On the Autoregressive Time Series Model Using Real and Complex Analysis
Abstract
:1. Introduction
2. Related Work: The Autoregressive Model
- Is the AR model in principle able to describe characteristic properties of the time series (2); in other words, is the AR model in principle suitable?
- If it is suitable, how is the parameter p selected?
3. Global Structure
3.1. Eigenanalysis
3.2. Differential Equations
- Three real roots (counting multiplicity); or
- One real root and a conjugate pair.
4. Application
5. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
References
- Panchelyuga, V.A.; Panchelyuga, M.S.; Seraya, O.Y. On external influences on the radioactive decay rate fluctuations. In Proceedings of the CPT2020 The 8th International Scientific Conference on Computing in Physics and Technology Proceedings, Moscow, Russia, 9–13 November 2020; Volume 8, pp. 10–34. [Google Scholar] [CrossRef]
- Bichara, D.; Iggidr, A.; Sallet, G. Global analysis of multi-strains SIS, SIR and MSIR epidemic models. J. Appl. Math. Comput. 2014, 44, 273–292. [Google Scholar] [CrossRef] [Green Version]
- Ott, R.L.; Longnecker, M.T. An Introduction to Statistical Methods and Data Analysis; Cengage Learning: Belmont, CA, USA, 2015. [Google Scholar]
- Brockwell, P.J.; Davis, R.A. Introduction to Time Series and Forecasting; Springer: Berlin/Heidelberg, Germany, 2002. [Google Scholar]
- Bell, J.L. The Continuous, the Discrete and the Infinitesimal in Philosophy and Mathematics; Springer: Berlin/Heidelberg, Germany, 2019. [Google Scholar]
- Franklin, J. Discrete and Continuous: A Fundamental Dichotomy in Mathematics. J. Humanist. Math. 2017, 7, 355–378. [Google Scholar] [CrossRef] [Green Version]
- Klein, J.L. Statistical Visions in Time. A History of Time Series Analysis, 1662–1938; Cambridge University Press: Cambridge, UK, 2005. [Google Scholar]
- Hyndman, R.J.; Athanasopoulos, G. Forecasting: Principles and Practice; OTexts: Clayton, Australia, 2013. [Google Scholar]
- Box, G.E.P.; Jenkins, G.M.; Reinsel, G.C.; Ljung, G.M. Time Series Analysis: Forecasting and Control (Wiley Series in Probability and Statistics); Wiley: New York, NY, USA, 2015. [Google Scholar]
- Friedlander, B.; Porat, B. The Modified Yule-Walker Method of ARMA Spectral Estimation. IEEE Trans. Aerosp. Electron. Syst. 1984, 20, 158–173. [Google Scholar] [CrossRef]
- Hauser, M. A Guide to the Two-Step Regression Method for Estimating ARMA(p,q) Parameters. Available online: http://mbhauser.com/informal-notes.html (accessed on 15 June 2012).
- Lai, D.; Lu, B. Understanding Autoregressive Model for Time Series as a Deterministic Dynamic System. Predict. Anal. Futur. 2017, 15, 7–9. [Google Scholar]
- Zieschang, H. Lineare Algebra und Geometrie (Engl.: Linear Algebra and Geometry); Vieweg+Teubner Verlag: Wiesbaden, Germany, 1997. [Google Scholar]
- Beged-Dov, A.G. Solution of Higher-Order Linear Differential Equations with Constant Coefficients. IEEE Trans. Educ. 1966, 9, 38–39. [Google Scholar] [CrossRef]
- Storn, R.; Price, K. Differential Evolution: A Simple and Efficient Heuristic for Global Optimization Over Continuous Spaces. J. Glob. Optim. 1997, 11, 341–359. [Google Scholar] [CrossRef]
- Fletcher, R. Practical Methods of Optimization; Wiley: New York, NY, USA, 2000. [Google Scholar]
t, | Autoregressive Model | Fundamental System | Difference |
---|---|---|---|
Resp. x | |||
0 | 1.0000000 | 1.0790479 | 0.0790479 |
1 | −1.0000000 | −1.0189353 | 0.0189353 |
2 | −4.5000000 | −4.4962394 | 0.0037605 |
3 | −8.0000000 | −8.0033071 | 0.0033071 |
4 | −8.7500000 | −8.7525921 | 0.0025921 |
5 | −3.2500000 | −3.2522651 | 0.0022651 |
6 | 10.6250000 | 10.6252496 | 0.0002496 |
7 | 30.5000000 | 30.5038138 | 0.0038138 |
8 | 46.6875000 | 46.6943506 | 0.0068506 |
9 | 42.3125000 | 42.3197350 | 0.0072350 |
10 | −0.6562500 | −0.6522115 | 0.0040384 |
11 | −88.1250000 | −88.1260007 | 0.0010007 |
12 | −196.4218750 | −196.4254673 | 0.0035923 |
13 | −260.3281250 | −260.3283357 | 0.0002107 |
14 | −181.9609375 | −181.9552121 | 0.0057253 |
15 | 124.7812500 | 124.7800496 | 0.0012003 |
Forecast Error by | Avg. | Std.- | Forecast Error by | Avg. | Std.- |
---|---|---|---|---|---|
Ordinary Least Squares | Dev. | Conjugate Gradient | Dev. | ||
day #1 | 0.07 m | ±0.11 m | day #1 | 0.16 m | ±0.18 m |
day #2 | 0.12 m | ±0.18 m | day #2 | 0.21 m | ±0.27 m |
day #3 | 0.15 m | ±0.23 m | day #3 | 0.27 m | ±0.38 m |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ullrich, T. On the Autoregressive Time Series Model Using Real and Complex Analysis. Forecasting 2021, 3, 716-728. https://doi.org/10.3390/forecast3040044
Ullrich T. On the Autoregressive Time Series Model Using Real and Complex Analysis. Forecasting. 2021; 3(4):716-728. https://doi.org/10.3390/forecast3040044
Chicago/Turabian StyleUllrich, Torsten. 2021. "On the Autoregressive Time Series Model Using Real and Complex Analysis" Forecasting 3, no. 4: 716-728. https://doi.org/10.3390/forecast3040044
APA StyleUllrich, T. (2021). On the Autoregressive Time Series Model Using Real and Complex Analysis. Forecasting, 3(4), 716-728. https://doi.org/10.3390/forecast3040044