# Short Term Electric Power Load Forecasting Using Principal Component Analysis and Recurrent Neural Networks

^{1}

^{2}

^{3}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Methodology

#### 2.1. Dimensionality Reduction Using Principal Component Analysis (PCA)

#### 2.2. Recurrent Neural Network (RNN)

## 3. Result Analysis

#### 3.1. Load Forecasting for HAM-(RHM-1)

#### 3.2. Load Forecasting for HAM-(RHM-2)

#### 3.3. Load Forecasting for DAM-(RDM-1)

#### 3.4. Load Forecasting for DAM-(RDM-2)

#### 3.5. Comparative Result Analysis

## 4. Conclusions

## Author Contributions

## Funding

## Institutional Review Board Statement

## Informed Consent Statement

## Data Availability Statement

## Acknowledgments

## Conflicts of Interest

## Abbreviations

$P\left(h\right)$ | Load at $h\mathrm{th}$ hour |

$P(h-1)$ | Load at one hour before from the time of prediction |

$P(h-2)$ | Load at two hours before from the time of prediction |

$P(h-3)$ | Load at three hours before from time of prediction |

$P(h-24)$ | Load at one day before from the time of prediction |

$P(h-48)$ | Load at two days before from the time of prediction |

$P(h-72)$ | Load at three days before from time of prediction |

$P(h-168)$ | Load at one week before from the time of prediction |

$P(h-336)$ | Load at two weeks before from the time of prediction |

$P(h-504)$ | Load at three weeks before from time of prediction |

MSE | Mean Square Error |

MAE | Mean Absolute Error |

RMSE | Root Mean Square Error |

a$<t>$ | Hidden neuron current activation state |

a$<t-1>$ | Hidden neuron previous activation state |

${b}_{a}$ | Bias parameter for hidden layer |

${b}_{y}$ | Bias parameter for output layer |

${W}_{ax}$ | Weight matrix between input and hidden layer |

${W}_{ya}$ | Weight matrix between output and hidden layer |

DAM | Day ahead market |

HAM | Hourly ahead market |

RHM-1 | Recurrent Neural Network Model for Hourly Ahead Market |

RHM-2 | Light weight recurrent neural network Model for Hourly Ahead Market |

RDM-1 | Recurrent Neural Network Model for day ahead market |

RDM-2 | Light weight recurrent neural network Model for day ahead market |

${Y}_{i}^{true}$ | Actual load from $i\mathrm{th}$ sample |

${Y}_{i}^{pred}$ | Predicted load with $i\mathrm{th}$ sample |

## References

- Ahmad, T.; Chen, H. A review on machine learning forecasting growth trends and their real-time applications in different energy systems. Sustain. Cities Soc.
**2020**, 54, 102010. [Google Scholar] [CrossRef] - Akhavan-Hejazi, H.; Mohsenian-Rad, H. Power systems big data analytics: An assessment of paradigm shift barriers and prospects. Energy Rep.
**2018**, 4, 91–100. [Google Scholar] [CrossRef] - Almeshaiei, E.; Soltan, H. A methodology for electric power load forecasting. Alex. Eng. J.
**2011**, 50, 137–144. [Google Scholar] [CrossRef] [Green Version] - Khodayar, M.E.; Wu, H. Demand forecasting in the Smart Grid paradigm: Features and challenges. Electr. J.
**2015**, 28, 51–62. [Google Scholar] [CrossRef] - Mansoor, M.; Grimaccia, F.; Leva, S.; Mussetta, M. Comparison of echo state network and feed-forward neural networks in electrical load forecasting for demand response programs. Math. Comput. Simul.
**2021**, 184, 282–293. [Google Scholar] [CrossRef] - Su, P.; Tian, X.; Wang, Y.; Deng, S.; Zhao, J.; An, Q.; Wang, Y. Recent trends in load forecasting technology for the operation optimization of distributed energy system. Energies
**2017**, 10, 1303. [Google Scholar] [CrossRef] [Green Version] - Zheng, X.; Ran, X.; Cai, M. Short-term load forecasting of power system based on neural network intelligent algorithm. IEEE Access
**2020**. [Google Scholar] [CrossRef] - Vasudevan, S. One-Step-Ahead Load Forecasting for Smart Grid Applications. Ph.D. Thesis, The Ohio State University, Columbus, OH, USA, 2011. [Google Scholar]
- Neusser, L.; Canha, L.N. Real-time load forecasting for demand side management with only a few days of history available. In Proceedings of the 4th International Conference on Power Engineering, Energy and Electrical Drives, Istanbul, Turkey, 13–17 May 2013; pp. 911–914. [Google Scholar]
- Singh, A.K.; Khatoon, S.; Muazzam, M.; Chaturvedi, D.K. Load forecasting techniques and methodologies: A review. In Proceedings of the 2012 2nd International Conference on Power, Control and Embedded Systems, Allahabad, India, 17–19 December 2012; pp. 1–10.
- Ahmad, F.; Alam, M.S. Assessment of power exchange based electricity market in India. Energy Strategy Rev.
**2019**, 23, 163–177. [Google Scholar] [CrossRef] - Massaoudi, M.; Refaat, S.S.; Chihi, I.; Trabelsi, M.; Oueslati, F.S.; Abu-Rub, H. A novel stacked generalization ensemble-based hybrid LGBM-XGB-MLP model for Short-Term Load Forecasting. Energy
**2021**, 214, 118874. [Google Scholar] [CrossRef] - Yin, L.; Xie, J. Multi-temporal-spatial-scale temporal convolution network for short-term load forecasting of power systems. Appl. Energy
**2021**, 283, 116328. [Google Scholar] [CrossRef] - Syed, D.; Abu-Rub, H.; Ghrayeb, A.; Refaat, S.S.; Houchati, M.; Bouhali, O.; Bañales, S. Deep learning-based short-term load forecasting approach in smart grid with clustering and consumption pattern recognition. IEEE Access
**2021**, 9, 54992–55008. [Google Scholar] [CrossRef] - Munkhammar, J.; van der Meer, D.; Widén, J. Very short term load forecasting of residential electricity consumption using the Markov-chain mixture distribution (MCM) model. Appl. Energy
**2021**, 282, 116180. [Google Scholar] [CrossRef] - Guo, W.; Che, L.; Shahidehpour, M.; Wan, X. Machine-Learning based methods in short-term load forecasting. Electr. J.
**2021**, 34, 106884. [Google Scholar] [CrossRef] - Eskandari, H.; Imani, M.; Moghaddam, M.P. Convolutional and recurrent neural network based model for short-term load forecasting. Electr. Power Syst. Res.
**2021**, 195, 107173. [Google Scholar] [CrossRef] - Sheng, Z.; Wang, H.; Chen, G.; Zhou, B.; Sun, J. Convolutional residual network to short-term load forecasting. Appl. Intell.
**2021**, 51, 2485–2499. [Google Scholar] [CrossRef] - Veeramsetty, V.; Mohnot, A.; Singal, G.; Salkuti, S.R. Short Term Active Power Load Prediction on A 33/11 kV Substation Using Regression Models. Energies
**2021**, 14, 2981. [Google Scholar] [CrossRef] - Veeramsetty, V.; Chandra, D.R.; Salkuti, S.R. Short-term electric power load forecasting using factor analysis and long short-term memory for smart cities. Int. J. Circuit Theory Appl.
**2021**, 49, 1678–1703. [Google Scholar] [CrossRef] - Grimaccia, F.; Mussetta, M.; Zich, R. Neuro-fuzzy predictive model for PV energy production based on weather forecast. In Proceedings of the 2011 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE 2011), Taipei, Taiwan, 27–30 June 2011; pp. 2454–2457. [Google Scholar] [CrossRef]
- Veeramsetty, V.; Deshmukh, R. Electric power load forecasting on a 33/11 kV substation using artificial neural networks. SN Appl. Sci.
**2020**, 2, 855. [Google Scholar] [CrossRef] [Green Version] - Hong, T.; Pinson, P.; Fan, S.; Zareipour, H.; Troccoli, A.; Hyndman, R.J. Probabilistic energy forecasting: Global Energy Forecasting Competition 2014 and beyond. Int. J. Forecast.
**2016**, 32, 896–913. [Google Scholar] [CrossRef] [Green Version] - Veeramsetty, V.; Reddy, K.R.; Santhosh, M.; Mohnot, A.; Singal, G. Short-term electric power load forecasting using random forest and gated recurrent unit. Electr. Eng.
**2021**, 1–23. [Google Scholar] [CrossRef] - Abdi, H.; Williams, L.J. Principal component analysis. Wiley Interdiscip. Rev. Comput. Stat.
**2010**, 2, 433–459. [Google Scholar] [CrossRef] - Mandic, D.P.; Chambers, J. Recurrent Neural Networks for Prediction: Learning Algorithms, Architectures and Stability; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2001. [Google Scholar]
- Karri, C.; Durgam, R.; Raghuram, K. Electricity Price Forecasting in Deregulated Power Markets using Wavelet-ANFIS-KHA. In Proceedings of the 2018 International Conference on Computing, Power and Communication Technologies (GUCON), Greater Noida, India, 28–29 September 2018; pp. 982–987. [Google Scholar]
- Veeramsetty, V. Active Power Load Dataset. 2020. Available online: https://data.mendeley.com/datasets/ycfwwyyx7d/2 (accessed on 13 December 2021).
- Shaloudegi, K.; Madinehi, N.; Hosseinian, S.; Abyaneh, H.A. A novel policy for locational marginal price calculation in distribution systems based on loss reduction allocation using game theory. IEEE Trans. Power Syst.
**2012**, 27, 811–820. [Google Scholar] [CrossRef] - Veeramsetty, V.; Chintham, V.; Vinod Kumar, D. Proportional nucleolus game theory–based locational marginal price computation for loss and emission reduction in a radial distribution system. Int. Trans. Electr. Energy Syst.
**2018**, 28, e2573. [Google Scholar] [CrossRef] - Hannan, E.J.; Kavalieris, L. Regression, autoregression models. J. Time Ser. Anal.
**1986**, 7, 27–49. [Google Scholar] [CrossRef] - Johnston, F.; Boyland, J.; Meadows, M.; Shale, E. Some properties of a simple moving average when applied to forecasting a time series. J. Oper. Res. Soc.
**1999**, 50, 1267–1271. [Google Scholar] [CrossRef] - Chen, J.F.; Wang, W.M.; Huang, C.M. Analysis of an adaptive time-series autoregressive moving-average (ARMA) model for short-term load forecasting. Electr. Power Syst. Res.
**1995**, 34, 187–196. [Google Scholar] [CrossRef] - Contreras, J.; Espinola, R.; Nogales, F.J.; Conejo, A.J. ARIMA models to predict next-day electricity prices. IEEE Trans. Power Syst.
**2003**, 18, 1014–1020. [Google Scholar] [CrossRef] - Haben, S.; Giasemidis, G.; Ziel, F.; Arora, S. Short term load forecasting and the effect of temperature at the low voltage level. Int. J. Forecast.
**2019**, 35, 1469–1484. [Google Scholar] [CrossRef] [Green Version] - Gneiting, T. Making and Evaluating Point Forecasts. J. Am. Stat. Assoc.
**2011**, 106, 746–762. [Google Scholar] [CrossRef] [Green Version]

Reference | Year | Contribution | Disadvantage |
---|---|---|---|

[12] | 2021 | novel stacking ensemble-based algorithm | Model complexity |

[13] | 2021 | multi-temporal-spatial-scale technique | Missing Weekly impact |

[14] | 2021 | k-Medoid based algorithm | Model complexity |

[15] | 2021 | Markov-chain mixture distribution model | Accuracy |

[16] | 2021 | Fusion forecasting approach | Accuracy |

[17] | 2021 | Bi-directional GRU and LSTM | Model complexity |

[18] | 2021 | Deep Residual Network with convolution layer | Model complexity |

[19] | 2021 | Regression Models | Accuracy |

[20] | 2021 | LSTM and Factor Analysis | Accuracy |

[22] | 2020 | ANN | Accuracy |

Parameters | RHM-1 | RHM-2 | RDM-1 | RDM-2 |
---|---|---|---|---|

Input neurons (${N}_{i}$) | 9 | 6 | 6 | 4 |

Output Neurons (${N}_{o}$) | 1 | 1 | 1 | 1 |

Hidden Neurons (${N}_{h}$) | 13 | 11 | 13 | 7 |

Hidden Layers | 1 | 1 | 1 | 1 |

Hidden Layer activation | Tanh | Tanh | Tanh | Tanh |

Output Layer activation | Sigmoid | Sigmoid | Sigmoid | Sigmoid |

Weights & bias | 313 | 210 | 274 | 92 |

Statistical Parameters | Output $\mathit{P}\left(\mathit{h}\right)$ |
---|---|

Count | 1680.00 |

Mean | 5904.52 |

Std. | 1077.75 |

Min | 3377.92 |

25% | 5138.90 |

50% | 5795.62 |

75% | 6618.66 |

Max | 8841.67 |

Number of training samples | 1512 |

Number of testing samples | 168 |

Nodes | Training | Testing | Trainable | |
---|---|---|---|---|

MSE | RMSE | MAE | Param | |

21 | 0.0104 | 0.124 | 0.093 | 673 |

18 | 0.0103 | 0.120 | 0.088 | 523 |

15 | 0.0102 | 0.115 | 0.081 | 391 |

13 | 0.0101 | 0.115 | 0.08 | 313 |

11 | 0.0102 | 0.117 | 0.083 | 243 |

10 | 0.0104 | 0.117 | 0.083 | 211 |

No. of Hidden | Training | Testing | Trainable | ||
---|---|---|---|---|---|

Layers | Nodes | MSE | RMSE | MAE | Parameters |

1 | 13 | 0.01 | 0.115 | 0.08 | 313 |

2 | 13 | 0.01 | 0.124 | 0.094 | 664 |

3 | 13 | 0.01 | 0.131 | 0.1 | 1015 |

Statistical Parameters | Training | Testing | |
---|---|---|---|

MSE | RMSE | MAE | |

count | 10 | 10 | 10 |

mean | 0.0103 | 0.1168 | 0.0831 |

std | 0.000125 | 0.001751 | 0.003725 |

min | 0.0101 | 0.115 | 0.079 |

25% | 0.0103 | 0.11525 | 0.08 |

50% | 0.0103 | 0.1165 | 0.082 |

75% | 0.010375 | 0.11775 | 0.08575 |

max | 0.0105 | 0.12 | 0.09 |

PC-1 | PC-2 | PC-3 | PC-4 | PC-5 | PC-6 |
---|---|---|---|---|---|

1.15773 | −0.03658 | −0.15948 | 0.080498 | −0.03406 | −0.09375 |

1.206716 | 0.022011 | −0.06865 | 0.10224 | 0.020807 | −0.02302 |

1.317927 | 0.087764 | −0.15442 | 0.286619 | 0.173571 | 0.137578 |

1.474023 | 0.247519 | −0.14054 | 0.327771 | 0.017663 | 0.282082 |

1.585102 | 0.250539 | −0.10991 | 0.301018 | 0.04917 | 0.098137 |

1.528944 | 0.003412 | −0.09801 | 0.148669 | −0.02632 | 0.071544 |

1.675344 | −0.22242 | −0.34602 | 0.148969 | −0.08434 | 0.103249 |

1.571563 | −0.28011 | −0.51846 | 0.037141 | −0.23163 | 0.15251 |

1.335613 | −0.03608 | −0.48765 | 0.030066 | −0.05095 | 0.214678 |

1.035098 | 0.156347 | −0.3284 | 0.417524 | −0.17399 | 0.139219 |

Hidden Nodes | Training | Testing | Trainable Parameters | |
---|---|---|---|---|

MSE | RMSE | MAE | ||

9 | 0.0111 | 0.122 | 0.089 | 154 |

10 | 0.0114 | 0.119 | 0.086 | 181 |

11 | 0.0110 | 0.117 | 0.084 | 210 |

12 | 0.0111 | 0.121 | 0.088 | 241 |

13 | 0.0110 | 0.121 | 0.089 | 274 |

No. of Hidden | Training | Testing | Trainable Parameters | ||
---|---|---|---|---|---|

Layers | Nodes | MSE | RMSE | MAE | |

1 | 11 | 0.0110 | 0.117 | 0.084 | 210 |

2 | 11 | 0.0112 | 0.119 | 0.086 | 463 |

3 | 11 | 0.0113 | 0.12 | 0.088 | 716 |

4 | 11 | 0.0113 | 0.2 | 0.087 | 969 |

Statistical Parameters | Training | Testing | |
---|---|---|---|

MSE | RMSE | MAE | |

Count | 10 | 10 | 10 |

mean | 0.0112 | 0.1194 | 0.0861 |

std | 0.0001 | 0.0014 | 0.0018 |

min | 0.0110 | 0.1170 | 0.0840 |

25% | 0.0112 | 0.1190 | 0.0850 |

50% | 0.0112 | 0.1190 | 0.0860 |

75% | 0.0113 | 0.1208 | 0.0868 |

max | 0.0115 | 0.1210 | 0.0890 |

Model | Trainable Parameters | Testing | |
---|---|---|---|

RMSE | MAE | ||

RHM-1 | 313 | 0.115 | 0.080 |

RHM-2 | 210 | 0.117 | 0.084 |

% of absolute change | 32.91 | 1.7 | 5 |

Hidden Nodes | Training | Testing | Trainable Parameters | |
---|---|---|---|---|

MSE | RMSE | MAE | ||

18 | 0.0155 | 0.1510 | 0.1140 | 469 |

15 | 0.0155 | 0.1500 | 0.1100 | 346 |

13 | 0.0155 | 0.1420 | 0.1030 | 274 |

12 | 0.0155 | 0.1460 | 0.1090 | 241 |

11 | 0.0155 | 0.1480 | 0.1100 | 210 |

No. of Hidden | Training | Testing | Trainable Parameters | ||
---|---|---|---|---|---|

Layers | Nodes | MSE | RMSE | MAE | |

1 | 13 | 0.0155 | 0.142 | 0.103 | 274 |

2 | 13 | 0.0154 | 0.148 | 0.108 | 625 |

3 | 13 | 0.0156 | 0.148 | 0.109 | 976 |

Statistical Parameter | Training | Testing | |
---|---|---|---|

MSE | RMSE | MAE | |

Count | 10 | 10 | 10 |

mean | 0.0155 | 0.1475 | 0.1089 |

std | 0.0001 | 0.0040 | 0.0041 |

min | 0.0154 | 0.1420 | 0.1030 |

25% | 0.0154 | 0.1440 | 0.1065 |

50% | 0.0155 | 0.1475 | 0.1090 |

75% | 0.0156 | 0.1498 | 0.1100 |

max | 0.0157 | 0.1540 | 0.1160 |

Hidden Nodes | Training | Testing | Trainable Param | |
---|---|---|---|---|

MSE | RMSE | MAE | ||

5 | 0.0165 | 0.145 | 0.107 | 56 |

6 | 0.0164 | 0.144 | 0.107 | 73 |

7 | 0.0165 | 0.143 | 0.106 | 92 |

9 | 0.0167 | 0.145 | 0.107 | 136 |

11 | 0.0164 | 0.146 | 0.109 | 188 |

No. of Hidden | Training | Testing | Trainable Parameters | ||
---|---|---|---|---|---|

Layers | Nodes | MSE | RMSE | MAE | |

1 | 7 | 0.0165 | 0.143 | 0.106 | 92 |

2 | 7 | 0.0165 | 0.144 | 0.108 | 197 |

3 | 7 | 0.0166 | 0.150 | 0.114 | 302 |

Statistical Parameters | Training | Testing | |
---|---|---|---|

MSE | RMSE | MAE | |

count | 10 | 10 | 10 |

mean | 0.0165 | 0.1465 | 0.1092 |

std | 0.0002 | 0.0021 | 0.0029 |

min | 0.0163 | 0.1430 | 0.1050 |

25% | 0.0164 | 0.1448 | 0.1065 |

50% | 0.0165 | 0.1470 | 0.1095 |

75% | 0.0166 | 0.1480 | 0.1115 |

max | 0.0168 | 0.1490 | 0.1130 |

Model | Trainable Parameters | Testing | |
---|---|---|---|

RMSE | MAE | ||

RDM-1 | 274 | 0.142 | 0.103 |

RDM-2 | 92 5 | 0.143 | 0.105 |

% of absolute change | 66.42 | 0.7 | 1.9 |

Model | MSE | RMSE | ||
---|---|---|---|---|

Training | Testing | Training | Testing | |

ANN Model [29] | 0.29 | 1.59 | 0.54 | 1.26 |

ANN Model [30] | 0.23 | 0.44 | 0.48 | 0.66 |

ANN Model [22] | 0.2 | 0.32 | 0.45 | 0.57 |

SLR Model [19] | 0.0973 | 0.0163 | 0.312 | 0.128 |

PR Model [19] | 0.0171 | 0.0158 | 0.131 | 0.126 |

MLR Model [19] | 0.0723 | 0.0119 | 0.269 | 0.109 |

LSTM-HAM-Model1 [20] | 0.0109 | 0.013 | 0.104 | 0.114 |

LSTM-HAM-Model2 [20] | 0.0125 | 0.0146 | 0.112 | 0.121 |

LSTM-DAM-Model1 [20] | 0.0156 | 0.02 | 0.125 | 0.141 |

LSTM-DAM-Model2 [20] | 0.0166 | 0.02 | 0.129 | 0.1414 |

RHM-1 | 0.0101 | 0.0132 | 0.1 | 0.115 |

RHM-2 | 0.011 | 0.0138 | 0.105 | 0.117 |

RDM-1 | 0.0154 | 0.02 | 0.124 | 0.141 |

RDM-2 | 0.0163 | 0.0205 | 0.128 | 0.143 |

Parameter | [29] | [30] | [22] | RHM-1 | RHM-2 | RDM-1 | RDM-2 |
---|---|---|---|---|---|---|---|

Mean | 0.2975 | 0.2500 | 0.2250 | 0.0135 | 0.0143 | 0.0215 | 0.0215 |

SD | 0.0200 | 0.0100 | 0.0100 | 0.0002 | 0.0003 | 0.0010 | 0.0006 |

Min | 0.2800 | 0.2400 | 0.2000 | 0.0132 | 0.0138 | 0.0200 | 0.0205 |

25% | 0.2800 | 0.2475 | 0.2175 | 0.0133 | 0.0141 | 0.0208 | 0.0209 |

50% | 0.2950 | 0.2500 | 0.2200 | 0.0135 | 0.0143 | 0.0217 | 0.0216 |

75% | 0.3050 | 0.2525 | 0.2350 | 0.0136 | 0.0145 | 0.0221 | 0.0218 |

Max | 0.3300 | 0.2600 | 0.2500 | 0.0139 | 0.0147 | 0.0232 | 0.0223 |

Batch Size | RHM-1 | RHM-2 | RDM-1 | RDM-2 | No. of Back Propagations |
---|---|---|---|---|---|

1 | 624 | 1167 | 820 | 1182 | 151,200 |

8 | 131 | 148 | 106 | 153 | 18,900 |

16 | 74 | 82 | 50 | 85 | 9500 |

32 | 24 | 24 | 33 | 47 | 4800 |

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Veeramsetty, V.; Chandra, D.R.; Grimaccia, F.; Mussetta, M.
Short Term Electric Power Load Forecasting Using Principal Component Analysis and Recurrent Neural Networks. *Forecasting* **2022**, *4*, 149-164.
https://doi.org/10.3390/forecast4010008

**AMA Style**

Veeramsetty V, Chandra DR, Grimaccia F, Mussetta M.
Short Term Electric Power Load Forecasting Using Principal Component Analysis and Recurrent Neural Networks. *Forecasting*. 2022; 4(1):149-164.
https://doi.org/10.3390/forecast4010008

**Chicago/Turabian Style**

Veeramsetty, Venkataramana, Dongari Rakesh Chandra, Francesco Grimaccia, and Marco Mussetta.
2022. "Short Term Electric Power Load Forecasting Using Principal Component Analysis and Recurrent Neural Networks" *Forecasting* 4, no. 1: 149-164.
https://doi.org/10.3390/forecast4010008