Visual Analytics for Climate Change Detection in Meteorological Time-Series
Abstract
:1. Introduction
1.1. Background
1.2. Time-Series Analysis
1.3. Overview
2. Materials and Methods
2.1. Data Sources and Study Parameters
2.2. Visual Analytics System
2.3. Missing Data
3. Results and Discussion
3.1. Long-Term Analysis
3.2. Short-Term Analysis
4. Conclusions
5. Future Research Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- IPCC. AR5 Climate Change 2013: The Physical Science Basis; Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Stocker, T.F., Qin, G.-K.D., Plattner, M., Tignor, S.K., Allen, J., Boschung, A., Nauels, Y., Xia, V., Bex, P.M., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2013; p. 1535. [Google Scholar]
- IPCC. AR5 Climate Change 2014: Impacts, Adaptation, and Vulnerability; Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Field, C.B., V.R. Barros, D.J., Dokken, K.J., Mach, M.D., Mastrandrea, T.E., Bilir, M., Chatterjee, K.L., Ebi, Y.O., Estrada, R.C., Genova, B., et al., Eds.; Cambridge University Press, Cambridge University Press: Cambridge, UK; New York, NY, USA, 2014; p. 1132. [Google Scholar]
- Anderson, T.R.; Hawkins, E.; Jones, P.D. CO2, the greenhouse effect and global warming: from the pioneering work of Arrhenius and Callendar to today’s Earth System Models. Endeavour 2016, 40, 178–187. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yoro, K.O.; Daramola, M.O. Chapter 1—CO2 emission sources, greenhouse gases, and the global warming effect. In Advances in Carbon Capture; Rahimpour, M.R., Farsi, M., Makarem, M.A., Eds.; Woodhead Publishing: Cambridge, UK, 2020; pp. 3–28. [Google Scholar] [CrossRef]
- Althor, G.; Watson, J.; Fuller, R. Global mismatch between greenhouse gas emissions and the burden of climate change. Sci. Rep. 2016, 6, 20281. [Google Scholar] [CrossRef] [PubMed]
- European Commission. Adaptation preparedness scoreboard Country fiches. In Accompanying the Document Report from the Commission to the European Parliament and the Council on the Implementation of the EU Strategy on Adaptation to Climate Change; SWD(2018) 460 Final; European Commission: Brussels, Belgium, 2018. [Google Scholar]
- Paris Agreement. Available online: https://ec.europa.eu/clima/policies/international/negotiations/paris_en (accessed on 9 October 2020).
- Takemura, T.; Suzuki, K. Weak global warming mitigation by reducing black carbon emissions. Sci. Rep. 2019, 9, 4419. [Google Scholar] [CrossRef] [PubMed]
- Samset, B.H.; Fuglestvedt, J.S.; Lund, M.T. Delayed emergence of a global temperature response after emission mitigation. Nat. Commun. 2020, 11, 3261. [Google Scholar] [CrossRef] [PubMed]
- Keim, D.; Kohlhammer, J.; Ellis, G.; Mansmann, F. Mastering the Information Age: Solving Problems with Visual Analytics; Eurographics Association: Goslar, Germany, 2010; ISBN 978-3-905673-77-7. [Google Scholar]
- Manfred, M. Trend analysis of climate time series: A review of methods. Earth-Sci. Rev. 2019, 190, 310–322. [Google Scholar] [CrossRef]
- Keim, D.A.; Mansmann, F.; Stoffel, A.; Ziegler, H. Visual Analytics. In Encyclopedia of Database Systems; Liu, L., Özsu, M.T., Eds.; Springer: Boston, MA, USA, 2009. [Google Scholar] [CrossRef]
- United Nations, Department of Economic and Social Affairs, Population Division. World Population Prospects 2019: Highlights; ST/ESA/SER.A/423; United Nations: New York, NY, USA, 2019. [Google Scholar]
- Beck, H.; Zimmermann, N.; McVicar, T.; Vergopolan, N.; Berg, A.; Wood, E.F. Present and future Köppen-Geiger climate classification maps at 1-km resolution. Sci. Data 2018, 5, 1–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- World Heritage Encyclopedia, Oceanic Climate. 2021. Available online: https://community.worldheritage.org (accessed on 26 February 2021).
- Open Data Austria, ZAMG. 2021. Available online: https://www.data.gv.at/ (accessed on 26 February 2021).
- Open Data Germany, DWD. 2021. Available online: https://opendata.dwd.de/ (accessed on 26 February 2021).
- Open Data Switzerland, City of Zürich. 2021. Available online: https://opendata.dwd.de/ (accessed on 26 February 2021).
- Bañuelos-Ruedas, F.; Angeles-Camacho, C.; Rios-Marcuello, S. Methodologies used in the extrapolation of wind speed data at different heights and its impact in the wind energy resource assessment in a region. In Wind Farm—Technical Regulations, Potential Estimation and Siting Assessment; Suvire, G.O., Ed.; InTech: London, UK, 2011. [Google Scholar]
- Spera, D.A.; Richards., T.R. Modified Power Law Equations for Vertical Wind Profiles; DOE/NASA/1 059-79/4, NASA TM-79275; U.S. Department of Energy, the American Meteorological Society, and the Pacific Northwest Laboratory: Portland, OR, USA, 1979.
- Vuckovic, M.; Schmidt, J. Visual Analytics Approach to Comprehensive Meteorological Time-Series Analysis. Data 2020, 5, 94. [Google Scholar] [CrossRef]
- NASA Climate. 2021. Available online: https://climate.nasa.gov/scientific-consensus/ (accessed on 26 February 2021).
- Zare, S.; Hasheminejad, N.; Shirvan, H.E.; Hemmatjo, R.; Sarebanzadeh, K.; Ahmadi, S. Comparing Universal Thermal Climate Index (UTCI) with selected thermal indices/environmental parameters during 12 months of the year. Weather Clim. Extrem. 2018, 19, 49–57. [Google Scholar] [CrossRef]
- Oppenheimer, M.; Campos, R.M.; Warren, J.; Birkmann, G.; Luber, B.; O’Neill, K. Emergent risks and key vulnerabilities. In Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Field, C.B., Barros, D.J., Dokken, K.J., Mach, M.D., Mastrandrea, T.E., Bilir, M., Chatterjee, K.L., Ebi, Y.O., Estrada, R.C., Genova, B., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2014; pp. 1039–1099. [Google Scholar]
Long-Term Parameters | Description |
---|---|
Air temperature | Monthly average, absolute maximum, and absolute minimum of daily temperatures in 2 m height [°C] |
Precipitation | Monthly sum of total precipitation height [mm] |
Solar radiation | Monthly sum of sunshine duration [h] |
Short-Term Parameters | Description |
Air temperature | Hourly temperature records in 2 m height [°C] |
Relative humidity | Hourly humidity records in 2 m height [%] |
Wind speed | Mean hourly wind speed [m/s, km/h] |
Long-Term Parameters | Vienna | Munich | Zürich |
Air temperature | - | - | - |
Precipitation | - | - | - |
Solar radiation | - | 1 of 552 h | - |
Short-Term Parameters | |||
Air temperature | 265 of 43,848 h | 24 of 43,848 h | 405 of 43,848 h |
Relative humidity | 264 of 43,848 h | 27 of 43,848 h | 405 of 43,848 h |
Wind speed | 262 of 43,848 h | 34 of 43,848 h | 390 of 43,848 h |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vuckovic, M.; Schmidt, J. Visual Analytics for Climate Change Detection in Meteorological Time-Series. Forecasting 2021, 3, 276-289. https://doi.org/10.3390/forecast3020018
Vuckovic M, Schmidt J. Visual Analytics for Climate Change Detection in Meteorological Time-Series. Forecasting. 2021; 3(2):276-289. https://doi.org/10.3390/forecast3020018
Chicago/Turabian StyleVuckovic, Milena, and Johanna Schmidt. 2021. "Visual Analytics for Climate Change Detection in Meteorological Time-Series" Forecasting 3, no. 2: 276-289. https://doi.org/10.3390/forecast3020018
APA StyleVuckovic, M., & Schmidt, J. (2021). Visual Analytics for Climate Change Detection in Meteorological Time-Series. Forecasting, 3(2), 276-289. https://doi.org/10.3390/forecast3020018