learning System Integrating Temporal Convolution and Deep Learning for Predictive Modeling of Crude Oil Price. IEEE Trans. Ind. Inform. 2020, 17, 4602–4612. [Google Scholar] [CrossRef]
- Guliyev, H.; Mustafayev, E. Predicting the Changes in the WTI Crude Oil Price Dynamics Using Machine Learning Models. Resour. Policy 2022, 77, 102664. [Google Scholar] [CrossRef]
- Wang, J.; Zhou, H.; Hong, T.; Li, X.; Wang, S. A multi-granularity heterogeneous combination approach to crude oil price forecasting. Energy Econ. 2020, 91, 104790. [Google Scholar] [CrossRef]
- Čeperić, E.; Žiković, S.; Čeperić, V. Short-Term Forecasting of Natural Gas Prices Using Machine Learning and Feature Selection Algorithms. Energy 2017, 140, 893–900. [Google Scholar] [CrossRef]
- Zheng, Y.; Luo, J.; Chen, J.; Chen, Z.; Shang, P. Natural gas spot price prediction research under the background of Russia-Ukraine conflict-based on FS-GA-SVR hybrid model. J. Environ. Manag. 2023, 344, 118446. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Cao, J.; Yuan, S.; Cheng, M. Short-term forecasting of natural gas prices by using a novel hybrid method based on a combination of the CEEMDAN-SE-and the PSO-ALS-optimized GRU network. Energy 2021, 233, 121082. [Google Scholar] [CrossRef]
- Sun, X.; Liu, M.; Sima, Z. A novel cryptocurrency price trend forecasting model based on LightGBM. Financ. Res. Lett. 2020, 32, 101084. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, C.; Sensoy, A.; Yao, S.; Cheng, F. Can Investors’ Informed Trading Predict Cryptocurrency Returns? Evidence from Machine Learning. Res. Int. Bus. Financ. 2022, 62, 101683. [Google Scholar] [CrossRef]
- Oyedele, A.A.; Ajayi, A.O.; Oyedele, L.O.; Bello, S.A.; Jimoh, K.O. Performance Evaluation of Deep Learning and Boosted Trees for Cryptocurrency Closing Price Prediction. Expert Syst. Appl. 2023, 213, 119233. [Google Scholar] [CrossRef]
- Akyildirim, E.; Goncu, A.; Sensoy, A. Prediction of Cryptocurrency Returns Using Machine Learning. Ann. Oper. Res. 2021, 297, 3–36. [Google Scholar] [CrossRef]
- Borges, T.A.; Neves, R.F. Ensemble of Machine Learning Algorithms for Cryptocurrency Investment with Different Data Resampling Methods. Appl. Soft Comput. 2020, 90, 106187. [Google Scholar] [CrossRef]
- Zhang, Z.; Dai, H.N.; Zhou, J.; Mondal, S.K.; García, M.M.; Wang, H. Forecasting cryptocurrency price using convolutional neural networks with weighted and attentive memory channels. Expert Syst. Appl. 2021, 183, 115378. [Google Scholar] [CrossRef]
- Alonso-Monsalve, S.; Suárez-Cetrulo, A.L.; Cervantes, A.; Quintana, D. Convolution on Neural Networks for High-Frequency Trend Prediction of Cryptocurrency Exchange Rates Using Technical Indicators. Expert Syst. Appl. 2020, 149, 113250. [Google Scholar] [CrossRef]
- Cavalli, S.; Amoretti, M. CNN-Based Multivariate Data Analysis for Bitcoin Trend Prediction. Appl. Soft Comput. 2021, 101, 107065. [Google Scholar] [CrossRef]
- Jaquart, P.; Dann, D.; Weinhardt, C. Short-Term Bitcoin Market Prediction via Machine Learning. J. Financ. Data Sci. 2021, 7, 45–66. [Google Scholar] [CrossRef]
- Alkhodhairi, R.K.; Aljalhami, S.R.; Rusayni, N.K.; Alshobaili, J.F.; Al-Shargabi, A.A.; Alabdulatif, A. Bitcoin Candlestick Prediction with Deep Neural Networks Based on Real Time Data. Comput. Mater. Contin. 2021, 68, 3215–3233. [Google Scholar] [CrossRef]
- Chen, W.; Xu, H.; Jia, L.; Gao, Y. Machine Learning Model for Bitcoin Exchange Rate Prediction Using Economic and Technology Determinants. Int. J. Forecast. 2021, 37, 28–43. [Google Scholar] [CrossRef]
- Mudassir, M.; Bennbaia, S.; Unal, D.; Hammoudeh, M. Time-Series Forecasting of Bitcoin Prices Using High-Dimensional Features: A Machine Learning Approach. Neural Comput. Appl. 2020, 32, 17763–17778. [Google Scholar] [CrossRef]
- Mallqui, D.C.; Fernandes, R.A. Predicting the Direction, Maximum, Minimum and Closing Prices of Daily Bitcoin Exchange Rate Using Machine Learning Techniques. Appl. Soft Comput. 2019, 75, 596–606. [Google Scholar] [CrossRef]
- Jang, H.; Lee, J. An Empirical Study on Modeling and Prediction of Bitcoin Prices with Bayesian Neural Networks Based on Blockchain Information. IEEE Access 2017, 6, 5427–5437. [Google Scholar] [CrossRef]
- Al-Nefaie, A.H.; Aldhyani, T.H. Bitcoin Price Forecasting and Trading: Data Analytics Approaches. Electronics 2022, 11, 4088. [Google Scholar] [CrossRef]
- Cocco, L.; Tonelli, R.; Marchesi, M. Predictions of Bitcoin Prices through Machine Learning Based Frameworks. PeerJ Comput. Sci. 2021, 7, e413. [Google Scholar] [CrossRef]
- Tapia, S.; Kristjanpoller, W. Framework based on multiplicative error and residual analysis to forecast bitcoin intraday-volatility. Phys. A Stat. Mech. Its Appl. 2022, 589, 126613. [Google Scholar] [CrossRef]
- Dutta, A.; Kumar, S.; Basu, M. A Gated Recurrent Unit Approach to Bitcoin Price Prediction. J. Risk Financ. Manag. 2020, 13, 23. [Google Scholar] [CrossRef]
- Lahmiri, S.; Bekiros, S. Cryptocurrency Forecasting with Deep Learning Chaotic Neural Networks. Chaos Solitons Fractals 2019, 118, 35–40. [Google Scholar] [CrossRef]
- Serrano, W. The random neural network in price predictions. Neural Comput. Appl. 2022, 34, 855–873. [Google Scholar] [CrossRef]
- Uras, N.; Marchesi, L.; Marchesi, M.; Tonelli, R. Forecasting Bitcoin closing price series using linear regression and neural networks models. PeerJ Comput. Sci. 2020, 6, e279. [Google Scholar] [CrossRef] [PubMed]
- Sebastião, H.; Godinho, P. Forecasting and trading cryptocurrencies with machine learning under changing market conditions. Financ. Innov. 2021, 7, 1–30. [Google Scholar] [CrossRef] [PubMed]
- Poongodi, M.; Sharma, A.; Vijayakumar, V.; Bhardwaj, V.; Sharma, A.P.; Iqbal, R.; Kumar, R. Prediction of the Price of Ethereum Blockchain Cryptocurrency in an Industrial Finance System. Comput. Electr. Eng. 2019, 81, 106527. [Google Scholar] [CrossRef]
- Zoumpekas, T.; Houstis, E.; Vavalis, M. Eth analysis and predictions utilizing deep learning. Expert Syst. Appl. 2020, 162, 113866. [Google Scholar] [CrossRef]
- Patel, M.M.; Tanwar, S.; Gupta, R.; Kumar, N. A Deep Learning-Based Cryptocurrency Price Prediction Scheme for Financial Institutions. J. Inf. Secur. Appl. 2020, 55, 102583. [Google Scholar] [CrossRef]
- Peng, Y.; Albuquerque, P.H.M.; de Sá, J.M.C.; Padula, A.J.A.; Montenegro, M.R. The Best of Two Worlds: Forecasting High Frequency Volatility for Cryptocurrencies and Traditional Currencies with Support Vector Regression. Expert Syst. Appl. 2018, 97, 177–192. [Google Scholar] [CrossRef]
- Islam, M.S.; Hossain, E. Foreign Exchange Currency Rate Prediction Using a GRU-LSTM Hybrid Network. Soft Comput. Lett. 2020, 3, 100009. [Google Scholar] [CrossRef]
- Yıldırım, D.C.; Toroslu, I.H.; Fiore, U. Forecasting directional movement of Forex data using LSTM with technical and macroeconomic indicators. Financ. Innov. 2021, 7, 1. [Google Scholar] [CrossRef]
- Ahmed, S.; Hassan, S.-U.; Aljohani, N.R.; Nawaz, R. FLF-LSTM: A Novel Prediction System Using Forex Loss Function. Appl. Soft Comput. 2020, 97, 106780. [Google Scholar] [CrossRef]
- Escudero, P.; Alcocer, W.; Paredes, J. Recurrent Neural Networks and ARIMA Models for Euro/Dollar Exchange Rate Forecasting. Appl. Sci. 2021, 11, 5658. [Google Scholar] [CrossRef]
- Jubert de Almeida, B.; Ferreira Neves, R.; Horta, N. Combining Support Vector Machine with Genetic Algorithms to Optimize Investments in Forex Markets with High Leverage. Appl. Soft Comput. 2018, 64, 596–613. [Google Scholar] [CrossRef]
- Sadeghi, A.; Daneshvar, A.; Zaj, M.M. Combined ensemble multi-class SVM and fuzzy NSGA-II for trend forecasting and trading in Forex markets. Expert Syst. Appl. 2021, 185, 115566. [Google Scholar] [CrossRef]
- Ni, L.; Li, Y.; Wang, X.; Zhang, J.; Yu, J.; Qi, C. Forecasting of Forex Time Series Data Based on Deep Learning. Procedia Comput. Sci. 2019, 147, 647–652. [Google Scholar] [CrossRef]
- Lin, H.; Sun, Q.; Chen, S.Q. Reducing Exchange Rate Risks in International Trade: A Hybrid Forecasting Approach of CEEMDAN and Multilayer LSTM. Sustainability 2020, 12, 2451. [Google Scholar] [CrossRef]
- Dautel, A.J.; Härdle, W.K.; Lessmann, S.; Seow, H.-V. Forex Exchange Rate Forecasting Using Deep Recurrent Neural Networks. Digit. Financ. 2020, 2, 69–96. [Google Scholar] [CrossRef]
- Abedin, M.Z.; Moon, M.H.; Hassan, M.K.; Hajek, P. Deep Learning-Based Exchange Rate Prediction during the COVID-19 Pandemic. Ann. Oper. Res. 2021, 345, 1335–1386. [Google Scholar] [CrossRef] [PubMed]
- Qi, L.; Khushi, M.; Poon, J. Event-Driven LSTM for Forex Price Prediction. In Proceedings of the 2020 IEEE Asia-Pacific Conference on Computer Science and Data Engineering (CSDE), Gold Coast, Australia, 16–18 December 2020. [Google Scholar] [CrossRef]
- Rundo, F. Deep LSTM with Reinforcement Learning Layer for Financial Trend Prediction in FX High Frequency Trading Systems. Appl. Sci. 2019, 9, 4460. [Google Scholar] [CrossRef]
- Baffour, A.A.; Jingchun, F.; Taylor, E.K. A Hybrid Artificial Neural Network-GJR Modelling Approach to Forecasting Currency Exchange Rate Volatility. Neurocomputing 2019, 365, 285–301. [Google Scholar] [CrossRef]
- Xueling, L.; Xiong, X.; Yucong, S. Exchange rate market trend prediction based on sentiment analysis. Comput. Electr. Eng. 2023, 111, 108901. [Google Scholar] [CrossRef]
- Sako, K.; Mpinda, B.N.; Rodrigues, P.C. Neural networks for financial time series forecasting. Entropy 2022, 24, 657. [Google Scholar] [CrossRef]
- Cao, W.; Zhu, W.; Wang, W.; Demazeau, Y.; Zhang, C. A Deep Coupled LSTM Approach for USD/CNY Exchange Rate Forecasting. IEEE Intell. Syst. 2020, 1, 1. [Google Scholar] [CrossRef]
- Hyndman, R.J.; Athanasopoulos, G. Forecasting: Principles and Practice; OTexts: Melbourne, Australia, 2018. [Google Scholar]
- Granger, C.W.J.; Newbold, P. Forecasting Economic Time Series, 2nd ed.; Academic Press: Orlando, FL, USA, 1986. [Google Scholar]
- Chai, T.; Draxler, R.R. Root Mean Square Error (RMSE) or Mean Absolute Error (MAE)? Arguments against Relying on RMSE in Model Evaluation. Geosci. Model Dev. 2014, 7, 1247–1250. [Google Scholar] [CrossRef]
- Makridakis, S. Accuracy Measures: Theoretical and Practical Concerns. Int. J. Forecast. 1993, 9, 527–529. [Google Scholar] [CrossRef]
- Kim, S.; Kim, H. A New Metric of Absolute Percentage Error for Intermittent Demand Forecasts. Int. J. Forecast. 2016, 32, 669–679. [Google Scholar] [CrossRef]
- Hyndman, R.J.; Koehler, A.B. Another Look at Measures of Forecast Accuracy. Int. J. Forecast. 2006, 22, 679–688. [Google Scholar] [CrossRef]
- Powers, D.M.W. Evaluation: From Precision, Recall and F-Measure to ROC, Informedness, Markedness & Correlation. Int. J. Mach. Learn. Technol. 2011, 2, 37–63. [Google Scholar] [CrossRef]
- Fawcett, T. An Introduction to ROC Analysis. Pattern Recognit. Lett. 2006, 27, 861–874. [Google Scholar] [CrossRef]
- Mounjid, O.; Lehalle, C.A. Improving reinforcement learning algorithms: Towards optimal learning rate policies. Math. Financ. 2024, 34, 588–621. [Google Scholar] [CrossRef]
- Song, H.; Choi, H. Forecasting stock market indices using the recurrent neural network based hybrid models: CNN-LSTM, GRU-CNN, and ensemble models. Appl. Sci. 2023, 13, 4644. [Google Scholar] [CrossRef]
- Liu, C.; Tran, M.N.; Wang, C.; Gerlach, R.; Kohn, R. Data Scaling Effect of Deep Learning in Financial Time Series Forecasting. arXiv 2023, arXiv:2309.02072. [Google Scholar] [CrossRef]
- Yan, H.; Ouyang, H. Financial time series prediction based on deep learning. Wirel. Pers. Commun. 2018, 102, 683–700. [Google Scholar] [CrossRef]
- Livieris, I.E.; Stavroyiannis, S.; Pintelas, E.; Kotsilieris, T.; Pintelas, P. A dropout weight-constrained recurrent neural network model for forecasting the price of major cryptocurrencies and CCi30 index. Evolving Syst. 2022, 1–16. [Google Scholar] [CrossRef]
- Vancsura, L.; Tatay, T.; Bareith, T. Investigating the Role of Activation Functions in Predicting the Price of Cryptocurrencies During Critical Economic Periods. Virtual Econ. 2024, 7, 64–91. [Google Scholar] [CrossRef] [PubMed]
- Makinde, A. Optimizing Time Series Forecasting: A Comparative Study of Adam and Nesterov Accelerated Gradient on LSTM and GRU networks Using Stock Market data. arXiv 2024, arXiv:2410.01843. [Google Scholar] [CrossRef]
- Hoque, K.E.; Aljamaan, H. Impact of hyperparameter tuning on machine learning models in stock price forecasting. IEEE Access 2021, 9, 163815–163830. [Google Scholar] [CrossRef]
- Flavia, A.; Mio, C. Performance Comparison of Standard LSTM and LSTM with Random Search Optimization for Spark New Zealand Limited Stock Price Prediction. Int. J. Artif. Intell. Inform. 2025, 3, 60–66. [Google Scholar] [CrossRef]
- Liu, W.; Suzuki, Y.; Du, S. Forecasting the Stock Price of Listed Innovative SMEs Using Machine Learning Methods Based on Bayesian optimization: Evidence from China. Comput. Econ. 2024, 63, 2035–2068. [Google Scholar] [CrossRef]
- Ma, D.; Shu, M.; Zhang, H. Feature selection optimization for employee retention prediction: A machine learning approach for human resource management. Appl. Comput. Eng. 2025, 141, 120–130. [Google Scholar] [CrossRef]
- Tsai, C.F.; Sue, K.L.; Hu, Y.H.; Chiu, A. Combining feature selection, instance selection, and ensemble classification techniques for improved financial distress prediction. J. Bus. Res. 2021, 130, 200–209. [Google Scholar] [CrossRef]
- Goodell, J.W.; Jabeur, S.B.; Saâdaoui, F.; Nasir, M.A. Explainable artificial intelligence modeling to forecast bitcoin prices. Int. Rev. Financ. Anal. 2023, 88, 102702. [Google Scholar] [CrossRef]
- Rane, N.; Choudhary, S.; Rane, J. Explainable Artificial Intelligence (XAI) approaches for transparency and accountability in financial decision-making. SSRN Electron. J. 2023, 4640316. [Google Scholar] [CrossRef]
- Chen, S.; Ge, L. Exploring the Attention Mechanism in LSTM-Based Hong Kong Stock Price Movement Prediction. Quant. Financ. 2019, 19, 1507–1515. [Google Scholar] [CrossRef]
- Souto, H.G.; Moradi, A. Can transformers transform financial forecasting? China Financ. Rev. Int. 2024, ahead-of-print. [Google Scholar] [CrossRef]
- Lim, B.; Arık, S.Ö.; Loeff, N.; Pfister, T. Temporal Fusion Transformers for Interpretable Multi-Horizon Time Series Forecasting. Int. J. Forecast. 2021, 37, 1748–1764. [Google Scholar] [CrossRef]
- Kabir, M.R.; Bhadra, D.; Ridoy, M.; Milanova, M. LSTM–Transformer-Based Robust Hybrid Deep Learning Model for Financial Time Series Forecasting. Science 2025, 7, 7. [Google Scholar] [CrossRef]
- Cheng, D.; Yang, F.; Xiang, S.; Liu, J. Financial Time Series Forecasting with Multi-Modality Graph Neural Network. Pattern Recognit. 2022, 121, 108218. [Google Scholar] [CrossRef]
- Feng, R.; Jiang, S.; Liang, X.; Xia, M. STGAT: Spatial–Temporal Graph Attention Neural Network for Stock Prediction. Appl. Sci. 2025, 15, 4315. [Google Scholar] [CrossRef]
- Takahashi, S.; Chen, Y.; Tanaka-Ishii, K. Modeling financial time-series with generative adversarial networks. Phys. A 2019, 527, 121261. [Google Scholar] [CrossRef]
- Vuletić, M.; Prenzel, F.; Cucuringu, M. Fin-gan: Forecasting and classifying financial time series via generative adversarial networks. Quant. Financ. 2024, 24, 175–199. [Google Scholar] [CrossRef]
- Ingle, V.; Deshmukh, S. Ensemble Deep Learning Framework for Stock Market Data Prediction (EDLF-DP). Glob. Transit. Proc. 2021, 2, 47–66. [Google Scholar] [CrossRef]
- Gul, A. A Novel Hybrid Ensemble Framework for Stock Price Prediction: Combining Bagging, Boosting, Dagging, and Stacking. Comput. Econ. 2025, 1–31. [Google Scholar] [CrossRef]
- Batool, K.; Baig, M.M.; Fatima, U. Accuracy and Efficiency in Financial Markets Forecasting Using Meta-Learning Under Resource Constraints. Mach. Learn. Appl. 2025, 21, 100681. [Google Scholar] [CrossRef]
- Liu, A.; Ma, J.; Zhang, G. Adapting to the Unknown: Robust Meta-Learning for Zero-Shot Financial Time Series Forecasting. arXiv 2025, arXiv:2504.09664. [Google Scholar] [CrossRef]
- Henrique, B.M.; Sobreiro, V.A.; Kimura, H. Literature Review: Machine Learning Techniques Applied to Financial Market Prediction. Expert Syst. Appl. 2019, 124, 226–251. [Google Scholar] [CrossRef]
- Ghoddusi, H.; Creamer, G.G.; Rafizadeh, N. Machine Learning in Energy Economics and Finance: A Review. Energy Econ. 2019, 81, 709–727. [Google Scholar] [CrossRef]
- Sezer, O.B.; Gudelek, M.U.; Ozbayoglu, A.M. Financial time series forecasting with deep learning: A systematic literature review: 2005–2019. Appl. Soft Comput. 2020, 90, 106181. [Google Scholar] [CrossRef]
- Ozbayoglu, A.M.; Gudelek, M.U.; Sezer, O.B. Deep Learning for Financial Applications: A Survey. Appl. Soft Comput. 2020, 93, 106384. [Google Scholar] [CrossRef]
- Rouf, N.; Malik, M.B.; Arif, T.; Sharma, S.; Singh, S.; Aich, S.; Kim, H.C. Stock Market Prediction Using Machine Learning Techniques: A Decade Survey on Methodologies, Recent Developments, and Future Directions. Electronics 2021, 10, 2717. [Google Scholar] [CrossRef]
- Kumar, D.; Sarangi, P.K.; Verma, R. A Systematic Review of Stock Market Prediction Using Machine Learning and Statistical Techniques. Mater. Today Proc. 2022, 49, 3187–3191. [Google Scholar] [CrossRef]
- Ahmed, S.; Alshater, M.M.; El Ammari, A.; Hammami, H. Artificial Intelligence and Machine Learning in Finance: A Bibliometric Review. Res. Int. Bus. Financ. 2022, 61, 101646. [Google Scholar] [CrossRef]
Quality Criteria | Reason for Inclusion and Exclusion |
---|---|
Inclusion criteria | |
Year of publication | We focused on publications from 2014–2023. |
Articles in English language | All articles processed in the systematic literature review were published in English. |
Thematic | We focused on the forecasting performance of machine learning models in relation to financial and stock market time series. |
Scholarly published articles | Verified, relevant, and quality content papers on machine learning models. |
Exclusion criteria | |
Articles that do address other sector | Time-series analyses outside the four main product groups (e.g., electricity demand, precipitation, or sea level forecast). |
Conference paper, books, working papers, technical reports, thesis | All articles are professionally reviewed to ensure quality and consistency. |
Citations | Assets | Data Sources | Main Methods | Prediction Type | Dataset Period | Performance Measures | |
---|---|---|---|---|---|---|---|
Fischer and Krauss (2018) [54] | 2733 | S&P500 | Thomson Reuters | RF, LR, LSTM | Direction | 1992–2015 | Accuracy |
Siami-Namini et al. (2018) [55] | 1680 | Nikkei225, S&P500, NASDAQ composit, Hang Seng, Dow Jones | Yahoo Finance | ARIMA, LSTM | Price | 1985–2018 | RMSE |
Nelson et al. (2017) [65] | 1124 | Ibovespa index | BM&F Bovespa stock exchange | MLP, RF, LSTM | Direction | 2008–2015 | F1-score, Accuracy, Recall, Precision |
Chong et al. (2017) [71] | 1054 | KOSPI stocks | Korean Stock Exchange | AR, ANN, DNN, AR-DNN, DNN-AR | Return | 2010–2014 | MSE, RMSE, MAE |
Ballings et al. (2015) [69] | 816 | European stocks | Amadeus Database | AdaBoost, RF, KF, SVM, KNN, Logistic regression, ANN | Return | 2009 | AUC |
Cao et al. (2019) [61] | 784 | S&P500, Hang Seng, DAX, SSE | Yahoo Finance | LSTM, SVM, MLP, CEEMDAN-LSTM, CEEMDAN-SVM, CEEMDAN-MLP | Price | 2007–2017 | RMSE, MAPE, MAE |
Hiransha et al. (2018) [50] | 748 | NSE and NYSE | NSE and NYSE | MLP, RNN, CNN, LSTM, ARIMA | Price | 1996–2015 | MAPE |
Zhang et al. (2017) [63] | 532 | 50 different global stocks | Yahoo Finance | AR, LSTM, SFM (State Frequency Memory) | Price | 2007–2016 | RMSE |
Nabipour et al. (2020) [49] | 487 | Stocks from Tehran Stock Exchange | TSETMC | DT, RF, Adaboost, xGBoost, SVC, Naïve Bayes, KNN, Logistic regression, ANN, RNN, LSTM | Direction | 2009–2019 | F1-score, Accuracy, ROC-AUC |
Basak et al. (2019) [70] | 484 | 10 different global stocks | Yahoo Finance | XGBoost, Logistic regression, SVM, ANN, RF | Direction | From publicly available to 2017 | F1-score, Accuracy, Recall, Precision, AUC |
Reference | Citations | Assets | Data Sources | Main Methods | Prediction Type | Dataset Period | Performance Measures |
---|---|---|---|---|---|---|---|
Livieris et al. (2020) [82] | 893 | Gold | Yahoo Finance | SVR, FFNN, LSTM, CNN-LSTM | Direction, Price | 2014–2018 | MAE, RMSE, Accuracy, AUC |
Ribeiro et al. (2020) [87] | 562 | Soybean, Wheat | CME Group’s | Gredient Boost, XGBoost, RF, SVR, KNN, MLP, KNN-XGB-SVR | Price | 2001–2018 | MSE, RMSE, MAE, MAPE |
Liang et al. (2022) [81] | 164 | Gold | COMEX | LSTM, CNN, CBAM, LSTM-CNN-CBAM, ICEEMDAN-LSTM-CNN-CBAM | Price | 2010–2020 | RMSE, MAE, MAPE, SMAPE |
Weng et al. (2019) [93] | 151 | Cucumber | Beijing Xinfadi Market | ARIMA, BPNN, RNN | Price | 2010–2018 | MAPE |
Wang et al. (2021) [104] | 116 | Natural gas | US Energy Information Administration | BP network, SVR, RNN, LSTM, GRU, and PSO-GRU) and 17 hybrid models | Price | 2000–2019 | MSE, RMSE, MAE, MAPE |
Fang et al. (2020) [86] | 104 | Vegetable meal, soybean meal, stalked rice, strong wheat, Zheng cotton, and early Indica rice | Wind | ARIMA, ANN, SVR | Price | 2014–2017 | RRMSE |
Urolagin et al. (2021) [97] | 99 | Crude oil, Gold | Investing | LSTM, RMT-LSTM, RZT-LSTM | Price | 2000–2019 | MAE, MSE, RMSE |
Čeperić et al. (2017) [102] | 97 | Natural gas, heating oil, crude oil, coal | Bloomberg | ANN, Naive Bayes, AR, ARIMA, SVR, SSA-SVR | Price | 2010–2014 | RMSE. MAPE |
RL et al. (2021) [89] | 84 | Cotton seed, castor seed, rape mustard seed, soybean seed, and guar seed | National Commodity and Derivatives Exchange | ARIMA, LSTM, TDNN | Price | 2009–2019 | RMSE |
Guliyev and Mustafayev (2022) [100] | 82 | Crude oil, Gold | FRED, Yahoo Finance | Logistic regression, DT, RF, Adaboost, XGBoost | Direction | 1991–2021 | Accuracy, AUC, ROC |
Reference | Citations | Assets | Data Sources | Main Methods | Prediction Type | Dataset Period | Performance Measures |
---|---|---|---|---|---|---|---|
Jang and Lee (2017) [118] | 607 | Bitcoin | Yahoo Finance | LR, BNN, SVR | Price | 2011–2017 | RMSE, MAPE |
Sun et al. (2020) [105] | 526 | 42 differenc cryptocurrencies | Investing | LightGBM, RF, SVC | Direction | 2018 | AUC, Accuracy |
Chen et al. (2020) [18] | 498 | Bitcoin | CoinMarketCap | Logistic regression, RF, XGBoost, SVC, LSTM, LDA, QDA | Direction | 2017–2019 | F1-score, Accuracy, Recall, Precision |
Lahmiri and Bekiros (2019) [123] | 407 | Bitcoin, Digital Cash, Ripple | CoinMarketCap | GRNN, LSTM | Price | 201–2018 | RMSE |
Poongodi et al. (2020) [127] | 396 | Ethereum | Ethereumchain | LR, SVR | Direction | 2015–2018 | Accuracy |
Patel et al. (2020) [129] | 339 | Litecoin, Monero | Investing | LSTM, LSTM-GRU | Price | 2015–2020 | MSE, RMSE, MAE, MAPE |
Mallqui and Fernandes (2019) [117] | 295 | Bitcoin | Bitcoinchart, Investing | ANN, RNN, SVR, LSTM, ARIMA | Direction, Price | 2013–2017 | Accuracy, AUC, RMSE, MAE, MAPE |
Akyildirim et al. (2021) [108] | 295 | Bitcoin Cash, Bitcoin, Dash, EOS, Ethereum Classic, Ethereum, Iota, Litecoin, OmiseGO, Monero, Ripple, Zcash | Bitfinex | Logistic regression, SVC, RF, ANN | Return | 2013–2018 | Accuracy |
Peng et al. (2018) [130] | 288 | Bitcoin, Ethereum, Dash | Alt19 | GARCH, EGARCH, SVR-GARCH | Volatility | 2016–2017 | RMSE, MAE |
Dutta et al. (2020) [122] | 269 | Bitcoin | Yahoo Finance, Bitcoin.com | RNN, LSTM, GRU | Price | 2010–2019 | RMSE |
Reference | Citations | Assets | Data Sources | Main Methods | Prediction Type | Dataset Period | Performance Measures |
---|---|---|---|---|---|---|---|
Islam and Hossain (2020) [131] | 161 | EUR-USD, GBP-USD, USD-CAD, USD-CHF | Histdata | LSTM, GRU, GRU-LSTM | Price | 2017–2020 | MSE, RMSE, MAE |
Yıldırım (2021) [132] | 145 | EUR-USD | ECB Statistical Data Warehouse, Yahoo Finance, Federal Reserve Economic Data, Bureau of Labor Statistics Data | LSTM, ME-LSTM, TI-LSTM | Direction | 2013–2018 | Accuracy |
Ni et al. (2019) [137] | 144 | EUR-USD, AUD-USD, GBP-JPY, EUR-JPY, GBP-USD, USD-CHF, USD-JPY, USD-CAD | Foreign exchange tester website | CNN, LSTM, CNN-RNN | Price | 2008–2018 | RMSE |
Abedin et al. (2021) [140] | 116 | AUD-USD, EUR-USD, NZD-USD, GBP-USD, BRL-USD, CNY-USD, HKD-USD, INR-USD, KRW-USD, MXN-USD, ZAR-USD, SGD-USD, DKK-USD, JPY-USD, MYR-USD, NOK-USD, SEK-USD, LKR-USD, CHF-USD, TWD-USD, THB-USD | Kaggle, Oanda | Lasso regression, Ridge regression, DT, SVR, RF, LSTM, Bi-LSTM, Bagging regression, Bi-LSTM-BR | Price | 2000–2020 | RMSE, MAE, MAPE |
Dautel et al. (2020) [139] | 93 | EUR-USD, GBP-USD, JPY-USD, CHF-USD | Oanda | FFNN, RNN, LSTM, GRU | Direction | 1971–2017 | Accuracy, AUC |
Jubert de Almeida et al. (2018) [135] | 90 | EUR-USD | Dukascopy | SVM, GA, GA-SVM | Direction | 2013–2016 | Precision, Recall, Accuracy |
Rundo (2019) [142] | 88 | EUR-USD, GBP-USD, EUR-GBP | Yahoo Finance | LSTM, LSTM-RL (reinforcement learning correction block) | Direction | 2004–2018 | Accuracy |
Sako et al. (2022) [145] | 78 | ZAR-USD, NGN-USD, GBP-USD, EUR-USD, RMB-USD, JPY-USD | Yahoo Finance | RNN, LSTM, GRU | Price | 2008–2021 | RMSE, MAE |
Baffour et al. (2019) [143] | 73 | AUD-USD, CAD-USD, CHF-USD, EUR-USD, GBP-USD | Yahoo Finance | ANN-GJR, GARCH, APGARCH | Price | 2001–2013 | MSE, MAD, MAPE |
Ahmed et al. (2020) [133] | 55 | EUR-USD | XM broker | ARIMA, RNN, LSTM, FLF-RNN, FLF-LSTM | Price | 2015–2018 | MAE |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vancsura, L.; Tatay, T.; Bareith, T. Navigating AI-Driven Financial Forecasting: A Systematic Review of Current Status and Critical Research Gaps. Forecasting 2025, 7, 36. https://doi.org/10.3390/forecast7030036
Vancsura L, Tatay T, Bareith T. Navigating AI-Driven Financial Forecasting: A Systematic Review of Current Status and Critical Research Gaps. Forecasting. 2025; 7(3):36. https://doi.org/10.3390/forecast7030036
Chicago/Turabian StyleVancsura, László, Tibor Tatay, and Tibor Bareith. 2025. "Navigating AI-Driven Financial Forecasting: A Systematic Review of Current Status and Critical Research Gaps" Forecasting 7, no. 3: 36. https://doi.org/10.3390/forecast7030036
APA StyleVancsura, L., Tatay, T., & Bareith, T. (2025). Navigating AI-Driven Financial Forecasting: A Systematic Review of Current Status and Critical Research Gaps. Forecasting, 7(3), 36. https://doi.org/10.3390/forecast7030036