Solving Linear Integer Models with Variable Bounding
Abstract
:1. Introduction
2. The Linear Integer Programming (LIP)
3. The Continuous Optimal Table
4. Determining the Expressions for the Basic Variable Limits
5. Arranging Variables in the Order of Their Restrictions
5.1. Ordering Branching Variables
5.2. Starting with the Most Restricted Variable
5.3. Starting with the Variable with the Least Restriction
6. Calculating the Basic Variable Integral Bounds
6.1. Proof
6.2. Determining the Value of
7. Determining the Bound for the Liner Integer Model
7.1. Procedure for Finding a Strong Bound
7.2. Numerical Illustration
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kumar, S.; Munapo, E.; Nyamugure, P. An Insight into the Characteristic Equation for an Integer Program. Int. J. Math. Eng. Manag. Sci. 2021, 6, 611–620. [Google Scholar] [CrossRef]
- Munapo, E.; Kumar, S. Linear Integer Programming Theory and Applications: Some Recent Innovative Developments. De Gruyter. Available online: https://play.google.com/store/books/details?id=Vw5QEAAAQBAJ&gl=us (accessed on 6 December 2021).
- Schrijver, A. Theory of Linear and Integer Programming; John Wiley: New York, NY, USA, 1986. [Google Scholar]
- Alrabeeah, M.; Kumar, S.; Al-Hasani, A.; Munapo, E.; Eberhard, A. Computational Enhancement in the Application of the Branch and Bound Method for Linear Integer Programs and Related Models. Int. J. Math. Eng. Manag. Sci. 2019, 4, 1140–1153. [Google Scholar] [CrossRef]
- Hillier, F.S. Introduction to Operations Research, 8th ed.; McGraw-Hill: New York, NY, USA, 2005. [Google Scholar]
- Salvelsbergh, M.W.P. A branch and price algorithm to solve the generalized assignment problem. Oper. Res. 1997, 45, 381–841. [Google Scholar]
- Mitchell, J.E. Branch and cut algorithms for integer programming. In Encyclopedia of Optimization; Floudas, C.A., Pardalos, P.M., Eds.; Kluwer Academic Publisher: Amsterdam, The Netherlands, 2001. [Google Scholar]
- Fukasawa, R.; Longo, H.; Lysgaard, J.; Poggi de Aragao, M.; Uchoa, E.; Werneck, R.F. Robust branch-and-cut-price for the Capacitated vehicle routing problem. Math. Program. Ser. A 2006, 106, 491–511. [Google Scholar] [CrossRef]
- Munapo, E. Branch Cut and Free Algorithm for the General Linear Integer Problem. In Intelligent Computing and Optimization, Proceedings of the 3rd International Conference on Intelligent Computing and Optimization 2020 (ICO 2020), Hua Hin, Thailand, 8–9 October 2020; Advances in Intelligent Systems and Computing; Vasant, P., Zelinka, I., Weber, G.W., Eds.; Springer: Cham, Switzerland, 2021; Volume 1324, p. 1324. [Google Scholar] [CrossRef]
- Munapo, E.; Kumar, S. Reducing the complexity of the knapsack linear integer problem by reformulation techniques. Int. J. Syst. Assur. Eng. Manag. 2021, 12, 1087–1093. [Google Scholar] [CrossRef]
- Gonzalez, M.; López-Espín, J.J.; Aparicio, J.; Talbi, E. A hyper-matheuristic approach for solving mixed integer linear optimization models in the context of data envelopment analysis. PeerJ Comput. Sci. 2022, 8, e828. [Google Scholar] [CrossRef] [PubMed]
- Cereser, B.L.H.; Oliveira, A.R.L.D.; Moretti, A.C. A new strategy to solve linear integer problems with simplex directions. Pesqui. Oper. 2022, 42, 1–19. [Google Scholar] [CrossRef]
- Zhou, J.; Chen, Y.; Peng, J.; Zhou, L.; Liang, G. A Mixed-Integer Linear Programming Model for the Station Capacity Allocation Problem of a Star-Tree Pipe Network. J. Pipeline Syst. Eng. Pract. 2023, 14, 04022053. [Google Scholar] [CrossRef]
- Dilek, S.; Tosun, S. Integer linear programming-based optimization methodology for reliability and energy-aware high-level synthesis. Microelectron. Reliab. 2022, 139, 114849. [Google Scholar] [CrossRef]
- Cremoncini, D.; Frate, G.F.; Bischi, A.; Ferrari, L. Mixed Integer Linear Program model for optimized scheduling of a vanadium redox flow battery with variable efficiencies, capacity fade, and electrolyte maintenance. J. Energy Storage 2023, 59, 106500. [Google Scholar] [CrossRef]
- Munapo, E. Improvement of the Branch and Bound Algorithm for Solving the Knapsack Linear Integer Problem. East.-Eur. J. Enterp. Technol. 2020, 2, 104. [Google Scholar] [CrossRef]
- Kumar, S.; Munapo, E.; Jones, B.C. An integer equation controlled descending path to a protean pure integer program. Indian J. Math. 2007, 49, 211–237. [Google Scholar]
- Padberg, M.; Rinaldi, G. A branch and cut algorithm for the resolution of large-scale symmetric traveling salesman problems. SIAM Rev. 1991, 33, 60–100. [Google Scholar] [CrossRef]
… | … | R.H.S | |||||||
---|---|---|---|---|---|---|---|---|---|
0 | 0 | … | 0 | … | R | ||||
1 | 0 | … | 0 | … | |||||
0 | 1 | … | 0 | … | |||||
… | … | … | … | … | … | … | … | … | … |
0 | 0 | … | 1 | … |
… | … | R.H.S | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
0 | 0 | … | 0 | … | 0 | R | ||||
1 | 0 | … | 0 | … | 0 | |||||
0 | 1 | … | 0 | … | 0 | |||||
… | … | … | … | … | … | … | … | … | … | … |
0 | 0 | … | 1 | … | 0 | |||||
0 | 0 | … | 0 | … | 1 |
R.H.S | |||||||
---|---|---|---|---|---|---|---|
0 | 0 | 0 | 1.1918 | 1.9440 | 1.8809 | 186,410.8961 | |
1 | 0 | 0 | 0.0438 | 0.0713 | 0.0153 | 1519.3595 | |
0 | 0 | 1 | −0.0078 | 0.0377 | 0.0438 | 4336.3971 | |
0 | 1 | 0 | 0.0326 | −0.0051 | 0.0346 | 3430.5815 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Munapo, E.; Chukwuere, J.; Tawanda, T. Solving Linear Integer Models with Variable Bounding. Forecasting 2023, 5, 443-452. https://doi.org/10.3390/forecast5020024
Munapo E, Chukwuere J, Tawanda T. Solving Linear Integer Models with Variable Bounding. Forecasting. 2023; 5(2):443-452. https://doi.org/10.3390/forecast5020024
Chicago/Turabian StyleMunapo, Elias, Joshua Chukwuere, and Trust Tawanda. 2023. "Solving Linear Integer Models with Variable Bounding" Forecasting 5, no. 2: 443-452. https://doi.org/10.3390/forecast5020024
APA StyleMunapo, E., Chukwuere, J., & Tawanda, T. (2023). Solving Linear Integer Models with Variable Bounding. Forecasting, 5(2), 443-452. https://doi.org/10.3390/forecast5020024