Estimating Time-to-Death and Determining Risk Predictors for Heart Failure Patients: Bayesian AFT Shared Frailty Models with the INLA Method
Abstract
:1. Introduction
2. Data and Methods
2.1. Heart Failure Dataset and Study Design
2.2. Study Variables and Definitions
- Outcome variable
- Predictor variables
2.3. Survival Data Analysis
2.4. Shared Frailty AFT Models
2.5. Bayesian AFT Shared Gamma Frailty Models
2.6. Integrated Nested Laplace Approximation Method
2.7. Data Analysis Procedures
3. Results and Discussions
3.1. Results
3.1.1. Descriptive Results
3.1.2. Kaplan–Meier Estimate for Selective Covariates
3.1.3. Bayesian AFT Shared Gamma Frailty Models
3.1.4. Bayesian Model Diagnostics
3.2. Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
HF | Heart Failure |
AFT | Accelerated Failure Time |
Cox PH | Cox Proportional Hazard |
MCMC | Markov Chain Monte Carlo |
INLA | Integrated Nested Laplace Approximation |
JUMC | Jimma University Medical Center |
DIC | Deviance Information Criteria |
WAIC | Watanabe Akaike Information Criterion |
KLD | Kullback–Leibler Divergence |
OPD | Out-Patient Department. |
References
- Ambrosy, A.P.; Fonarow, G.C.; Butler, J.; Chioncel, O.; Greene, S.J.; Vaduganathan, M.; Nodari, S.; Lam, C.S.; Sato, N.; Shah, A.N.; et al. The global health and economic burden of hospitalizations for heart failure: Lessons learned from hospitalized heart failure registries. J. Am. Coll. Cardiol. 2014, 63, 1123–1133. [Google Scholar] [CrossRef] [PubMed]
- Yan, T.; Zhu, S.; Yin, X.; Xie, C.; Xue, J.; Zhu, M.; Weng, F.; Zhu, S.; Xiang, B.; Zhou, X.; et al. Burden, trends, and inequalities of heart failure globally, 1990 to 2019: A secondary analysis based on the global burden of disease 2019 study. J. Am. Heart Assoc. 2023, 12, 027852. [Google Scholar] [CrossRef] [PubMed]
- Martin, S.S.; Aday, A.W.; Almarzooq, Z.I.; Anderson, C.A.; Arora, P.; Avery, C.L.; Baker-Smith, C.M.; Barone, G.B.; Beaton, A.Z.; Boehme, A.K.; et al. 2024 heart disease and stroke statistics: A report of us and global data from the american heart association. Circulation 2024, 149, 347–913. [Google Scholar]
- Pratley, R.; Guan, X.; Moro, R.J.; Lago, R. The burden of heart failure. Am. J. Med. 2024, 137, 3–8. [Google Scholar] [CrossRef]
- Heidenreich, P.; Sandhu, A. Advances in management of heart failure. BMJ 2024, 385, e077025. [Google Scholar] [CrossRef]
- Dokainish, H.; Teo, K.; Zhu, J.; Roy, A.; AlHabib, K.F.; ElSayed, A.; Palileo-Villaneuva, L.; Lopez-Jaramillo, P.; Karaye, K.; Yusoff, K.; et al. Global mortality variations in patients with heart failure: Results from the international congestive heart failure (inter-chf) prospective cohort study. Lancet Glob. Health 2017, 5, 665–672. [Google Scholar] [CrossRef]
- Gtif, I.; Bouzid, F.; Charfeddine, S.; Abid, L.; Kharrat, N. Heart failure disease: An african perspective. Arch. Cardiovasc. Dis. 2021, 114, 680–690. [Google Scholar] [CrossRef]
- Keates, A.K.; Mocumbi, A.O.; Ntsekhe, M.; Sliwa, K.; Stewart, S. Cardiovascular disease in africa: Epidemiological profile and challenges. Nat. Rev. Cardiol. 2017, 14, 273–293. [Google Scholar] [CrossRef]
- Damasceno, A.; Mayosi, B.M.; Sani, M.; Ogah, O.S.; Mondo, C.; Ojji, D.; Dzudie, A.; Kouam, C.K.; Suliman, A.; Schrueder, N.; et al. The causes, treatment, and outcome of acute heart failure in 1006 africans from 9 countries: Results of the sub-saharan africa survey of heart failure. Arch. Intern. Med. 2012, 172, 1386–1394. [Google Scholar] [CrossRef]
- Sliwa, K.; Mayosi, B.M. Recent advances in the epidemiology, pathogenesis and prognosis of acute heart failure and cardiomyopathy in africa. Heart 2013, 99, 1317–1322. [Google Scholar] [CrossRef]
- Asfaw, E. Five years clinical characteristics and in hospital outcome of acute heart failure at tertiary care hospital in ethiopia. Ethiop. Med. J. 2020, 58. [Google Scholar]
- Tirfe, M.; Nedi, T.; Mekonnen, D.; Berha, A.B. Treatment outcome and its predictors among patients of acute heart failure at a tertiary care hospital in ethiopia: A prospective observational study. BMC Cardiovasc. Disord. 2020, 20, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Moyehodie, Y.A.; Muluneh, M.W.; Belay, A.T.; Fenta, S.M. Time to death and its determinant factors among patients with chronic heart failure in northwest ethiopia: A retrospective study at selected referral hospitals. Front. Cardiovasc. Med. 2022, 9, 817074. [Google Scholar] [CrossRef]
- Ashine, T.; Muleta, G.; Tadesse, K. Assessing survival time of heart failure patients: Using Bayesian approach. J. Big Data 2021, 8, 156. [Google Scholar] [CrossRef]
- Kalbfleisch, J.D.; Prentice, R.L. The Statistical Analysis of Failure Time Data; John Wiley and Sons: Hoboken, NJ, USA, 2011. [Google Scholar]
- Khanal, S.P.; Sreenivas, V.; Acharya, S.K. Accelerated failure time models: An application in the survival of acute liver failure patients in india. Int. J. Sci. Res. 2014, 3, 161–166. [Google Scholar]
- Collett, D. Modelling Survival Data in Medical Research; CRC Press: Boca Raton, FL, USA, 2023. [Google Scholar]
- Lee, K.H.; Rondeau, V.; Haneuse, S. Accelerated failure time models for semicompeting risks data in the presence of complex censoring. Biometrics 2017, 73, 1401–1412. [Google Scholar] [CrossRef]
- Hanagal, D.D. Modeling Survival Data Using Frailty Models; Springer: Berlin/Heidelberg, Germany, 2011. [Google Scholar]
- Hougaard, P.; Hougaard, P. Analysis of multivariate survival data; Springer: Berlin/Heidelberg, Germany, 2000; p. 564. [Google Scholar]
- Rue, H.; Martino, S.; Chopin, N. Approximate Bayesian inference for latent gaussian models by using integrated nested laplace approximations. J. Royal Stat. Soc. Ser. Stat. Methodol. 2009, 71, 319–392. [Google Scholar] [CrossRef]
- Berger, J.O. Statistical Decision Theory and Bayesian Analysis; Springer: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Brooks, S.P.; Gelman, A. General methods for monitoring convergence of iterative simulations. J. Comput. Graph. Stat. 1998, 7, 434–445. [Google Scholar] [CrossRef]
- Ibrahim, J.G.; Chen, M.-H.; Sinha, D.; Ibrahim, J.; Chen, M. Bayesian Survival Analysis; Springer: Berlin/Heidelberg, Germany, 2001; p. 2. [Google Scholar]
- Ibrahim, J.G.; Zhu, H.; Tang, N. Bayesian local influence for survival models. Lifetime Data Anal. 2011, 17, 43–70. [Google Scholar] [CrossRef]
- Carroll, R.L.; Andrew, B.; Zhao, S. Temporally dependent accelerated failure time model for capturing the impact of events that alter survival in disease mapping. Biostatistics 2017, 20, 666–680. [Google Scholar] [CrossRef]
- Gelman, A.; Hwang, J.; Vehtari, A. Understanding predictive information criteria for Bayesian models. Stat. Comput. 2014, 24, 997–1016. [Google Scholar] [CrossRef]
- Aslanidou, H.; Dey, D.K.; Sinha, D. Bayesian analysis of multivariate survival data using monte carlo methods. Can. J. Stat. 1998, 26, 33–48. [Google Scholar] [CrossRef]
- Congdon, P.D. Applied Bayesian Hierarchical Methods; CRC Press: Boca Raton, FL, USA, 2010. [Google Scholar]
- Abdu, J.; Muhammad, I.B. Bayesian Survival Analysis with Missing Data Using Integrated Nested Laplace Approximation; Newcastle University: Newcastle upon Tyne, UK, 2020. [Google Scholar]
- Kaplan, E.L.; Meier, P. Nonparametric estimation from incomplete observations. J. Am. Stat. Assoc. 1958, 53, 457–481. [Google Scholar] [CrossRef]
- Aalen, O.; Borgan, O.; Gjessing, H. Survival and Event History Analysis: A Process Point of View; Springer: Berlin/Heidelberg, Germany, 2008. [Google Scholar]
- Chen, D.G.; Lio, Y. Comparative studies on frailties in survival analysis. Commun. Stat. Simul. Comput. 2008, 37, 1631–1646. [Google Scholar] [CrossRef]
- Cox, D.R. Regression models and life-tables. J. R. Stat. Ser. (Methodol.) 1972, 34, 187–202. [Google Scholar] [CrossRef]
- Bender, R.; Augustin, T.; Blettner, M. Generating survival times to simulate cox proportional hazards models. Stat. Med. 2005, 24, 1713–1723. [Google Scholar] [CrossRef]
- Wei, L.J. The accelerated failure time model: A useful alternative to the cox regression model in survival analysis. Stat. Med. 1992, 11, 1871–1879. [Google Scholar] [CrossRef]
- Cox, D.R. Some remarks on the analysis of survival data. In Proceedings of the First Seattle Symposium in Biostatistics: Survival Analysis; Springer: Berlin/Heidelberg, Germany, 1997; pp. 1–9. [Google Scholar]
- Pan, W. Using frailties in the accelerated failure time model. Lifetime Data Anal. 1997, 7, 55–64. [Google Scholar] [CrossRef]
- Kleinbaum, D.G.; Klein, M. Survival Analysis a Self-Learning Text; Springer: Berlin/Heidelberg, Germany, 1996. [Google Scholar]
- Kats, L.; Gorfine, M. An accelerated failure time regression model for illness–death data: A frailty approach. Biometrics 2023, 79, 3066–3081. [Google Scholar] [CrossRef]
- Vaupel, J.W.; Manton, K.G.; Stallard, E. The impact of heterogeneity in individual frailty on the dynamics of mortality. Demography 1979, 16, 439–454. [Google Scholar] [CrossRef]
- Clayton, D.G. A model for association in bivariate life tables and its application in epidemiological studies of familial tendency in chronic disease incidence. Biometrika 1978, 65, 141–151. [Google Scholar] [CrossRef]
- Hougaard, P. Modelling heterogeneity in survival data. J. Applied Probab. 1997, 28, 695–701. [Google Scholar] [CrossRef]
- Hougaard, P. Frailty models for survival data. Lifetime Data Anal. 1995, 1, 255–273. [Google Scholar] [CrossRef] [PubMed]
- Wienke, A. Frailty Models in Survival Analysis; CRC Press: Boca Raton, FL, USA, 2010. [Google Scholar]
- Duchateau, L.; Janssen, P. The Frailty Model; Springer: Berlin/Heidelberg, Germany, 2008. [Google Scholar]
- Zhang, J.; Peng, Y. An alternative estimation method for the accelerated failure time frailty model. Comput. Stat. Data Anal. 2007, 51, 4413–4423. [Google Scholar] [CrossRef]
- Lambert, P.; Collett, D.; Kimber, A.; Johnson, R. Parametric accelerated failure time models with random effects and an application to kidney transplant survival. Stat. Med. 2004, 23, 3177–3192. [Google Scholar] [CrossRef]
- Bhattacharjee, A. Application of Bayesian approach in cancer clinical trial. World J. Oncol. 2014, 5, 109. [Google Scholar] [CrossRef]
- Depaoli, S. The impact of inaccurate “informative” priors for growth parameters in Bayesian growth mixture modeling. Struct. Equ. Model. Multidiscip. J. 2014, 21, 239–252. [Google Scholar] [CrossRef]
- Ganjali, M.; Baghfalaki, T. Bayesian analysis of unemployment duration data in the presence of right and interval censoring. J. Reliab. Stat. 2012, 17–32. [Google Scholar]
- Hanagal, D.D.; Dabade, A.D. Bayesian estimation of parameters and comparison of shared gamma frailty models. Commun.-Stat.-Simul. Comput. 2013, 42, 910–931. [Google Scholar] [CrossRef]
- Christensen, R.; Johnson, W.; Branscum, A.; Hanson, T.E. Bayesian Ideas and Data Analysis: An Introduction for Scientists and Statisticians; CRC Press: Boca Raton, FL, USA, 2010. [Google Scholar]
- Santos, C.; Achcar, J. A Bayesian analysis for multivariate survival data in the presence of covariates. J. Stat. Theory Appl. 2010, 9, 233–253. [Google Scholar]
- Yin, G.; Ibrahim, J.G. A class of Bayesian shared gamma frailty models with multivariate failure time data. Biometrics 2005, 61, 208–216. [Google Scholar] [CrossRef] [PubMed]
- Hougaard, P. Life table methods for heterogeneous populations: Distributions describing the heterogeneity. Biometrika 1984, 71, 75–83. [Google Scholar] [CrossRef]
- Akerkar, R.; Martino, S.; Rue, H. Implementing approximate Bayesian inference for survival analysis using integrated nested laplace approximations. Prepr. Stat. Nor. Univ. Sci. Technol. 2010, 1, 1–38. [Google Scholar]
- Spiegelhalter, D.J.; Abrams, K.R.; Myles, J.P. Bayesian Approaches to Clinical Trials and Health-Care Evaluation; CRC Press: Boca Raton, FL, USA, 2004. [Google Scholar]
- Watanabe, S.; Opper, M. Asymptotic equivalence of bayes cross validation and widely applicable information criterion in singular learning theory. J. Mach. Learn. Res. 2010, 11. [Google Scholar]
- Chaloner, K. Bayesian residual analysis in the presence of censoring. Biometrika 1991, 78, 637–644. [Google Scholar] [CrossRef]
- L’opez-Vilella, R.; Guerrero, C.B.; Donoso, T.V.; Martínez, D.L.; Almenar, B.L. Clinical profiling of patients admitted with acute heart failure: A comprehensive survival analysis. Front. Cardiovasc. Med. 2024, 11, 1381514. [Google Scholar] [CrossRef]
- Martino, S.; Akerkar, R.; Rue, H. Approximate Bayesian inference for survival models. Scand. J. Stat. 2011, 38, 514–528. [Google Scholar] [CrossRef]
Covariates | Categories | No. of Censored (%) | No. of Death (%) | Total |
---|---|---|---|---|
Sex | Female | 180 (59.80) | 88 (44.90) | 268 (53.92) |
Male | 121 (40.20) | 108 (55.10) | 229 (46.08) | |
Age | ≤49 | 119 (39.54) | 18 (9.19) | 137 (27.56) |
49–65 | 101 (33.55) | 61 (31.12) | 162 (32.60) | |
≥65 | 81 (26.91) | 117 (59.69) | 198 (39.84) | |
Alcohol | No | 202 (67.11) | 113 (57.65) | 315 (63.38) |
Yes | 99 (32.89) | 83 (42.35) | 182 (36.62) | |
Residence | Urban | 94 (31.23) | 45 (22.96) | 139 (27.97) |
Rural | 207 (68.77) | 151 (77.04) | 358 (72.03) | |
History of HF | New | 128 (42.53) | 64 (32.65) | 192 (38.63) |
HF patient before | 82 (27.24) | 61 (31.12) | 143 (28.77) | |
Medical OPD | 91 (30.23) | 71 (36.23) | 162 (32.60) | |
Chronic kidney disease | No | 270 (89.70) | 72 (36.73) | 342 (68.81) |
Yes | 31 (10.30) | 124 (63.27) | 155 (31.19) | |
Hypertension | No | 248 (82.39) | 51 (26.02) | 299 (60.16) |
Yes | 53 (17.61) | 145 (73.98) | 198 (39.84) | |
Anemia | No | 256 (85.05) | 73 (37.24) | 329 (66.20) |
Yes | 45 (14.95) | 123 (62.76) | 168 (33.80) | |
Diabetes mellitus | Not | 247 (82.06) | 36 (18.37) | 283 (56.94) |
Type I | 21 (6.98) | 54 (27.55) | 75 (15.09) | |
Type II | 33 (10.96) | 106 (54.08) | 139 (27.97) | |
Etiology of HF | IHD | 86 (28.57) | 23 (12.19) | 109 (21.93) |
RVHD | 59 (19.60) | 53 (26.83) | 112 (22.54) | |
Cardiomyopathy | 65 (21.59) | 52 (25.61) | 117 (23.54) | |
HHD | 64 (21.26) | 56 (29.88) | 120 (24.14) | |
Others | 27 (8.97) | 12 (5.49) | 39 (7.85) | |
Smoking | No | 280 (93.02) | 114 (58.16) | 394 (79.28) |
Yes | 21 (6.98) | 82 (41.84) | 103 (20.72) | |
Treatments | Digoxin | 60 (19.94) | 38 (19.39) | 98 (19.72) |
Spironolactone | 76 (25.25) | 39 (19.90) | 115 (23.14) | |
Atorvastatin | 77 (25.58) | 60 (30.61) | 137 (27.56) | |
Others | 37 (12.29) | 19 (9.69) | 56 (11.27) | |
Combination | 51 (16.94) | 40 (20.41) | 91 (18.31) | |
Stages of HF | I | 78 (25.91) | 6 (3.06) | 84 (16.90) |
II | 81 (26.91) | 27 (13.78) | 108 (21.73) | |
III | 72 (23.99) | 57 (29.08) | 129 (25.96) | |
IV | 70 (23.26) | 106 (54.08) | 176 (35.41) |
Distributions | Bayesian AFT Models | Bayesian AFT Models with Frailty | ||
---|---|---|---|---|
DIC | WAIC | DIC | WAIC | |
Exponential | 1808.093 | 1801.966 | 1799.099 | 1790.696 |
Log-normal | 1616.099 | 1615.184 | 1608.812 | 1607.838 |
Weibull | 1642.971 | 1642.486 | 1616.210 | 1617.387 |
Log-logistic | 1654.036 | 1651.165 | 1619.731 | 1616.926 |
Covariates | Categories | Pmean () | SD | CrI for | KLD | |
---|---|---|---|---|---|---|
Intercept | 5.14 | 0.456 | 0 | |||
Age | ≤49 | Ref | ||||
49–65 | −0.307 | 0.121 | 0.7357 | [0.580, 0.931] * | 0 | |
≥65 | −0.361 | 0.116 | 0.6969 | [0.554, 0.873] * | 0 | |
History of HF | New | Ref | ||||
HF patient | 0.183 | 0.103 | 1.2008 | [0.983, 1.469] | 0 | |
Medical OPD | 0.243 | 0.101 | 1.2751 | [1.046, 1.559] * | 0 | |
CKD | No | Ref | ||||
Yes | −0.411 | 0.077 | 0.6630 | [0.569, 0.769] * | 0 | |
Hypertension | No | Ref | ||||
Yes | −0.312 | 0.079 | 0.7320 | [0.626, 0.855] * | 0 | |
Etiology of HF | IHD | Ref | ||||
RVHD | −0.327 | 0.121 | 0.7211 | [0.568, 0.913] * | 0 | |
Cardiomyopathy | −0.280 | 0.116 | 0.7558 | [0.602, 0.948] * | 0 | |
HHD | −0.299 | 0.119 | 0.7416 | [0.586, 0.936] * | 0 | |
Others | −0.393 | 0.166 | 0.6750 | [0.487, 0.933] * | 0 | |
Smoking | No | Ref | ||||
Yes | −0.175 | 0.077 | 0.8395 | [0.721, 0.976] * | 0 | |
Stages of HF | I | Ref | ||||
II | −0.457 | 0.173 | 0.6332 | [0.449, 0.888] * | 0 | |
III | −0.352 | 0.164 | 0.7033 | [0.509, 0.968] * | 0 | |
IV | −0.446 | 0.160 | 0.6402 | [0.467, 0.875] * | 0 | |
Diabetes mellitus | Not | Ref | ||||
Type I | −0.443 | 0.117 | 0.6421 | [0.509, 0.806] * | 0 | |
Type II | −0.551 | 0.105 | 0.5764 | [0.468, 0.706] * | 0 | |
Anemia | No | Ref | ||||
Yes | −0.169 | 0.073 | 0.8445 | [0.729, 0.974] * | 0 | |
Pre lognormal surv | Shape | 3.45 | 0.364 | 31.5 | [15.958, 67.356] * | |
Pre Res | Frailty | 0.0264 | 0.0199 | 1.0268 | [1.00598, 1.625] * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ashine, T.; Tadesse Likassa, H.; Chen, D.-G. Estimating Time-to-Death and Determining Risk Predictors for Heart Failure Patients: Bayesian AFT Shared Frailty Models with the INLA Method. Stats 2024, 7, 1066-1083. https://doi.org/10.3390/stats7030063
Ashine T, Tadesse Likassa H, Chen D-G. Estimating Time-to-Death and Determining Risk Predictors for Heart Failure Patients: Bayesian AFT Shared Frailty Models with the INLA Method. Stats. 2024; 7(3):1066-1083. https://doi.org/10.3390/stats7030063
Chicago/Turabian StyleAshine, Tafese, Habte Tadesse Likassa, and Ding-Geng Chen. 2024. "Estimating Time-to-Death and Determining Risk Predictors for Heart Failure Patients: Bayesian AFT Shared Frailty Models with the INLA Method" Stats 7, no. 3: 1066-1083. https://doi.org/10.3390/stats7030063
APA StyleAshine, T., Tadesse Likassa, H., & Chen, D. -G. (2024). Estimating Time-to-Death and Determining Risk Predictors for Heart Failure Patients: Bayesian AFT Shared Frailty Models with the INLA Method. Stats, 7(3), 1066-1083. https://doi.org/10.3390/stats7030063